JPH0518793B2 - - Google Patents

Info

Publication number
JPH0518793B2
JPH0518793B2 JP11086988A JP11086988A JPH0518793B2 JP H0518793 B2 JPH0518793 B2 JP H0518793B2 JP 11086988 A JP11086988 A JP 11086988A JP 11086988 A JP11086988 A JP 11086988A JP H0518793 B2 JPH0518793 B2 JP H0518793B2
Authority
JP
Japan
Prior art keywords
magnetic field
crystal
melt
pulling
single crystal
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Lifetime
Application number
JP11086988A
Other languages
Japanese (ja)
Other versions
JPH01282184A (en
Inventor
Kenji Yakushiji
Kinji Hoshi
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Resonac Holdings Corp
Original Assignee
Showa Denko KK
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Showa Denko KK filed Critical Showa Denko KK
Priority to JP11086988A priority Critical patent/JPH01282184A/en
Publication of JPH01282184A publication Critical patent/JPH01282184A/en
Publication of JPH0518793B2 publication Critical patent/JPH0518793B2/ja
Granted legal-status Critical Current

Links

Landscapes

  • Crystals, And After-Treatments Of Crystals (AREA)
  • Liquid Deposition Of Substances Of Which Semiconductor Devices Are Composed (AREA)

Description

【発明の詳細な説明】 [産業上の利用分野] この発明はチヨクラルスキー法による単結晶の
製造方法に関するものである。
DETAILED DESCRIPTION OF THE INVENTION [Industrial Field of Application] The present invention relates to a method for producing a single crystal by the Czyochralski method.

[従来の技術] 近年、電子工業用素材として各種半導体単結晶
が広く使用されている。単結晶を得る手段として
一般に利用されているのは溶融体からの引上げ法
であり、とりわけ代表的なのはチヨクラルスキー
法(CZ法)である。CZ法においては、第6図に
示す如く、ルツボ4中にある半導体物質の融液5
から単結晶2を回転させながら徐々に引上げてい
く方法によつている。この場合融液5は加熱用ヒ
ーター3により、主として側面から加熱されてい
るから、融液5の中心部温度は外周部の温度より
も低い。このため融液5の内部に対流が生じる。
この対流は単結晶2が成長する界面近傍に温度の
ゆらぎをもたらし、その結果成長した単結晶2の
内部に結晶欠陥や電気特性の不均一性をもたら
し、歩留の悪化や半導体デバイスにした際の信頼
性の低下をもたらすので好ましくない。特に電子
工業に於いて重要な位置を占めている結晶材料で
あるシリコンのような場合、引上げる結晶の直径
が大きく、長さも長いので単結晶全体の均質性が
益々重要となつてくる。
[Prior Art] In recent years, various semiconductor single crystals have been widely used as materials for the electronic industry. A method generally used to obtain a single crystal is a pulling method from a melt, and the most representative method is the Czyochralski method (CZ method). In the CZ method, as shown in FIG.
This method is based on the method of gradually pulling up the single crystal 2 while rotating it. In this case, since the melt 5 is heated mainly from the sides by the heating heater 3, the temperature at the center of the melt 5 is lower than the temperature at the outer periphery. Therefore, convection occurs inside the melt 5.
This convection causes temperature fluctuations near the interface where the single crystal 2 grows, resulting in crystal defects and non-uniformity in electrical properties inside the grown single crystal 2, resulting in a decrease in yield and when fabricated into semiconductor devices. This is undesirable because it causes a decrease in reliability. Particularly in the case of silicon, which is a crystalline material that occupies an important position in the electronics industry, the diameter of the crystal to be pulled is large and the length is long, so the homogeneity of the entire single crystal becomes increasingly important.

このような温度ゆらぎを抑制する手段として第
5図に示すようにルツボ4を挟んで引上げ方向に
直角方向の磁場11(横磁場)を印加するための
磁極10を備えた装置(特開昭56−45889参照)
や、第6図に示すように、ルツボ4の周囲に引上
げ方向にほぼ平行な方向の磁場13(縦磁場)を
印加するソレノイドコイル12を備えた装置(特
開昭62−43958)が提案され、水平方向あるいは
垂直方向の磁場のみ使用して結晶成長させる方法
が知られている。
As a means of suppressing such temperature fluctuations, as shown in FIG. -45889)
Also, as shown in FIG. 6, a device (Japanese Patent Application Laid-Open No. 62-43958) has been proposed, which is equipped with a solenoid coil 12 that applies a magnetic field 13 (vertical magnetic field) in a direction substantially parallel to the pulling direction around the crucible 4. , a method of growing crystals using only a horizontal or vertical magnetic field is known.

[発明が解決しようとする問題点] シリコンの結晶成長を例にとつて説明すると、
第3図の様な結晶成長をすると添加不純物濃度と
石英ルツボより混入してくる酸素濃度とは、一般
に第4図に示す様に前者は実線で示す如く実効分
配係数にほぼ従つた濃度分布を示し、後者は破線
で示す如く不純物濃度して1018個/cm3オーダーの
濃度で分布する。
[Problems to be solved by the invention] Using silicon crystal growth as an example,
When crystals grow as shown in Figure 3, the concentration of added impurities and the concentration of oxygen mixed in from the quartz crucible generally have a concentration distribution that roughly follows the effective distribution coefficient, as shown by the solid line in Figure 4. As shown by the broken line, the impurity concentration of the latter is on the order of 10 18 particles/cm 3 .

また第5図の様な融液に対して水平に磁場をか
けて結晶成長すると添加不純物濃度は第3図の場
合とほぼ同様の分布を示すが酸素濃度は1017
1018個/cm3オーダーに制御可能となる。
Furthermore, when a crystal grows by applying a horizontal magnetic field to the melt as shown in Fig. 5, the concentration of added impurities shows almost the same distribution as in Fig. 3, but the oxygen concentration is 10 17 ~
Controllable to 10 to 18 pieces/ cm3 order.

一方第6図の様に融液に対して垂直に磁場をか
けて結晶成長すると添加不純物濃度は第7図の実
線の様にほぼ均一な分布を示すが酸素濃度は第7
図破線の如く1017〜1020個/cm3と大きく分布しそ
の制御は困難である。
On the other hand, when crystals grow by applying a magnetic field perpendicular to the melt as shown in Figure 6, the concentration of added impurities shows a nearly uniform distribution as shown by the solid line in Figure 7, but the oxygen concentration
As shown by the broken line in the figure, they are widely distributed, ranging from 10 17 to 10 20 pieces/cm 3 , and their control is difficult.

この添加不純物濃度は製品の電気抵抗率という
数値で製品規格で制限されており、また酸素濃度
範囲も製品規格で決められている。即ち、両者の
分布を同時に均一化するということは製品の取得
率向上に大きく貢献する。
The concentration of this added impurity is limited by the product standard based on the electrical resistivity of the product, and the oxygen concentration range is also determined by the product standard. That is, uniformizing both distributions at the same time greatly contributes to improving the product acquisition rate.

この様に現在の結晶引上げ技術では添加不純物
濃度の分布を均一にして、さらに酸素濃度分布を
も均一にすることはできない。それを解決するの
が本発明の目的である。
As described above, with the current crystal pulling technology, it is not possible to make the distribution of added impurity concentration uniform, and furthermore, the oxygen concentration distribution cannot be made uniform. It is an object of the present invention to solve this problem.

[問題点を解決するための手段] 本発明では、第1図に示す様に、単結晶引上げ
装置に縦磁場発生用ソレノイドコイル12と横磁
場発生用磁極10を配置し、縦磁場と横磁場を印
加して引上げを行う。
[Means for Solving the Problems] In the present invention, as shown in FIG. 1, a solenoid coil 12 for generating a vertical magnetic field and a magnetic pole 10 for generating a horizontal magnetic field are arranged in a single crystal pulling apparatus, and the vertical magnetic field and the horizontal magnetic field are Apply and pull up.

単結晶を引上げながら2秒間に1回以上の周期
で縦磁場と横磁場を切り替える。
While pulling the single crystal, the vertical magnetic field and horizontal magnetic field are switched at least once every 2 seconds.

まず、本発明で使用する結晶引引上げ装置につ
いて説明する。第1図は本発明で使用する装置の
一態様を説明する図である。図においてシリコン
等の半導体材料5は石英製のルツボ4内に入れ、
周囲から加熱用ヒーター3によつて加熱溶融され
る。加熱用ヒーター3の外側には必要に応じて例
えば円筒状の熱遮蔽体あるいは水冷等によつて冷
却されるジヤケツト(図示せず)が配置され、そ
の外側に電磁石16による磁場発生手段が配置さ
れる。さらに本発明ではジヤケツトの外側にソレ
ノイドコイル12をコイルの中心と結晶の引上げ
軸8とが一致するように配置してある。11は単
結晶シード、2は引上げ単結晶、8は結晶引上げ
軸、7はルツボ回転軸である。このような結晶引
上げ装置を使用しての結晶成長は以下のようにし
て行う。
First, the crystal pulling device used in the present invention will be explained. FIG. 1 is a diagram illustrating one aspect of the apparatus used in the present invention. In the figure, a semiconductor material 5 such as silicon is placed in a crucible 4 made of quartz,
It is heated and melted from the surrounding area by a heating heater 3. Outside the heating heater 3, for example, a cylindrical heat shield or a jacket (not shown) cooled by water cooling or the like is arranged as necessary, and a magnetic field generating means using an electromagnet 16 is arranged outside the jacket. Ru. Furthermore, in the present invention, a solenoid coil 12 is arranged on the outside of the jacket so that the center of the coil and the crystal pulling axis 8 coincide with each other. 11 is a single crystal seed, 2 is a pulled single crystal, 8 is a crystal pulling axis, and 7 is a crucible rotation axis. Crystal growth using such a crystal pulling apparatus is performed as follows.

上述のような結晶装置を使用して結晶の引上げ
育成を行うには、まず磁極10を使用して融液5
に500〜5000G(ガウス)の横方向の磁場を与え
る。磁極10にコイル16を巻付け、これに直流
電流を印加して一定方向の磁場を得る。
In order to pull and grow a crystal using the crystallizer as described above, first, the magnetic pole 10 is used to pull the melt 5.
Apply a transverse magnetic field of 500 to 5000 G (Gauss) to the A coil 16 is wound around the magnetic pole 10, and a direct current is applied to it to obtain a magnetic field in a fixed direction.

次にソレノイドコイル12に直流電流を印加
し、引上げ結晶の中心線に対して対称で、かつ結
晶の引上げ方向に沿つた直流磁界(いわゆる縦方
向磁界)を融液5に印加する。縦方向磁界はソレ
ノイドコイルの中心を結晶の回転軸と一致させ、
実質的に磁界方向が結晶の引上げ方向と一致して
いれば良い、磁界の強さは磁界中心部で500G〜
5000Gが適当である。
Next, a direct current is applied to the solenoid coil 12, and a direct current magnetic field (so-called longitudinal magnetic field) that is symmetrical about the center line of the pulled crystal and along the direction of pulling the crystal is applied to the melt 5. The longitudinal magnetic field aligns the center of the solenoid coil with the axis of rotation of the crystal,
It is sufficient that the direction of the magnetic field substantially matches the direction of pulling the crystal, and the strength of the magnetic field is 500G ~ at the center of the magnetic field.
5000G is appropriate.

磁場の印加は水平方向と縦方向を単独に交互に
印加する。磁場をかけると磁場の方向に直角な方
向の融液の流れを抑制するので、不純物原子の移
動が抑えられ、均一に分布する結果をもたらす。
The magnetic field is applied independently and alternately in the horizontal and vertical directions. When a magnetic field is applied, the flow of the melt in a direction perpendicular to the direction of the magnetic field is suppressed, thereby suppressing the movement of impurity atoms and resulting in a uniform distribution.

磁場方向を交互に切替えることにより、移動範
囲を微小範囲に止めるのが効果的である。切替え
のサイクルは毎秒0.5〜10回程度とするのが良い。
It is effective to keep the movement range within a minute range by alternately switching the direction of the magnetic field. The switching cycle is preferably about 0.5 to 10 times per second.

[作用] シリコン等の半導体結晶引上げ時に磁場を印加
した時のその融液の挙動に及ぼす影響は広く知ら
れている。
[Function] The effect on the behavior of a melt when a magnetic field is applied during pulling of a semiconductor crystal such as silicon is widely known.

基本的には磁場の方向に直角な方向の融液の流
れを抑制する効果を有するので縦磁場印加の場合
はルツボ内の半径方向の流れは抑制されるが深さ
方向の流れは抑制されない。結果的に流れは深さ
方向に細長くなる。一方横磁場印加の場合は深さ
方向の流れと水平成分の流れの内、磁場の方向に
直角な方向の流れは抑制され、平行な方向の流れ
は抑制されない。水平成分のこの様な特異な流れ
現象は例えばJ.of Crystal Growth 82(1987),
318〜326に数値計算により報告されている。
Basically, it has the effect of suppressing the flow of the melt in the direction perpendicular to the direction of the magnetic field, so when a vertical magnetic field is applied, the flow in the radial direction within the crucible is suppressed, but the flow in the depth direction is not suppressed. As a result, the flow becomes elongated in the depth direction. On the other hand, in the case of applying a transverse magnetic field, among the flow in the depth direction and the flow in the horizontal component, the flow in the direction perpendicular to the direction of the magnetic field is suppressed, and the flow in the parallel direction is not suppressed. This unique flow phenomenon of the horizontal component is described, for example, in J. of Crystal Growth 82 (1987),
Numerical calculations were reported in 318-326.

本発明では横磁場と縦磁場と組みあわせて印加
することにより、上記に述べた様な流れをすべて
停止させることを目的としたもので、これにより
融液内の不純物分布も一定となり、温度分布も熱
伝導支配となつて安定して高品質な結晶が得られ
る。
The purpose of the present invention is to stop all of the above-mentioned flows by applying a combination of transverse and vertical magnetic fields, thereby making the impurity distribution in the melt constant and temperature distribution. Also, heat conduction dominates, and stable, high-quality crystals can be obtained.

また、横磁場と縦磁場の磁場の向きを成長結晶
内の長方方向の場所によつて変えることにより
(例えば融液の上部は縦磁場的流れ、その他は横
磁場的流れという様に)流れ方を制御したり、あ
るいは、横磁場強度と縦磁場強度を固化位置に応
じて変化させることにより、結晶成長初期は、横
磁場的流れが優勢で結晶成長後期は縦磁場的流れ
が優勢になる様にすることも可能となる。
In addition, by changing the directions of the horizontal and vertical magnetic fields depending on the location in the longitudinal direction within the growing crystal (for example, the upper part of the melt flows in the vertical magnetic field, and the other parts flow in the horizontal magnetic field), the flow can be controlled. By controlling the horizontal magnetic field strength and the longitudinal magnetic field strength depending on the solidification position, the horizontal magnetic field flow becomes dominant in the early stage of crystal growth, and the longitudinal magnetic field flow becomes dominant in the late stage of crystal growth. It is also possible to make it similar.

[実施例] 第1図に示した構造の結晶引上装置を使つて
150mm直径の石ルツボに2Kgのシリコンを溶かし
て、50mm径の単結晶シリコンを作製した。磁場強
度は縦横共に融液中心位置で2000ガウスであり、
縦横の磁場印加の切換え周期は1Hzで実施した。
[Example] Using a crystal pulling device with the structure shown in Figure 1.
Single crystal silicon with a diameter of 50 mm was produced by melting 2 kg of silicon in a stone crucible with a diameter of 150 mm. The magnetic field strength is 2000 Gauss at the center of the melt in both the vertical and horizontal directions.
The switching period for vertical and horizontal magnetic field application was 1 Hz.

結晶上端部で抵抗率が80Ωcmになる様リン
(P)を添加して結晶を引上げた。得られた単結
晶の抵抗率と酸素濃度の分布を第2図に示した。
固化率約60%のところの抵抗率は約6.5Ωcmとな
りまた酸素濃度についても1018個/cm3とほぼ一定
で極めて均一になつており、長さ方向の品質向上
が確認された。これに対して磁場を全くかけなか
つた時の固化率約60%の位置の抵抗率は約5Ωcm
であり横磁場2000ガウスの時もほぼ同じ抵抗率で
あつた。また縦磁場2000ガウスの時は約7.5Ωcm
であつた。
The crystal was pulled up by adding phosphorus (P) so that the resistivity was 80 Ωcm at the upper end of the crystal. Figure 2 shows the resistivity and oxygen concentration distribution of the single crystal obtained.
At a solidification rate of approximately 60%, the resistivity was approximately 6.5 Ωcm, and the oxygen concentration was also approximately constant at 10 18 particles/cm 3 and extremely uniform, confirming an improvement in quality in the length direction. On the other hand, when no magnetic field is applied, the resistivity at a position where the solidification rate is approximately 60% is approximately 5Ωcm.
And the resistivity was almost the same when the transverse magnetic field was 2000 Gauss. Also, when the vertical magnetic field is 2000 Gauss, it is approximately 7.5Ωcm.
It was hot.

[効果] 横磁場・縦磁場印加により融液の流れを抑制
し、きめこまかな制御が可能となつた。
[Effect] Applying horizontal and vertical magnetic fields suppresses the flow of melt, making fine control possible.

これにより磁場なしあるいは横磁場印加の時と
くらべると抵抗率分布が向上し、縦磁場印加の時
とくらべると酸素濃度分布が向上し、結果的に既
存の成長方法による場合よりも品質が均質化し製
品取得長を大幅に長くすることができる。
As a result, the resistivity distribution is improved compared to when no magnetic field is applied or when a horizontal magnetic field is applied, and the oxygen concentration distribution is improved compared to when a vertical magnetic field is applied.As a result, the quality becomes more homogeneous than when using existing growth methods. Product acquisition length can be significantly increased.

【図面の簡単な説明】[Brief explanation of drawings]

第1図本発明の結晶引上装置の概略図、第2図
本発明によるシリコン単結晶の酸素濃度と抵抗率
を示す図、第3図従来の結晶引上装置の概略図、
第4図第3図に示す従来の引上装置によるシリコ
ン単結晶の酸素濃度と抵抗率を示す図、第5図横
磁場印加の結晶引上装置の概略図、第6図縦磁場
印加の結晶引上装置の概略図、第7図第6図に示
す引上装置によるシリコン結晶の酸素濃度と抵抗
率を示す図である。 1……炉体、2……単結晶、3……加熱用ヒー
ター、4……ルツボ、5……融液、6……ルツボ
軸回転方向、7……ルツボ回転軸、8……結晶引
上げ軸、9……結晶回転方向、10……横磁場用
磁石、11……横磁場磁力線、12……縦磁場発
生用ソレノイドコイル、13……縦磁場磁力線、
14……酸素濃度曲線、15……抵抗率曲線、1
6……横磁場発生用ソレノイドコイル。
Figure 1 is a schematic diagram of the crystal pulling apparatus of the present invention, Figure 2 is a diagram showing the oxygen concentration and resistivity of a silicon single crystal according to the present invention, Figure 3 is a schematic diagram of a conventional crystal pulling apparatus,
Figure 4: A diagram showing the oxygen concentration and resistivity of a silicon single crystal using the conventional pulling device shown in Figure 3; Figure 5: A schematic diagram of a crystal pulling device using a transverse magnetic field; Figure 6: A crystal using a vertical magnetic field. FIG. 7 is a schematic diagram of a pulling device; FIG. 7 is a diagram showing the oxygen concentration and resistivity of a silicon crystal obtained by the pulling device shown in FIG. 6; 1... Furnace body, 2... Single crystal, 3... Heater for heating, 4... Crucible, 5... Melt, 6... Crucible axis rotation direction, 7... Crucible rotation axis, 8... Crystal pulling Axis, 9... Crystal rotation direction, 10... Magnet for transverse magnetic field, 11... Lines of magnetic force for transverse magnetic field, 12... Solenoid coil for generating vertical magnetic field, 13... Lines of magnetic force for longitudinal magnetic field,
14...Oxygen concentration curve, 15...Resistivity curve, 1
6... Solenoid coil for generating transverse magnetic field.

Claims (1)

【特許請求の範囲】 1 半導体融液から結晶を引上げる結晶の成長方
法において、容器中の半導体融液に引上げ方向に
ほぼ直角な水平方向の磁場と、引上げ方向にほぼ
平行で結晶の回転中心線に対称な磁場とを周期的
に切替えて印加しながら引上げることを特徴とす
る単結晶の製造方法。 2 半導体物質を加熱して溶融体とし、その溶融
体から結晶を引上げる結晶装置において、該融液
を収容するルツボを挟んで結晶引上げ方向にほぼ
直角な水平方向の磁場を印加するための磁極と、
該ルツボ周囲に引上げ方向にほぼ平行な磁場を印
加するためのソレノイドコイルとを具備すること
を特徴とする単結晶成長装置。
[Claims] 1. In a crystal growth method in which a crystal is pulled from a semiconductor melt, a horizontal magnetic field is applied to the semiconductor melt in a container substantially perpendicular to the pulling direction, and a center of rotation of the crystal is applied substantially parallel to the pulling direction. A method for producing a single crystal, characterized by pulling the single crystal while periodically switching and applying a line-symmetrical magnetic field. 2. In a crystallization device that heats a semiconductor material to form a melt and pulls a crystal from the melt, magnetic poles are used to apply a horizontal magnetic field approximately perpendicular to the crystal pulling direction across a crucible containing the melt. and,
A single crystal growth apparatus comprising a solenoid coil for applying a magnetic field approximately parallel to the pulling direction around the crucible.
JP11086988A 1988-05-06 1988-05-06 Production of single crystal and device thereof Granted JPH01282184A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP11086988A JPH01282184A (en) 1988-05-06 1988-05-06 Production of single crystal and device thereof

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP11086988A JPH01282184A (en) 1988-05-06 1988-05-06 Production of single crystal and device thereof

Publications (2)

Publication Number Publication Date
JPH01282184A JPH01282184A (en) 1989-11-14
JPH0518793B2 true JPH0518793B2 (en) 1993-03-12

Family

ID=14546757

Family Applications (1)

Application Number Title Priority Date Filing Date
JP11086988A Granted JPH01282184A (en) 1988-05-06 1988-05-06 Production of single crystal and device thereof

Country Status (1)

Country Link
JP (1) JPH01282184A (en)

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2607701B2 (en) * 1989-10-30 1997-05-07 積水化学工業株式会社 Unit coupling device

Also Published As

Publication number Publication date
JPH01282184A (en) 1989-11-14

Similar Documents

Publication Publication Date Title
JP5485136B2 (en) Method and apparatus for producing a single crystal
JPH05194077A (en) Method for manufacture of single crystal silicon rod
JP3086850B2 (en) Method and apparatus for growing single crystal
JPH076972A (en) Growth method and device of silicon single crystal
JP4193558B2 (en) Single crystal manufacturing method
JPS5850953B2 (en) crystal growth method
JP3132412B2 (en) Single crystal pulling method
JPH0518793B2 (en)
JP2000086392A (en) Production of silicon single crystal
JPS59121183A (en) Method for crystal growth
CN85100591A (en) Pulling single crystal silicon method and device thereof in the non-linear magnetic field
JPS6027684A (en) Apparatus for producing single crystal
JP2592244B2 (en) Equipment for growing uniform crystals
EP2504470B1 (en) Process and apparatus for producing semiconductor single crystals
JPS6081086A (en) Process and apparatus for growing single crystal
JP2000239096A (en) Production of silicon single crystal
EP0245510A1 (en) Apparatus for producing semiconductor single crystal
JPS6317289A (en) Production of semiconductor single crystal
KR100221087B1 (en) Silicon single crystal and its growing method
JPH0259494A (en) Production of silicon single crystal and apparatus
JPH10279391A (en) Method for growing silicon single crystal
JPS62182190A (en) Production of compound semiconductor single crystal
JPS59137394A (en) Crystal growing apparatus
US3607114A (en) Apparatus for producing a monocrystalline rod, particularly of semiconductor material
JPH10279380A (en) Method for pulling single crystal