JPH06135800A - Production of single crystal - Google Patents

Production of single crystal

Info

Publication number
JPH06135800A
JPH06135800A JP31636992A JP31636992A JPH06135800A JP H06135800 A JPH06135800 A JP H06135800A JP 31636992 A JP31636992 A JP 31636992A JP 31636992 A JP31636992 A JP 31636992A JP H06135800 A JPH06135800 A JP H06135800A
Authority
JP
Japan
Prior art keywords
single crystal
melt
metal disk
metal
raw material
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP31636992A
Other languages
Japanese (ja)
Inventor
Toshio Shoji
利男 東海林
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Tokin Corp
Original Assignee
Tokin Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Tokin Corp filed Critical Tokin Corp
Priority to JP31636992A priority Critical patent/JPH06135800A/en
Publication of JPH06135800A publication Critical patent/JPH06135800A/en
Pending legal-status Critical Current

Links

Landscapes

  • Crystals, And After-Treatments Of Crystals (AREA)

Abstract

PURPOSE:To produce a YAG single crystal excellent in crystallinity and having a long straight shell part by controlling an after heater effect while reducing the deterioration of the refractory and without lowering the stabilizing effect in the growth conditions and making the temp. gradient in the pulling-up direction gentle and linear. CONSTITUTION:In the production of an Yttrium-aluminum-garnet single crystal by the Czochralski method, the single crystal is grown by using a growth device provided with a metallic disk 15 arranged at the upper end of a heating crucible 11 filled with a molten material 14, capable of intercepting the IR radiation, with the whole or a part at the center made into a truncated cone having the apex in the vertical direction of the molten material and having an opening of enough size to pass the grown crystal.

Description

【発明の詳細な説明】Detailed Description of the Invention

【0001】[0001]

【産業上の利用分野】本発明は、チョクラルスキー法に
より固体レーザ用材料等に用いられる活性イオンを含む
イットリウム・アルミニウム・ガーネット(以下YAG
と記す)単結晶の製造方法に関するもので、結晶性が良
好で直胴部の長い単結晶育成を可能にする製造法に係わ
るものである。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to yttrium-aluminum-garnet (hereinafter YAG) containing active ions used for materials for solid-state lasers by the Czochralski method.
The present invention relates to a method for producing a single crystal, which relates to a method for producing a single crystal having good crystallinity and a long straight body.

【0002】[0002]

【従来の技術】活性イオンを含んだYAG単結晶のなか
でも特にネオジウム添加イットリウム・アルミニウム・
ガーネット(以下Nd+3:Y3Al512と記す)単結晶
は現在工業的に最も有用な固体レーザ材料であり、種々
のレーザ発振装置に使用されている。通常X:Y3Al5
12(XはNd+3他)の化学式で表されるYAGの単結
晶は高周波加熱方式のチョクラルスキー法によりイリジ
ウム(以下Irと記す)金属等で作られた坩堝を用いて
製造されるが、融点が1970℃程度と極めて高いた
め、原料融液の充填された坩堝の周囲及び融液面上方を
高融点で高純度の酸化アルミニウム(Al23)あるい
は酸化ジルコニウム(Zr23)製の耐火物や粉末によ
り覆い保温する必要がある。YAG単結晶の育成におい
てこれら耐火物の構成は重要な育成条件である。
2. Description of the Related Art Among YAG single crystals containing active ions, particularly yttrium aluminum containing neodymium
Garnet (hereinafter referred to as Nd +3 : Y 3 Al 5 O 12 ) single crystal is the most industrially useful solid-state laser material at present, and is used in various laser oscillators. Normal X: Y 3 Al 5
A YAG single crystal represented by a chemical formula of O 12 (X is Nd +3, etc.) is manufactured by a Czochralski method of a high frequency heating method using a crucible made of iridium (hereinafter referred to as Ir) metal or the like. However, since the melting point is extremely high at about 1970 ° C., aluminum oxide (Al 2 O 3 ) or zirconium oxide (Zr 2 O 3 ) having a high melting point and high purity is provided around the crucible filled with the raw material melt and above the melt surface. It is necessary to keep it warm by covering it with a refractory or powder. The composition of these refractory materials is an important growth condition in the growth of YAG single crystals.

【0003】高温である融液及び坩堝に近接して使用さ
れる場合、これら耐火物は割れ等の劣化を生じる。融液
の上方に近接して配置される耐火物は、温度環境が耐火
材の最高使用温度限界近傍となり、劣化が進みやすく、
特に保温性の劣化が激しい。この耐火物の劣化は、温度
勾配等単結晶育成条件の変化を招き、育成上支障となっ
ている。これを防止するため従来のYAG単結晶育成の
場合、一般的に、中央部に円孔を有するIr金属製等の
金属製円板を、融液と前記耐火物との間あるいは耐火物
のかわりに配置する。この金属製円板を保温性は少ない
が変形劣化がなく融体からの赤外線放射を育成中を通じ
て安定して遮断する役割を果たし、耐火物の劣化を低減
し育成条件を安定化する働きをしている。
When used in the vicinity of a high temperature melt and crucible, these refractories cause deterioration such as cracking. Refractory placed close to the top of the melt has a temperature environment close to the maximum operating temperature limit of the refractory material, and deterioration easily proceeds,
In particular, the heat retention is severely deteriorated. This deterioration of the refractory causes changes in single crystal growth conditions such as temperature gradient, which is an obstacle to growth. In order to prevent this, in the case of conventional YAG single crystal growth, in general, a metal disc made of Ir metal or the like having a circular hole in the central portion is provided between the melt and the refractory or in place of the refractory. To place. This metal disc has little heat retention but does not have deformation deterioration and plays a role of stably blocking infrared radiation from the melt throughout the growing process, reducing the deterioration of refractory and stabilizing the growing conditions. ing.

【0004】しかし、育成が進み融液面が降下し、融液
面上の坩堝壁面積が増加するに従い、金属製円板配置に
よる弊害が現れる。即ち一般に、融液に熱伝導を行わな
い上記坩堝壁面積の増大は融液上方の温度勾配を減少さ
せ結晶育成を困難にするいわゆるアフターヒーター効果
を招来する。特にYAG単結晶育成の場合、本来比較的
大きな温度勾配で育成され、また育成が進むにつれて耐
火物が保温性を失っていくので融液温度を維持するため
高周波電力を漸次増加させなければならず、育成終段に
おいてこの効果が現れやすい。金属製円板を配置する
と、放射が抑えられ、また金属製円板自体も誘導加熱さ
れるため、融液直上付近において上方への熱放散が相対
的に小さくなり、益々アフターヒーター効果が現れやす
くなる。結果として、融液の結晶化率が下がり、直胴部
長を減少させる、あるいは結晶性を劣化させるという問
題がある。また、金属製円板の位置で温度勾配が急激に
変化するため、育成中に単結晶にクラックが入るなどの
問題があった。
However, as the growth progresses and the melt surface descends, and the crucible wall area on the melt surface increases, the adverse effect of the metal disk arrangement appears. That is, generally, an increase in the area of the crucible wall that does not conduct heat to the melt results in a so-called after-heater effect that reduces the temperature gradient above the melt and makes crystal growth difficult. Particularly in the case of YAG single crystal growth, since the refractory material is originally grown with a relatively large temperature gradient and the heat resistance of the refractory material is lost as the growth progresses, the high frequency power must be gradually increased to maintain the melt temperature. , This effect is likely to appear at the final stage of growth. When a metal disk is placed, the radiation is suppressed and the metal disk itself is also induction heated, so the heat dissipation to the upper side is relatively small in the vicinity of the melt, and the after-heater effect tends to appear more and more. Become. As a result, there is a problem that the crystallization rate of the melt is reduced, the length of the straight body portion is reduced, or the crystallinity is deteriorated. In addition, since the temperature gradient drastically changes at the position of the metal disk, there is a problem that the single crystal is cracked during the growth.

【0005】[0005]

【発明が解決しようとする課題】本発明の課題は、上述
の問題を解消して、金属製遮弊板配置による耐火物劣化
低減と育成条件安定化の効果を損なうことなくアフター
ヒーター効果を制御し、かつ引上げ方向の温度勾配を緩
やかな直線的な勾配にすることによって、結晶性が良好
で直胴部の長いYAG単結晶の製造方法を提供すること
である。
The object of the present invention is to solve the above problems and control the after-heater effect without impairing the effects of reducing the deterioration of refractory and stabilizing the growth conditions by disposing the metal shielding plate. In addition, the present invention provides a method for producing a YAG single crystal having good crystallinity and a long straight body by making the temperature gradient in the pulling direction a gentle linear gradient.

【0006】[0006]

【課題を解決するための手段】本発明は、上記の課題を
解決するため、中央部に開口部を有し、かつ円板の中央
部が融液の上下方向に頂点を持つ錐台状である金属製円
盤を、坩堝の上部に配置する装置による単結晶の製造方
法である。
In order to solve the above-mentioned problems, the present invention has a truncated cone shape having an opening at the center and the center of the disk having an apex in the vertical direction of the melt. This is a method for producing a single crystal by a device in which a certain metal disk is placed above a crucible.

【0007】即ち、本発明は、チョクラルスキー法を
用いたイットリウム・アルミニウム・ガーネット単結晶
の製造方法において、原料融液の充填された加熱用坩堝
上端に配置された赤外線放射を遮断し得る金属製円盤
で、全体あるいは中央の一部の形状が、原料融液の上下
方向に頂点を持つ錐台状であり、かつ、育成された結晶
が通過できる大きさの開口部を有する金属製円盤を備え
た育成装置を用いて育成することを特徴とする単結晶の
製造方法、及び上記記載の単結晶の製造方法におい
て、金属製円盤の錐台状部分となる個所に偶数の複数の
径方向の切込みを有し、錐台状部となる部分を原料融液
の上下方向に交互に折り曲げて、原料融液の上下方向に
錐台状部の頂点が来るように構成した金属製円盤を備え
た育成装置を用いて育成することを特徴とする単結晶の
製造方法である。
That is, the present invention is a method for producing an yttrium-aluminum-garnet single crystal using the Czochralski method, which is capable of blocking infrared radiation disposed at the upper end of a heating crucible filled with a raw material melt. A disk made of metal whose whole or part of the center has a truncated cone shape having apexes in the vertical direction of the raw material melt, and which has an opening of a size that allows the grown crystal to pass through. In the method for producing a single crystal, which is characterized by growing using a growing apparatus provided, and in the method for producing a single crystal described above, an even number of a plurality of radial directions at a portion which becomes a frustum-shaped portion of a metal disk. A metal disk having a notch and having a frustum-shaped portion alternately bent in the vertical direction of the raw material melt so that the apex of the frustum-shaped portion comes in the vertical direction of the raw material melt was provided. Raise using a raising device It is a manufacturing method of a single crystal characterized by.

【0008】[0008]

【作用】坩堝上部に従来の円板状の金属製遮弊板を配置
した場合、図4(a)に示すような温度勾配を示す。金
属製円板16が開口している域は上方への熱伝導が良
く、金属製円板16で覆われた領域は融液14面と坩堝
11壁からの赤外線放射をも遮断し、外部への熱放散は
小さくなる。これにより融液面の中心部と坩堝壁周辺の
相対的温度差を大きくすることが可能となり、自然対流
の増勢に貢献する。しかし、特に円板が平面の場合、金
属製円板近傍での縦方向での温度変化が激しい為、成長
した結晶がこの領域を通過する際に熱ショックによって
割れが生じ易い。しかるに本発明のごとく、金属製遮弊
板の上下面が錐台状に張り出した構造の金属製円盤15
とし、この金属製円盤の開口部近傍を上下方向に頂点を
持つ錐台状にすることによって図4(b)に示すよう
に、急激な温度勾配を有する部分をなくし、緩やかな温
度勾配にすることができ、熱ショックによる割れを防止
することが可能となる。
When a conventional disc-shaped metal shielding plate is arranged on the upper part of the crucible, it exhibits a temperature gradient as shown in FIG. 4 (a). The area where the metal disk 16 is open has good heat conduction upward, and the area covered by the metal disk 16 also blocks infrared radiation from the melt 14 surface and the crucible 11 wall, and goes outside. Heat dissipation is reduced. This makes it possible to increase the relative temperature difference between the center of the melt surface and the vicinity of the crucible wall, which contributes to the increase of natural convection. However, especially when the disk is a flat surface, the temperature change in the vertical direction near the metal disk is large, and therefore, when the grown crystal passes through this region, cracks easily occur due to heat shock. However, as in the present invention, the metal disk 15 having a structure in which the upper and lower surfaces of the metal shield plate are projected like a frustum.
Then, by making the vicinity of the opening of this metal disk into a truncated cone shape having an apex in the vertical direction, as shown in FIG. 4B, a portion having a sharp temperature gradient is eliminated and a gentle temperature gradient is obtained. It is possible to prevent cracking due to heat shock.

【0009】[0009]

【実施例】次に、実施例として本発明の方法を用いてN
+3:Y3Al512で表されるネオジム添加イットリウ
ム・アルミニウム・ガーネットの単結晶を製造した場合
について説明する。図1は、本発明の方法に用いる育成
装置の構成を説明する説明図である。図2は本発明の方
法に使用するIr金属製の円盤を示し、図2(a)は上
面図、図2(b)は側面断面図である。図1及び図2に
示すように、本発明の実施例で用いる単結晶育成装置は
炉体1の上下に雰囲気ガス導入口2と雰囲気ガス排気口
3が設けられ、アルミナ耐火物6の中にジルコニア粉末
9で周囲を覆われた状態でIr金属製坩堝11が配置さ
れ、その内側に単結晶の原料の融液14が在る。該融液
の上面に、結晶回転引上軸に固定された種結晶の先端に
育成された育成結晶13が接している。アルミナ耐火物
6と炉体の間には加熱用ワークコイル10が設けられ、
またアルミナ耐火物6の上方は、アルミナ耐火物及びジ
ルコニア耐火物が配置され、更に、本発明の特徴とする
金属製円盤(本実施例ではIr金属製円盤15)がIr
金属製坩堝11の上端に円盤15の円錐台の頂点が融液
の上下方向に来るようを配置している。
EXAMPLE Next, as an example, the method of the present invention was used to
A case where a single crystal of neodymium-doped yttrium-aluminum-garnet represented by d +3 : Y 3 Al 5 O 12 is manufactured will be described. FIG. 1 is an explanatory diagram illustrating the configuration of a growing device used in the method of the present invention. FIG. 2 shows a disk made of Ir metal used in the method of the present invention, FIG. 2 (a) is a top view, and FIG. 2 (b) is a side sectional view. As shown in FIGS. 1 and 2, the apparatus for growing a single crystal used in the embodiment of the present invention is provided with an atmosphere gas inlet 2 and an atmosphere gas outlet 3 at the top and bottom of a furnace body 1, and an alumina refractory material 6 An Ir metal crucible 11 is arranged in a state where the periphery thereof is covered with the zirconia powder 9, and a melt 14 of a single crystal raw material exists inside the crucible 11. The grown crystal 13 grown at the tip of the seed crystal fixed to the crystal rotary pull-up shaft is in contact with the upper surface of the melt. A work coil 10 for heating is provided between the alumina refractory 6 and the furnace body,
Further, an alumina refractory material and a zirconia refractory material are arranged above the alumina refractory material 6. Further, the metal disk (Ir metal disk 15 in this embodiment) which is a feature of the present invention is Ir.
At the upper end of the metal crucible 11, the apex of the truncated cone of the disk 15 is arranged in the vertical direction of the melt.

【0010】次に高純度の酸化イットリウム、酸化アル
ミニウム及び酸化ネオジウム粉末を所要の比になるよう
に秤量混合した。原料9000gを直径150mm×深
さ150mm×厚さ2mmのIr金属製坩堝11に溶か
し込んだ。Ir金属製の円盤15は外径170mm×内
径80mm×厚さ1mmで図2のような円盤形の形状と
した。引き上げる結晶重量は約1500gである。融液
面降下距離及びIr金属製坩堝11上端と融液14面間
の長さを考慮し、Ir金属製の円盤15の開口部上下端
までの高さを上下各3cmとした。予め作製した前記融
液と同組成のペレット状の原料約2kgをIr金属製坩
堝内に追加し、原料を1950℃程度まで加熱融解し
た。前述の図1に示す育成装置により、通常の方法で上
方より融液面に種結晶を接触させ、徐々に種結晶を結晶
回転引上げ軸4により引上げ、結晶を育成した。直径6
0mm、長さ200mmの結晶性の良いNd+3:YAG
単結晶を得た。次に前記実施例において、図3に示すよ
うに、遮弊用金属製円盤15の形状を、錐台状部分17
が直径方向の複数の切り込みで分断され(本例で8個
所)、この分断片を交互に上下方向に折り返し、櫛歯状
の錐台状に変え、この金属製の遮弊用円盤15に変えて
育成したところ、歩留的には前実施例より若干低くなる
が遮弊用金属製円盤15の製作が簡単になり、従来の円
板16を使用した場合よりも歩留を改善できた。
Next, high-purity yttrium oxide, aluminum oxide and neodymium oxide powders were weighed and mixed in a required ratio. 9000 g of the raw material was melted into an Ir metal crucible 11 having a diameter of 150 mm, a depth of 150 mm and a thickness of 2 mm. The Ir metal disk 15 has an outer diameter of 170 mm × inner diameter of 80 mm × thickness of 1 mm and has a disk shape as shown in FIG. The weight of crystal pulled up is about 1500 g. In consideration of the melt surface descent distance and the length between the upper end of the Ir metal crucible 11 and the surface of the melt 14, the heights of the Ir metal disk 15 from the upper and lower ends to the upper and lower ends are 3 cm each. About 2 kg of a pellet-shaped raw material having the same composition as the previously prepared melt was added into the Ir metal crucible, and the raw material was heated and melted to about 1950 ° C. The seed crystal was brought into contact with the melt surface from above by a usual method using the above-described growing apparatus shown in FIG. 1, and the seed crystal was gradually pulled up by the crystal rotary pulling shaft 4 to grow the crystal. Diameter 6
Nd +3 : YAG with 0 mm and length of 200 mm and good crystallinity
A single crystal was obtained. Next, in the above-mentioned embodiment, as shown in FIG.
Is divided by a plurality of diametrical cuts (8 places in this example), and the pieces are alternately folded back and forth to form a comb-shaped frustum shape, which is then changed to the metal shielding disk 15. As a result, the yield was slightly lower than that of the previous example, but the production of the shielding metal disk 15 was simplified, and the yield was improved as compared with the case where the conventional disk 16 was used.

【0011】[0011]

【発明の効果】以上述べたように、本発明の方法を用い
れば、金属製円盤の配置により、耐火物を劣化させるこ
となく、また育成条件安定化の効果を損なうことなく、
アフターヒーター効果を抑制し、結晶性が良好で直胴部
の長い経済的なYAG単結晶の製造が可能となる。
As described above, according to the method of the present invention, the arrangement of the metal disks does not deteriorate the refractory and does not impair the effect of stabilizing the growth conditions.
The after-heater effect is suppressed, and it becomes possible to manufacture an economical YAG single crystal having good crystallinity and a long straight body.

【図面の簡単な説明】[Brief description of drawings]

【図1】本発明の一実施例の単結晶の製造方法に用いる
育成装置の構成を説明する説明図である。
FIG. 1 is an explanatory diagram illustrating a configuration of a growing device used in a method for manufacturing a single crystal according to an embodiment of the present invention.

【図2】図1に示す本発明の実施例の方法に使用するI
r金属製円盤の形状を示し、図2(a)は上面図、図2
(b)は正面断面図である。
FIG. 2 is the I used in the method of the embodiment of the invention shown in FIG.
r shows the shape of a metal disk, FIG. 2 (a) is a top view, FIG.
(B) is a front sectional view.

【図3】本発明の他の実施例の方法に使用するIr金属
製円盤の形状を示し、図3(a)は上面図、図3(b)
は正面断面図である。
FIG. 3 shows the shape of an Ir metal disk used in the method of another embodiment of the present invention, FIG. 3 (a) is a top view and FIG. 3 (b).
Is a front sectional view.

【図4】金属製円盤を配置したときの坩堝の融液面の上
下、横方向での等温線の分布状態と、中央部上下方向で
の温度分布を示し、図4(a)はIr金属製円板を配置
した場合、図4(b)は本発明によるIr金属製円盤を
配置した場合を示す。
FIG. 4 shows the distribution of isotherms in the vertical and horizontal directions of the melt surface of the crucible and the temperature distribution in the vertical direction of the central part when a metal disk is arranged. FIG. FIG. 4 (b) shows the case where the Ir metal disk according to the present invention is arranged, when the disk making is arranged.

【符号の説明】[Explanation of symbols]

1 炉体 2 雰囲気ガス導入口 3 雰囲気ガス排気口 4 結晶回転引上げ軸 5 アルミナ耐火物(円筒形) 6 アルミナ耐火物(坩堝形) 7 ジルコニア耐火物(円筒形) 8 ジルコニア耐火物(円盤形) 9 ジルコニア粉末 10 ワークコイル 11 坩堝 12 種結晶 13 育成結晶 14 融液 15 円盤 16 (従来の)円板 17 錐台状部分 18 坩堝中央部の上下方向の温度分布を示す曲線
(破線) 19 等温線
1 Furnace Body 2 Atmospheric Gas Inlet 3 Atmospheric Gas Exhaust 4 Crystal Rotating Pulling Shaft 5 Alumina Refractory (Cylindrical) 6 Alumina Refractory (Crucible) 7 Zirconia Refractory (Cylindrical) 8 Zirconia Refractory (Disc) 9 Zirconia powder 10 Work coil 11 Crucible 12 Seed crystal 13 Growing crystal 14 Melt 15 Disk 16 (Conventional) disk 17 Frustum-shaped portion 18 Curve (dashed line) 19 showing the vertical temperature distribution in the center of the crucible 19 Isotherm

Claims (2)

【特許請求の範囲】[Claims] 【請求項1】 チョクラルスキー法を用いたイットリウ
ム・アルミニウム・ガーネット単結晶の製造方法におい
て、原料融液の充填された加熱用坩堝上端に配置された
赤外線放射を遮断し得る金属製円盤で、全体あるいは中
央の一部の形状が、原料融液の上下方向に頂点を持つ錐
台状であり、かつ、育成された結晶が通過できる大きさ
の開口部を有する金属製円盤を備えた育成装置を用いて
育成することを特徴とする単結晶の製造方法。
1. A method for producing a yttrium-aluminum-garnet single crystal using the Czochralski method, which is a metal disk arranged at an upper end of a heating crucible filled with a raw material melt and capable of blocking infrared radiation, The whole or a part of the shape of the center is a frustum shape having an apex in the up-down direction of the raw material melt, and a growing device equipped with a metal disk having an opening of a size through which a grown crystal can pass. A method for producing a single crystal, which comprises growing the single crystal.
【請求項2】 請求項1記載の単結晶の製造方法におい
て、金属製円盤の錐台状部分となる個所に偶数の複数の
径方向の切込みを有し、錐台状部となる部分を原料融液
の上下方向に交互に折り曲げて、原料融液の上下方向に
錐台状部の頂点が来るように構成した金属製円盤を備え
た育成装置を用いて育成することを特徴とする単結晶の
製造方法。
2. The method for producing a single crystal according to claim 1, wherein the frustum-shaped portion of the metal disk has an even number of radial notches, and the frustum-shaped portion is used as a raw material. Alternating in the vertical direction of the melt, a single crystal characterized by growing using a growing device equipped with a metal disk configured so that the apex of the frustum-shaped portion comes in the vertical direction of the raw material melt Manufacturing method.
JP31636992A 1992-10-29 1992-10-29 Production of single crystal Pending JPH06135800A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP31636992A JPH06135800A (en) 1992-10-29 1992-10-29 Production of single crystal

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP31636992A JPH06135800A (en) 1992-10-29 1992-10-29 Production of single crystal

Publications (1)

Publication Number Publication Date
JPH06135800A true JPH06135800A (en) 1994-05-17

Family

ID=18076334

Family Applications (1)

Application Number Title Priority Date Filing Date
JP31636992A Pending JPH06135800A (en) 1992-10-29 1992-10-29 Production of single crystal

Country Status (1)

Country Link
JP (1) JPH06135800A (en)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2004123510A (en) * 2002-06-13 2004-04-22 Hitachi Ltd Apparatus for manufacturing single crystal and method for manufacturing the same
US7691764B2 (en) 2006-06-21 2010-04-06 Murata Manufacturing Co., Ltd. Translucent ceramic, optical component, and optical device
JP2012082118A (en) * 2010-10-14 2012-04-26 Sumitomo Metal Mining Co Ltd Method of growing oxide single crystal

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2004123510A (en) * 2002-06-13 2004-04-22 Hitachi Ltd Apparatus for manufacturing single crystal and method for manufacturing the same
US7691764B2 (en) 2006-06-21 2010-04-06 Murata Manufacturing Co., Ltd. Translucent ceramic, optical component, and optical device
JP2012082118A (en) * 2010-10-14 2012-04-26 Sumitomo Metal Mining Co Ltd Method of growing oxide single crystal

Similar Documents

Publication Publication Date Title
JP3961750B2 (en) Single crystal growth apparatus and growth method
JP2019147698A (en) Apparatus and method for growing crystal
JP2002080215A (en) Method of making polycrystalline semiconductor ingot
JPH06135800A (en) Production of single crystal
US7264750B2 (en) Rare earth silicate single crystal and process for production of rare earth silicate single crystals
JP7271842B2 (en) Method for producing lithium tantalate single crystal
JP2828118B2 (en) Single crystal manufacturing method and single crystal pulling apparatus
JP2018111633A (en) Apparatus and method for growing oxide single crystal
JP7271843B2 (en) Method for producing lithium tantalate single crystal
JPH06183895A (en) Production of neodymium-doped yttrium-aluminum garnet single crystal
JPH0337181A (en) Production of big magnetostrictive alloy rod composed of rare earth metal and transition metal
JPS6389488A (en) Production of single crystal
JP3079991B2 (en) Single crystal manufacturing apparatus and manufacturing method
JP3513046B2 (en) Single crystal manufacturing equipment
JP7106978B2 (en) CRYSTAL GROWING APPARATUS AND SINGLE CRYSTAL MANUFACTURING METHOD
JP2705832B2 (en) Single crystal pulling device
JP6992488B2 (en) Crucible for growing single crystals
JP2005343737A (en) Apparatus for manufacturing compound semiconductor single crystal
JPH10251090A (en) Oxide single crystal and its growth method
JP2001080987A (en) Device for producing compound semiconductor crystal and production process using the same
JP2002234792A (en) Method of producing single crystal
JPH05208891A (en) Single crystal growing apparatus
JP2686662B2 (en) Oxide single crystal manufacturing equipment
JP3744053B2 (en) Graphite crucible and method for producing silicon single crystal by using Czochralski method
JP2939603B2 (en) Manufacturing method of semiconductor single crystal