JPS6086092A - Single crystal pulling device - Google Patents
Single crystal pulling deviceInfo
- Publication number
- JPS6086092A JPS6086092A JP19426283A JP19426283A JPS6086092A JP S6086092 A JPS6086092 A JP S6086092A JP 19426283 A JP19426283 A JP 19426283A JP 19426283 A JP19426283 A JP 19426283A JP S6086092 A JPS6086092 A JP S6086092A
- Authority
- JP
- Japan
- Prior art keywords
- crystal
- heater
- crucible
- single crystal
- melt
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Pending
Links
Classifications
-
- C—CHEMISTRY; METALLURGY
- C30—CRYSTAL GROWTH
- C30B—SINGLE-CRYSTAL GROWTH; UNIDIRECTIONAL SOLIDIFICATION OF EUTECTIC MATERIAL OR UNIDIRECTIONAL DEMIXING OF EUTECTOID MATERIAL; REFINING BY ZONE-MELTING OF MATERIAL; PRODUCTION OF A HOMOGENEOUS POLYCRYSTALLINE MATERIAL WITH DEFINED STRUCTURE; SINGLE CRYSTALS OR HOMOGENEOUS POLYCRYSTALLINE MATERIAL WITH DEFINED STRUCTURE; AFTER-TREATMENT OF SINGLE CRYSTALS OR A HOMOGENEOUS POLYCRYSTALLINE MATERIAL WITH DEFINED STRUCTURE; APPARATUS THEREFOR
- C30B15/00—Single-crystal growth by pulling from a melt, e.g. Czochralski method
- C30B15/14—Heating of the melt or the crystallised materials
Landscapes
- Chemical & Material Sciences (AREA)
- Engineering & Computer Science (AREA)
- Crystallography & Structural Chemistry (AREA)
- Materials Engineering (AREA)
- Metallurgy (AREA)
- Organic Chemistry (AREA)
- Crystals, And After-Treatments Of Crystals (AREA)
Abstract
Description
【発明の詳細な説明】
〔発明の利用分野〕
本発明はチョクラルスキー法によって単結晶を引上げる
装置に関し、特に円柱状単結晶を歩留りよく引上げるの
に適した単結晶引上装置に関するものである。[Detailed Description of the Invention] [Field of Application of the Invention] The present invention relates to an apparatus for pulling single crystals using the Czochralski method, and particularly to a single crystal pulling apparatus suitable for pulling cylindrical single crystals with a high yield. It is.
チョクラルスキー法によって真直度のよい円柱状単結晶
を歩留シよく育成すめには、溶融面の垂直方向の温度勾
配を大きくかつ対称性よくすることが必要である。こ扛
を達成するために、■加熱Wのヒータ筐たは高周波コイ
ルとるつぼの相ズ1位置を最適化する、■るつぼ上端に
ワッシャ状の薄いリングを設置する(特開昭55−22
329号公報)などの手段を講じている。In order to grow cylindrical single crystals with good straightness and high yield using the Czochralski method, it is necessary to make the temperature gradient in the vertical direction of the melting surface large and symmetrical. In order to achieve this, ■ optimize the phase 1 position of the heating W heater case or high-frequency coil and the crucible; ■ install a washer-like thin ring on the top of the crucible (Japanese Patent Laid-Open No. 55-22
329 Publication).
最近、結晶の歩留り向上を目的に酋成する単結晶の大ヒ
径化(50〜75rnIn)が1すます進展している。Recently, increasing diameters of single crystals (50 to 75 rnIn) have been increasing with the aim of improving the yield of crystals.
結晶の大形化に伴い、げ成時の溶融面の降下量は一層大
きくなり、炉内温度分布はげ成の始めと終シで全く異な
υ、従来の装置では真直度の優れた円柱状単結晶を得る
のは非常に困難を伴った。育成の初期と後期の条件を同
じにするために、シリコン単結晶の育成では熱遮蔽リン
グを溶融面の降下速度で降下させて結晶の固液界面の形
状を平坦にして均一だ電気特性を得ている(特公昭51
−47153号公報)。しかしながらrdや高エネルギ
粒子線の検出に用いられているB i4’Gea01i
単結晶を育成する場合には熱遮蔽リングの位置を溶融面
の降下速度と同じ速度で変位させるだけでは、最適な垂
直方向の温度勾配が得られず真直度のよい単結晶は育成
できなかった。As the crystal size increases, the amount of descent of the molten surface during blistering becomes even larger, and the temperature distribution inside the furnace is completely different υ at the beginning and end of blistering. Obtaining crystals was extremely difficult. In order to keep the conditions the same in the early and late stages of growth, when growing silicon single crystals, a heat shielding ring is lowered at the rate of descent of the melting surface to flatten the shape of the solid-liquid interface of the crystal and obtain uniform electrical properties. (Tokuko 51)
-47153). However, B i4'Gea01i, which is used for detection of rd and high-energy particle beams,
When growing a single crystal, simply displacing the heat shielding ring at the same rate as the rate of descent of the melting surface does not provide the optimal vertical temperature gradient, making it impossible to grow a single crystal with good straightness. .
″1次表面弾性波素子、電気光学素子材料に用いられる
B11z810zo 、 Bj1zGeOzo単結晶の
育成においても熱遮蔽リングの降下のみでは、結晶形状
のねじれを解決することはCきず歩留シは低下した。ビ
スマスを主成分とするこれらの単結晶の形状が制御困難
なのは、浴液の粘性が他の酸化物。``Even in the growth of B11z810zo and Bj1zGeOzo single crystals used for primary surface acoustic wave devices and electro-optical device materials, lowering the heat shielding ring alone cannot solve the twist in the crystal shape, and the C flaw yield decreases. The difficulty in controlling the shape of these single crystals, which mainly consist of bismuth, is due to the viscosity of the bath liquid and other oxides.
半導体材料に比べて高いためと考えられる。This is thought to be because it is more expensive than semiconductor materials.
本発明の目的は、績晶背成の始めと終りの融液の垂直方
向の温度勾配が同じ最適条件になるようにして、真直度
の優れた円柱状結晶を歩留りよく引上げる単結晶引上装
置を提供することにおる。The purpose of the present invention is to achieve a single crystal pulling method in which the temperature gradient in the vertical direction of the melt at the beginning and end of crystal formation is the same, and the cylindrical crystal with excellent straightness is pulled with a high yield. Our goal is to provide equipment.
〔発明の概要」
結晶の真直襞は、融液中の温度勾配に強く依存し、主に
半径および垂直方向の温度勾配は重要である。結晶形状
のねじれは結晶引上げの初期では起りにくく、融液がる
つぼの半分ぐらい減少し7た時に発生しやすくなる。そ
こでこの時の対流の様子をシリコンオイルを用いてaT
71.化し、対流の可視化実験からねじれの発生原因
を調べた。第1図はえ)つぼに融液がはvl一杯ある結
晶引上げの初期に観察される対流の請求子を永し、たも
のである。ワッシャ状アフタヒータと溶液面の距離が3
rlaと近い一合、対流は表面近傍のみ鰻こり、f部で
はほとんど対流が観察されない。仄に結晶の真直1尻が
悪くなる状態の時の対流を第2図に示す。ワッシャ状ア
フタヒータと浴牧面の距離が50111mの時、対流は
るつぼ底まで達し、溶液中心に乱流6が観察される。そ
こでワッシャ状アフタヒータと浴CI!i。SUMMARY OF THE INVENTION Straight folds in crystals are strongly dependent on temperature gradients in the melt, with primarily radial and vertical temperature gradients being important. Twisting of the crystal shape is difficult to occur in the early stages of crystal pulling, and becomes more likely to occur when the melt is reduced by about half of the crucible. Therefore, we investigated the state of convection at this time using silicone oil.
71. We investigated the cause of twisting through convection visualization experiments. Figure 1 (Fig. 1) shows a convection pattern observed at the beginning of crystal pulling when the pot is full of melt. The distance between the washer-like afterheater and the solution surface is 3
In a case close to rla, convection occurs only near the surface, and almost no convection is observed in the f region. Figure 2 shows convection when the straightness of the crystal deteriorates slightly. When the distance between the washer-like afterheater and the bathing surface is 50111 m, the convection reaches the bottom of the crucible, and turbulent flow 6 is observed at the center of the solution. Therefore, a washer-like afterheater and a bath CI! i.
而の距離が、浴溶の垂直方向の(帽反勾配にどのように
影響を与えるかを調べた。第3図にワッシャ状アフタヒ
ータとm液面の距離に対する溶液中心における表面と底
との垂直方向の温度差の関係を示した。その結果、ワッ
シャ状アフタヒータと溶液面の距離が15問以上になる
と温度差が小さくなり、時に50簡の所で最も小さいこ
とが分った。We investigated how the distance affects the vertical (cap) gradient of the bath solution. Figure 3 shows the vertical relationship between the surface and the bottom at the center of the solution with respect to the distance between the washer-like afterheater and the liquid surface. The relationship between the temperature difference in the direction was shown.As a result, it was found that when the distance between the washer-like afterheater and the solution surface was 15 or more, the temperature difference became smaller, and was sometimes the smallest at 50 points.
これらの結果から歳適なワッシャ状アフタヒータと溶液
面の距離は15fl以下の範囲であった融該面の降下4
贋と同じ速度でワッシャ状アフタヒータを下ければよい
ことが分る。アフタヒータの代りに熱遮蔽リングを設置
した場合、熱遮蔽リングと溶液面の距離が8m+以上に
なると温度差が小さくなシ、効果がアフタヒータに比べ
て小さいことが分った。From these results, the distance between the washer-like afterheater and the solution surface was within 15fl.
It turns out that all you have to do is lower the washer-like afterheater at the same speed as the counterfeit. It was found that when a heat shield ring is installed instead of an after heater, the temperature difference is small when the distance between the heat shield ring and the solution surface is 8 m+ or more, and the effect is smaller than that of an after heater.
次にこの考えを実施するために考イした実際の引上は装
置について第4図を用いて述べる。中央に、a液22の
入っている白金るつぼ20を直き1これff:囲むよう
に耐火物8、高周波コイル18が配置されている。るつ
ぼ上部にはシードシャフトがあり、先端に種結晶が取付
けられるようチャックがあり、モータ12と17v(よ
り回転しなから種結晶を融液に浸し円柱結晶が成長でき
るようになっている。結晶の直径を制御するためにロー
ドセル11が設置されて結晶重量を検出している。Next, the actual lifting device considered to implement this idea will be described using FIG. 4. In the center, a refractory 8 and a high frequency coil 18 are arranged to surround a platinum crucible 20 containing liquid a 22. There is a seed shaft at the top of the crucible, and there is a chuck at the tip to which the seed crystal can be attached, and the motors 12 and 17V (which are rotated even further) allow the seed crystal to be immersed in the melt and a cylindrical crystal can grow. In order to control the diameter of the crystal, a load cell 11 is installed to detect the weight of the crystal.
本発明においてるつほと同じ材質の白金製のアフタヒー
タ21が結晶周囲に設けられ、このヒータを上下に移動
するためにネジ棒に固定されている。ネジ俸はモータ1
5により回転できるようになっている。このアフタヒー
タ21を発熱させるため第5図に示すように白金製の支
持4114が図のように浴接してあシ、上部に電極取り
たし用の端子がある。上下に移動するネジ棒との固定部
と電極との間には絶#俸のパイロフェライト19を設け
た。白金製のアフタヒータの4度はスライダック16と
トランス19で調整する構造になっている。In the present invention, an after-heater 21 made of platinum, which is the same material as the rutsuho, is provided around the crystal, and is fixed to a threaded rod in order to move this heater up and down. The screw allowance is motor 1
5 allows it to rotate. In order to generate heat from this after-heater 21, as shown in FIG. 5, a support 4114 made of platinum is connected to the bath as shown in the figure, and there is a terminal at the top for connecting an electrode. A thick layer of pyroferrite 19 was provided between the fixed part of the screw rod that moves up and down and the electrode. The structure is such that the 4 degrees of the platinum afterheater is adjusted by a slider 16 and a transformer 19.
以下、上述した本発明の引上Vf装置による結晶引上げ
の例Vこついて詳細に説明する。Hereinafter, an example V of crystal pulling using the above-mentioned pulling Vf apparatus of the present invention will be explained in detail.
第ll:
本例ではゲルマニウム酸ビスマス(Bi4GeaOtz
)単結晶を引上げた結果について述べる。Part 1: In this example, bismuth germanate (Bi4GeaOtz
) We will discuss the results of pulling a single crystal.
B14GesOtx単結晶の融点は1osocoたメ白
金製のるつぼを用いた。直径150a+のるつぼから直
径80鴫の結晶を育成した。結晶肩部作製終了後直径が
一定になる所からアフタヒータ21を1100Cに発熱
させた。アフタヒータと溶融面との距離を31DIに保
ちながら、該アフタヒータを溶1゛泗面の降下する速さ
と同じ速度0.4 mm / hで下降させた。アフタ
ヒータの形状は第5図に示したように板厚は0.7關で
外径140m、内径105閣である。結晶回転速度20
mm−1の条件で育成した結果、真直度のよい円柱結晶
が育成でき、るつぼに入れた融液の80%を結晶化する
ことができた。これまでfB故の65%を結晶化するに
は結晶回転速度を12mm−1に小さくする必要があっ
た。The melting point of the B14GesOtx single crystal was measured using a platinum crucible. A crystal with a diameter of 80 mm was grown from a crucible with a diameter of 150 mm. After the crystal shoulder was formed, the after-heater 21 was heated to 1100 C from the point where the diameter became constant. While maintaining the distance between the afterheater and the melting surface at 31 DI, the afterheater was lowered at the same speed as the descending speed of the melting surface, 0.4 mm/h. As shown in Fig. 5, the afterheater has a plate thickness of 0.7 mm, an outer diameter of 140 m, and an inner diameter of 105 mm. Crystal rotation speed 20
As a result of growing under the conditions of mm-1, a cylindrical crystal with good straightness could be grown, and 80% of the melt placed in the crucible could be crystallized. Until now, in order to crystallize 65% of fB, it was necessary to reduce the crystal rotation speed to 12 mm-1.
しかし、結晶回転速度が小さいと結晶中に泡状の欠陥が
入シ易い問題が生じる。However, if the crystal rotation speed is low, a problem arises in that bubble-like defects are likely to occur in the crystal.
本発明ではアフタヒータを下降させることによシ、るつ
ぼ垂直方向の温度勾配は大きく維持されるので結晶回転
速度を大きくすることができる。In the present invention, by lowering the afterheater, the temperature gradient in the vertical direction of the crucible is maintained large, so that the crystal rotation speed can be increased.
そのため結晶中の欠陥である泡を大幅に低減させること
ができた。As a result, bubbles, which are defects in crystals, could be significantly reduced.
第2例ニ
アフタヒータと溶d面の距離を2鞠に設定して実施例1
の条件でB14GeaOtzに単結晶を育成した。その
結果、アフタヒータと溶液面の距離が近いため、ヒータ
の温度を上げるとヒータが湾曲したり、また育成時、蒸
兄物がヒータに堆積し溶融と接触、ショートすることが
らシ育成に適さなかった。2nd example Example 1 with the distance between the near-after heater and the welding surface set to 2mm
A single crystal was grown on B14GeaOtz under the following conditions. As a result, since the distance between the after-heater and the solution surface is close, the heater may bend when the temperature of the heater is raised, and during growth, vaporized products may accumulate on the heater and come into contact with the melt, causing a short circuit, making it unsuitable for growth. Ta.
第3例ニ
アフタヒータと溶、咄面の距離を10++onに設定し
て実施例1の条件でBi<Ge5Oxz単結晶を育成し
た。その結果、ゐりぼに入れた融液の78%を結晶化で
き、真直度のよい円柱結晶を育成することができた。Third Example A Bi<Ge5Oxz single crystal was grown under the conditions of Example 1, with the distance between the near-after heater and the melting and melting surfaces set to 10++on. As a result, it was possible to crystallize 78% of the melt in the iribo, and to grow cylindrical crystals with good straightness.
第4例ニ
アフタヒータと浴融面の距〆、1Lを15mmに設定し
て笑Dflj丙工の条件でBiaGesCh2単紹晶を
育成した。その結果、結晶の断面はやや四角形になった
が、るつぼに入れた融液の70%を結晶化でき真直度の
よい単結晶が得られた。Fourth Example A BiaGesCh2 monomorphic crystal was grown under the following conditions with the distance between the near-after heater and the bath melting surface, 1L, set to 15 mm. As a result, although the cross section of the crystal was somewhat square, 70% of the melt in the crucible could be crystallized and a single crystal with good straightness was obtained.
第5例ニ
アフタヒータと溶融面の距離を20mに設定してB 1
4GesOtz単結晶をぎ成した。他のn成条件は実施
例1と同じで行なった。結晶はるつぼに入れた融液の約
40%を育成した時点から結晶の断面は四角形に変形し
始め、その後育成とともに結晶の回転方向に対して尾を
引くよシにねじれだし、真直度のよい結晶全歩留シよく
得ることが出来なかった。Fifth example B1 with the distance between the near-after heater and the melting surface set to 20m
A 4GesOtz single crystal was formed. Other formation conditions were the same as in Example 1. When about 40% of the melt in the crucible is grown, the cross section of the crystal begins to deform into a rectangular shape, and as the crystal grows, it begins to twist in such a way as to draw a tail in the direction of rotation of the crystal, resulting in good straightness. A good overall yield of crystals could not be obtained.
第6例:
ビスマスクリケイト(B 112s 102o)単結晶
を引上げた結果について述べる。直径100Hのるつぼ
から直径50mmの結晶をn成した。アフタヒータと溶
−■の距離は3IIII11に設定した。アフタヒータ
の寸法は外径90間、内径78議で板厚は0.7囚でお
る。結晶回転速度は40馴−1、結晶引上速度は3 m
m / hでめる結晶径が所定の寸法になったのち、ア
フタヒータを溶融面の降下する速度1、1 tax /
hで降下させた。その結晶るつぼに入れた融液の80
%を結晶化でき真直度のよい結晶が得られた。Sixth example: The results of pulling a bismuth slicate (B 112s 102o) single crystal will be described. Crystals with a diameter of 50 mm were formed from a crucible with a diameter of 100 mm. The distance between the after-heater and the melt was set at 3III11. The dimensions of the after-heater are 90mm in outer diameter, 78mm in inner diameter, and 0.7mm in thickness. The crystal rotation speed was 40 m-1, and the crystal pulling speed was 3 m.
After the crystal diameter in m/h reaches a predetermined size, the after-heater is turned on at a rate of descent of the melting surface of 1.1 tax/h.
It was lowered at h. 80% of the melt in the crucible
%, and crystals with good straightness were obtained.
以上の実施例ではB 14Qes01z+Bi+zs
1Ozoを示したが同じビスマス系の酸化物であるH
i4s 1sOxz + B 1t2Ue02oおよび
これらの混晶のげ成にも、本装置が適用でさることは説
明におよばない。また、本装置を用いれば実施例1に示
したように、泡状の人陥のない単結晶が育成できるとい
う効果もある。In the above example, B 14Qes01z+Bi+zs
1Ozo, but the same bismuth-based oxide H
It goes without saying that the present device is also applicable to i4s 1sOxz + B 1t2Ue02o and the growth of these mixed crystals. Further, as shown in Example 1, the use of this apparatus has the effect that a single crystal without bubble-like defects can be grown.
本発明の袈直ゲ用いれば、r鶴液の中心における表面と
底の、d度差金犬ぎくでさるために真直度のよい円柱単
結晶を歩貿りよくぼ成することができる。By using the straight edge of the present invention, a cylindrical single crystal with good straightness can be easily formed because the surface and bottom of the center of the liquid are sharpened by a degree difference.
第1図は結晶引上げ初期の状態を浴数シミュレーション
で観察した対流のσ[面の模式図、第2図はるつぼの半
分を結晶化した時の溶成シミュレーションで観察した対
流の断面模式図、第3図は溶液の減少によってm液中心
の表面と底の温度差の変化を示すグラフ、第4図は本発
明による単結晶引上げ装置の構成を示す概略断面図、第
5図はアフタヒータの取付は方を示す概略図である。
1・・・石英るつぼ、2・・・溶液、3・・・ワッシャ
状アフタヒータ、4・・・対流パターン、5・・・溶液
面、6・・・乱流パターン、7・・・結晶、8・・・耐
火物、9・・・チャンバ、10・・・シードシャフト、
11・・・結晶重量検出用ロードセル、12・・・結晶
回転用モータ、13・・・パイロフェライト、14・・
・アフタヒータ支持棒、15・・・アフタヒータ上下移
動用モータ、16・・・スライダック、17・・・結晶
引上用上−タ、18・・−高周波コイル、19・・・ト
ランス、20・・・白金るつぼ、21・・・アフタヒー
タ、22・・・融液。
茅 1区
竿2図Figure 1 is a schematic diagram of the σ plane of convection observed in a bath number simulation during the initial state of crystal pulling. Figure 2 is a schematic cross-sectional diagram of convection observed in a melting simulation when half of the crucible is crystallized. Fig. 3 is a graph showing the change in temperature difference between the surface and bottom of the m solution as the solution decreases, Fig. 4 is a schematic cross-sectional view showing the configuration of the single crystal pulling device according to the present invention, and Fig. 5 is the installation of the after-heater. FIG. DESCRIPTION OF SYMBOLS 1... Quartz crucible, 2... Solution, 3... Washer-like afterheater, 4... Convection pattern, 5... Solution surface, 6... Turbulence pattern, 7... Crystal, 8 ... Refractory, 9... Chamber, 10... Seed shaft,
11... Load cell for crystal weight detection, 12... Crystal rotation motor, 13... Pyroferrite, 14...
- After-heater support rod, 15... After-heater vertical movement motor, 16... Slide duck, 17... Crystal pulling upper motor, 18... - High frequency coil, 19... Transformer, 20... Platinum crucible, 21...after heater, 22...melt liquid. Kaya 1 ward pole 2 drawings
Claims (1)
た結晶の周囲に配置したアフタヒータを結晶引上げに伴
い生じる溶融面の降下に応じて降下させ溶融面と該ヒー
タの間隔を最適値に保つような機構を有することを特徴
とする単結晶引上装置。 2、特許請求の範囲第1項記載の装置において、前記ヒ
ータと溶融面の距離を3〜15關の範囲に保持し、B1
4Gea01z + B14SiaOt2+B i 1
28 j02o 、 B i 12 GeO20および
これらの混晶単結晶を引上げ対象とすることを特徴とす
る単結晶引上装置。[Claims] 1. In an apparatus for pulling a single crystal from a melt, an after-heater placed around the pulled crystal is lowered in accordance with the descent of the melting surface that occurs as the crystal is pulled, so that there is a distance between the melting surface and the heater. 1. A single crystal pulling device characterized by having a mechanism that maintains an optimum value. 2. In the apparatus according to claim 1, the distance between the heater and the melting surface is maintained in a range of 3 to 15 degrees, and B1
4Gea01z + B14SiaOt2+B i 1
28 j02o, B i 12 GeO20, and mixed single crystals thereof are to be pulled.
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP19426283A JPS6086092A (en) | 1983-10-19 | 1983-10-19 | Single crystal pulling device |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP19426283A JPS6086092A (en) | 1983-10-19 | 1983-10-19 | Single crystal pulling device |
Publications (1)
Publication Number | Publication Date |
---|---|
JPS6086092A true JPS6086092A (en) | 1985-05-15 |
Family
ID=16321697
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
JP19426283A Pending JPS6086092A (en) | 1983-10-19 | 1983-10-19 | Single crystal pulling device |
Country Status (1)
Country | Link |
---|---|
JP (1) | JPS6086092A (en) |
Cited By (4)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JPH06211591A (en) * | 1993-01-05 | 1994-08-02 | Nippon Steel Corp | Method for producing single crystalline body and apparatus therefor |
JP2004123510A (en) * | 2002-06-13 | 2004-04-22 | Hitachi Ltd | Apparatus for manufacturing single crystal and method for manufacturing the same |
KR101027258B1 (en) | 2003-10-30 | 2011-06-14 | 주식회사 엘지실트론 | A Single Crystal Ingot Grower Having Electrode Protecting Device |
WO2022052076A1 (en) * | 2020-09-14 | 2022-03-17 | 南京同溧晶体材料研究院有限公司 | Silicate eutectic material doped with rare earth ion prepared by means of pulling process and preparation method therefor |
-
1983
- 1983-10-19 JP JP19426283A patent/JPS6086092A/en active Pending
Cited By (4)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JPH06211591A (en) * | 1993-01-05 | 1994-08-02 | Nippon Steel Corp | Method for producing single crystalline body and apparatus therefor |
JP2004123510A (en) * | 2002-06-13 | 2004-04-22 | Hitachi Ltd | Apparatus for manufacturing single crystal and method for manufacturing the same |
KR101027258B1 (en) | 2003-10-30 | 2011-06-14 | 주식회사 엘지실트론 | A Single Crystal Ingot Grower Having Electrode Protecting Device |
WO2022052076A1 (en) * | 2020-09-14 | 2022-03-17 | 南京同溧晶体材料研究院有限公司 | Silicate eutectic material doped with rare earth ion prepared by means of pulling process and preparation method therefor |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
KR100954291B1 (en) | Apparatus for manufacturing high-quality semiconductor single crystal ingot and Method using the same | |
TW219955B (en) | ||
US8753445B2 (en) | Apparatus for growing high quality silicon single crystal ingot and growing method using the same | |
JP5269384B2 (en) | Semiconductor single crystal manufacturing method using Czochralski method | |
US6458204B1 (en) | Method of producing high-quality silicon single crystals | |
JPH1192272A (en) | Single crystal production apparatus and production of single crystal | |
US20100101485A1 (en) | Manufacturing method of silicon single crystal | |
JPH09286692A (en) | Apparatus for producing semiconductor single crystal and production of semiconductor single crystal | |
CN108779577B (en) | Method for producing silicon single crystal | |
WO2005073440A1 (en) | Method of lifting silicon single crystal | |
WO2023231259A1 (en) | Thermal field control device for crystal pulling furnace and crystal pulling furnace | |
US6086671A (en) | Method for growing a silicon single crystal | |
Shigematsu et al. | Growth conditions of subgrain-free LiNbO3 single crystals by the Czochralski method | |
JP3086850B2 (en) | Method and apparatus for growing single crystal | |
JP2016064958A (en) | Manufacturing method of sic single crystal | |
JPH10152389A (en) | Apparatus for producing semiconductor single crystal and production of same single crystal | |
JPS6086092A (en) | Single crystal pulling device | |
TWI625432B (en) | Method for manufacturing single crystal silicon and single crystal silicon | |
JP6998460B2 (en) | Manufacturing equipment and method for manufacturing tubular single crystals | |
JP6354615B2 (en) | Method for producing SiC single crystal | |
JP3132412B2 (en) | Single crystal pulling method | |
JP2000044387A (en) | Production of silicon single crystal | |
JP2009292684A (en) | Silicon single crystal production method and production apparatus therefore | |
EP1365048B1 (en) | Method for fabricating silicon single crystal | |
KR20190088653A (en) | Method and apparatus for silicon single crystal growth |