JPS62105992A - Apparatus for producing semiconductor single crystal - Google Patents

Apparatus for producing semiconductor single crystal

Info

Publication number
JPS62105992A
JPS62105992A JP24411585A JP24411585A JPS62105992A JP S62105992 A JPS62105992 A JP S62105992A JP 24411585 A JP24411585 A JP 24411585A JP 24411585 A JP24411585 A JP 24411585A JP S62105992 A JPS62105992 A JP S62105992A
Authority
JP
Japan
Prior art keywords
semiconductor
single crystal
raw material
semiconductor single
material rod
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP24411585A
Other languages
Japanese (ja)
Inventor
Katsuhiko Murakami
勝彦 村上
Shigetoshi Horie
堀江 重豪
Akira Kazama
彰 風間
Hiroshi Sakama
坂間 弘
Yoshinobu Shima
島 芳延
Hiroshi Kamio
神尾 寛
Kenji Araki
健治 荒木
Kazuhide Nakaoka
中岡 一秀
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
JFE Engineering Corp
Original Assignee
NKK Corp
Nippon Kokan Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by NKK Corp, Nippon Kokan Ltd filed Critical NKK Corp
Priority to JP24411585A priority Critical patent/JPS62105992A/en
Publication of JPS62105992A publication Critical patent/JPS62105992A/en
Pending legal-status Critical Current

Links

Abstract

PURPOSE:To enable the continuous production of a semiconductor single crystal having uniform and high electrical resistivity along radial and longitudinal directions, by using a heat-insulation cylinder and dividing a molten semiconductor reservoir with said cylinder into raw material rod melting part under a semiconductor raw material rod and a semiconductor single crystal growing part. CONSTITUTION:A semiconductor raw material rod 9 is lowered from a feeding furnace 8 of a charging chamber furnished with a gate valve 14, heated with a high-frequency preheating coil 10 and melted in a quartz crucible 4 furnished with a heater 2. A semiconductor single crystal 7 is grown in a semiconductor growing part 12 of a molten semiconductor 5 produced by the above process and pulled up into a growing furnace 6. In the semiconductor single crystal production apparatus having the above construction, the molten semiconductor reservoir 5 is divided with a heat-insulation cylinder 13 into a raw material rod melting part 11 under a semiconductor raw material rod 9 and a semiconductor single crystal growing part 12 under the semiconductor single crystal 7. The propagation of the temperature fluctuation in the raw material rod melting part 11 and the flow disturbance of the molten semiconductor to the semiconductor single crystal growing part 12 can be inhibited by this process to enable the production of a semiconductor single crystal 7 having excellent quality.

Description

【発明の詳細な説明】 〔産業上の利用分野〕 本発明は、半導体単結晶体を製造する装置、特に均質性
に優れた高品位の半導体単結晶体を連続的に製造する装
置に関するものである。
[Detailed Description of the Invention] [Industrial Application Field] The present invention relates to an apparatus for manufacturing semiconductor single crystals, and particularly to an apparatus for continuously manufacturing high quality semiconductor single crystals with excellent homogeneity. be.

〔従来の技術〕[Conventional technology]

近年、シリコン等の半導体単結晶体の需要の高まりと、
ディバイスメーカーに於ける生産性の向上のため、半導
体単結晶製造装置が大型化し、引き上げられて製造され
る半導体単結晶体も急激に大径化してきている傾向にあ
る。
In recent years, the demand for single crystal semiconductors such as silicon has increased,
In order to improve productivity in device manufacturers, semiconductor single crystal manufacturing equipment has become larger, and the diameter of semiconductor single crystals that are pulled and manufactured is also rapidly increasing in size.

しかしながら、バッチ型の半導体単結晶製造装置に於て
は、その装置の特性から、半導体単結晶体が引き上げら
れて成長するに従って半導体の溶湯池の溶湯量が減少し
、溶湯池中のドープ材の濃度が増加し、引き上げられて
成長する半導体単結晶体中に偏析するドープ材が長手方
向に次第に増加し、このため、製造された半導体単結晶
体の品質が長手方向に沿って悪くなるという欠点を有し
ている。
However, in batch-type semiconductor single crystal production equipment, due to the characteristics of the equipment, as the semiconductor single crystal is pulled up and grown, the amount of molten metal in the semiconductor molten metal pool decreases, and the amount of dopant in the molten metal pool decreases. The drawback is that the concentration of the dopant increases and the dopant segregated in the pulled and grown semiconductor single crystal gradually increases in the longitudinal direction, and as a result, the quality of the produced semiconductor single crystal deteriorates along the longitudinal direction. have.

即ち、上記ドープ材の(e折のため、半導体単結晶の電
気抵抗率は、凝固が後になるに従って次第に低下し、例
えば、最も仕様の厳しいc −M OSの場合、ぞの仕
様に耐え得ろウェハー歩留ば、育成された半導体単結晶
体の長さの約40%以下である。
In other words, due to the (e-folding) of the doping material, the electrical resistivity of the semiconductor single crystal gradually decreases as solidification progresses. The yield is about 40% or less of the length of the grown semiconductor single crystal.

このような状況下で、例えば、特開昭52−58080
、特開昭56−164097、特開昭56−84397
及び特開昭59−79000に示されているように、多
結晶半導体からなる原料棒を溶湯池に連続的に供給して
、半導体単結晶体の成長に伴うその品質低下を抑制する
方法が提案されている。
Under such circumstances, for example, Japanese Patent Application Laid-Open No. 52-58080
, JP-A-56-164097, JP-A-56-84397
As shown in JP-A-59-79000, a method was proposed in which a raw material rod made of a polycrystalline semiconductor was continuously supplied to a molten metal pool to suppress the deterioration in quality of the semiconductor single crystal as it grew. has been done.

〔発明が解決しようとする問題点〕[Problem that the invention seeks to solve]

しかしながら、前2者の方法は、原料溶解用ルツボと、
引上用ルツボとを必要とし、構造的に極めて複雑となる
し、また、微少流量の溶湯の供給制御性が悪いという問
題点がある。また、後2者の方法は、軸対象性がないた
め、ルツボの回転が不可能で、均質な半導体単結晶体を
得ることが困難であるという問題点がある。また、最後
の1者は、原料が直接溶湯池に浸漬されているため、ル
ツボの回転によって、複雑な溶湯流れが発生し、結晶断
面内の品質の均一性を大きく害するという問題点がある
。更に、原料の融解のための熱源として、ルツボ加熱ヒ
ーターのみであるため、バッチ法での加熱’tKjr度
に比例して、相対的に高温まで加熱しなければならず、
ルツボ内の半径方向の温度勾配が大きくなり、結晶成長
界面の等温度曲線が、1反面に対する平行直線から大き
くずれて、半径方向の結晶成長速度に不均一性を生じ、
このため、半径方向の品質の均一性を保つことが困難に
なるという問題点がある。
However, the former two methods require a crucible for dissolving raw materials,
This requires a pulling crucible, making the structure extremely complex, and there are also problems in that the controllability of supplying the molten metal at a minute flow rate is poor. Furthermore, the latter two methods have the problem that the crucible cannot be rotated because of the lack of axial symmetry, making it difficult to obtain a homogeneous semiconductor single crystal. Furthermore, in the last method, since the raw material is directly immersed in the molten metal pool, the rotation of the crucible generates a complicated flow of the molten metal, which greatly impairs the uniformity of quality within the crystal cross section. Furthermore, since the crucible heater is the only heat source for melting the raw materials, it must be heated to a relatively high temperature in proportion to the heating temperature in the batch method.
The temperature gradient in the radial direction inside the crucible becomes large, and the isothermal curve at the crystal growth interface deviates significantly from a straight line parallel to the opposite surface, causing non-uniformity in the crystal growth rate in the radial direction.
Therefore, there is a problem that it becomes difficult to maintain uniformity of quality in the radial direction.

この発明は、かかる問題点を解決するためになされたも
ので、半径方向及び長さ方向に共に高くて均一な電気抵
抗率を有する半導体単結晶体を連続的に製造することが
できる装置を得ろことを目的とする。
The present invention was made to solve these problems, and aims to provide an apparatus that can continuously manufacture semiconductor single crystals having high and uniform electrical resistivity in both the radial and longitudinal directions. The purpose is to

〔問題点を解決するための手段〕[Means for solving problems]

この発明に係る半導体単結晶製造装置は、溶融半導体の
溶湯池から該溶融半導体を少しずつ引き上げて柱状に凝
固成長させ、これにより半導体単結晶体を得る半導体単
結晶製造装置において、少なくとも1a!以上の原料半
導体装填室と、該原料半導体装填室を密閉隔離するゲー
トパルプと、該原料半導体装填室に装填された多結晶半
導体からなる原料棒と、該原料棒を予熱する高周波誘導
予熱コイルと、該溶湯池を該原料棒の下方の原料棒融解
部と該半導体半導体単結晶体の下方の半導体単結晶育成
部とに区画する断熱円筒とを備えたものである。
A semiconductor single crystal manufacturing apparatus according to the present invention is a semiconductor single crystal manufacturing apparatus in which a molten semiconductor is pulled up little by little from a pool of molten semiconductor, solidified and grown into a columnar shape, and thereby a semiconductor single crystal is obtained. The above raw material semiconductor loading chamber, a gate pulp for hermetically isolating the raw material semiconductor loading chamber, a raw material rod made of polycrystalline semiconductor loaded in the raw material semiconductor loading chamber, and a high-frequency induction preheating coil for preheating the raw material rod. , a heat insulating cylinder that divides the molten metal pool into a raw material rod melting section below the raw material rod and a semiconductor single crystal growth section below the semiconductor single crystal.

〔作用〕[Effect]

この発明においては、溶湯池を原料棒の下方の原料棒融
解部と半導体単結晶体の下方の半導体単結晶育成部とに
区画する断熱円筒を設けたので、該半導体単結晶育成部
に及ぼす、該原料棒融解部の温度変動及び溶湯流動の乱
れの影響が回避される。
In this invention, since a heat insulating cylinder is provided which divides the molten metal pool into the raw material rod melting section below the raw material rod and the semiconductor single crystal growth section below the semiconductor single crystal, the effect on the semiconductor single crystal growth section is reduced. The effects of temperature fluctuations in the raw material rod melting section and disturbances in the flow of the molten metal are avoided.

〔実施例〕〔Example〕

第1図は本発明の一実施例を示した説明図、第2t!l
t第1図の■−■矢視図であり、図において、(1)は
カーボンルツボ、(2)はこのカーボンルツボを取り囲
むヒーター、(3)はこのヒーターを取り囲む断熱材、
(4)はカーボンルツボ(11の内側を被覆する石英ル
ツボ、(5)はこの石英ルツボ内に保持された半導体溶
湯池、(6)はこの半導体溶湯池の上に設けられた半導
体単結晶育成炉、(7)はこの半導体単結晶育成炉の下
部において半導体溶湯池(5)から少量ずつ除々に引き
上げられ凝固させられた柱状の半導体単結晶体、(8)
は半導体単結晶育成炉(6)に隣接して設けられた一対
の原料半導体供給炉、(9)、(9)はこの原料半導体
供給炉内に吊下された多結晶半導体からなる原料棒、(
国、(10)はこの原料棒を予熱する高周波誘導予熱コ
イル、(Illは溶湯池(5)の原料棒(9)、(9)
の下方部である原料溶解部、f12)は半導体単結晶(
7)の下方部に位置する半導体単結晶育成部、(13)
は原料溶解部fi11と半導体単結晶育成部(l乃とを
所定深さまで区画する断熱円筒、(14)、(14)は
原料半導体供給炉(8)を他から密閉隔離するゲートパ
ルプである。断熱円筒(131は原料溶解部(11)の
温度変動及び溶湯流動の乱れが半導体単結晶育成部(1
乃に影響を及ぼすのを防止する目的で設置されている。
FIG. 1 is an explanatory diagram showing one embodiment of the present invention, and the second t! l
t is a view from ■-■ arrow in Figure 1, in which (1) is a carbon crucible, (2) is a heater surrounding this carbon crucible, (3) is a heat insulating material surrounding this heater,
(4) is a quartz crucible covering the inside of the carbon crucible (11), (5) is a semiconductor molten metal pond held in this quartz crucible, (6) is a semiconductor single crystal growth furnace provided above this semiconductor molten metal pond, (7) is a columnar semiconductor single crystal body that is gradually pulled up from the molten semiconductor pool (5) little by little and solidified in the lower part of this semiconductor single crystal growth furnace; (8)
are a pair of raw material semiconductor supply furnaces provided adjacent to the semiconductor single crystal growth furnace (6); (9) and (9) are raw material rods made of polycrystalline semiconductors suspended in the raw material semiconductor supply furnace; (
country, (10) is a high-frequency induction preheating coil that preheats this raw material rod, (Ill is a raw material rod (9) in the molten metal pool (5), (9)
The lower part of the raw material melting part (f12) is the semiconductor single crystal (
7) Semiconductor single crystal growth section located in the lower part of (13)
(14) and (14) are gate pulps that hermetically isolate the raw material semiconductor supply furnace (8) from the others. The heat insulating cylinder (131) is a semiconductor single crystal growth section (1
It is installed for the purpose of preventing it from affecting the environment.

断熱円筒(131は内部に断熱材を充填した石英の2重
円筒構造となっており、チャンバー上部に固定されてい
る(固定冶具は図示せず)。
The heat insulating cylinder (131) has a double cylinder structure made of quartz filled with a heat insulating material, and is fixed to the upper part of the chamber (fixing jig is not shown).

第3図に断熱円筒fl:11を用いた場合の効果を示す
FIG. 3 shows the effect of using a heat insulating cylinder fl:11.

断熱円筒++3)を用いた場合、溶湯池(5)内の温度
分布Aは、断熱円筒(1勇を用いていない場合Bと比較
して、原料溶解部(11)では、原料棒(9)を溶解す
るに十分な温度が確保され、更に、半導体単結晶育成部
(1乃では、液面に近い等温曲線が得られ、半導体単結
晶育成上、極めて良好な環境が作られている。
When a heat insulating cylinder (++3) is used, the temperature distribution A in the molten metal pool (5) is different from the temperature distribution A in the melt pool (5) in the raw material melting section (11), compared to the case B when the heat insulating cylinder (1 heat) is not used. Furthermore, in the semiconductor single crystal growth section (No. 1), an isothermal curve close to the liquid level is obtained, creating an extremely favorable environment for the growth of semiconductor single crystals.

なお、断熱円筒(131の構造は、内部をモリブデン板
等の高融点金属で補強した石英2重円筒とし、その内部
を真空にした構造としてもよい。
Note that the structure of the heat insulating cylinder (131) may be a double quartz cylinder whose inside is reinforced with a high melting point metal such as a molybdenum plate, and the inside of which is evacuated.

高周波誘導予熱コイル(1…、(国は、原料棒(9)、
(9)を1100℃〜1400℃の範囲で予熱して、溶
湯池(5)の液面位■が深さ2〜7 cmの範囲で常に
一定となるように、供給電流を制御する制御手段を備え
ている。更に、高周波誘導予熱コイルf1111、(l
O)は500KHz、50KWの電源(図示せず)に切
り替えFjT hQに接続されている。
High frequency induction preheating coil (1..., (country) raw material rod (9),
Control means for preheating (9) to a temperature in the range of 1100°C to 1400°C and controlling the supplied current so that the liquid level (2) in the molten metal pond (5) is always constant within a depth range of 2 to 7 cm. It is equipped with Furthermore, high frequency induction preheating coil f1111, (l
O) is switched to a 500KHz, 50KW power supply (not shown) and connected to FjThQ.

実験例 直径25インチのルツボ内にシリコン溶湯(5)を保持
させ、このシリコン溶湯内に、内径12インチ、外径1
3インチ、長さ5 cmの断熱円筒(++lを3cm浸
漬し、ノリコン溶1身内(5)にドープ材を含んt!4
インチ直径の原料棒(9)を融解し、ノリコン溶湯(5
)内に供給しながら、直径6インチ、長さ2mのシリコ
ンの半導体単結晶体(7)を育成した。その手順は、ド
ープ材を含んだシリコン溶湯(5)約30kg(深さ5
cm)を所定温度に保ち、その状態で原料棒(9)、(
9)の先端付近を溶湯池(5)の輻射熱で850℃程度
まで加熱するとともに、高周波電源より高周波誘導予熱
コイルf101に電流を投入し、原料棒(9)、(9)
の先端部を約1300℃まで予熱した。なお、供給され
る原料棒(9)は均一に融解させる目的で5rpmで回
転させた。溶湯池(5)の深さは、大きな熱対流を防止
するために浅い方が望ましいが、温度の均一性およびド
ープ材の均一性から、今回の実験例では5 cm深さと
した。
Experimental example A molten silicone metal (5) is held in a crucible with a diameter of 25 inches, and inside the molten silicone, an inner diameter of 12 inches and an outer diameter of 1.
A 3 inch, 5 cm long insulated cylinder (++l is immersed for 3 cm, and the dope material is contained in the Noricon melt (5)).
Melt the raw material rod (9) with an inch diameter, and melt the Noricon molten metal (5
), a silicon semiconductor single crystal (7) with a diameter of 6 inches and a length of 2 m was grown. The procedure involves using approximately 30 kg of molten silicon (5) containing the doping material (at a depth of 5
cm) at a predetermined temperature, and in that state, the raw material rods (9), (
The vicinity of the tip of the raw material rod (9) is heated to approximately 850°C by the radiant heat of the molten metal pool (5), and current is applied from the high frequency power source to the high frequency induction preheating coil f101.
The tip of the was preheated to about 1300°C. Note that the supplied raw material rod (9) was rotated at 5 rpm for the purpose of uniformly melting it. Although it is desirable that the depth of the molten metal pool (5) be shallow in order to prevent large heat convection, the depth was set to 5 cm in this experimental example from the viewpoint of temperature uniformity and dope uniformity.

種結晶を浸漬し、ネッキング操作を行っている間に、予
熱が完了している原料棒(9)を溶湯池(5)へ浸漬し
て融解させ、以後は常に液面位置が定位置になるように
予熱温度及び原料の供給量を制御した。その結果、従来
のバッチ式における半導体単結晶の育成と同様に、ディ
スロケーションの存在しない均質性のすぐれた高品位の
半導体単結晶を引き上げることができた。
While the seed crystal is immersed and the necking operation is being performed, the preheated raw material rod (9) is immersed into the molten metal pond (5) and melted, and from then on the liquid level position is always at the fixed position. The preheating temperature and feed rate of raw materials were controlled as follows. As a result, we were able to pull a high-quality semiconductor single crystal with excellent homogeneity and no dislocation, similar to the conventional batch-type semiconductor single crystal growth.

なお、一方の原料棒(9)が所定量まで消耗すると、あ
らかじめ、装填してあった他方の原料棒(9)を供給し
、その間、ゲートパルプf141、(団を閉じて消耗し
た原料棒(9)を新しい原料棒(9)と交換する、この
操作を繰り返せば、半導体単結晶を連続的に育成し、長
尺の半導体単結晶を連続的に製造することが可能となる
In addition, when one raw material rod (9) is consumed to a predetermined amount, the other raw material rod (9) that has been loaded in advance is supplied, and in the meantime, the gate pulp f141, (the group is closed and the exhausted raw material rod ( By repeating this operation of replacing 9) with a new raw material rod (9), it becomes possible to continuously grow semiconductor single crystals and continuously manufacture long semiconductor single crystals.

その他の結晶育成条件は、半導体単結晶体(力の回転速
度が15rpmで、ルツボ回転速度は、その反対方向に
3rpmであり、半導体単結晶体(7)の引き上げ速度
は定径部において、3.0mm/分である。
Other crystal growth conditions were: the semiconductor single crystal (force rotation speed was 15 rpm, the crucible rotation speed was 3 rpm in the opposite direction, and the pulling speed of the semiconductor single crystal (7) was 3 rpm in the constant diameter section). .0 mm/min.

また、今回の実験例では、液面位置は、原料棒(9)供
給速度で制剤したため、ルツボの上昇は不用であったが
、l易面の微調整のためにルツボの上、上移動を行って
もよい。しかしながら、この場合は、溶湯内のドープ材
の濃度が定常状態から微変動するおそ1がある。
In addition, in this experimental example, the liquid level position was controlled by the feed rate of the raw material rod (9), so there was no need to raise the crucible, but the crucible was moved up and down to finely adjust the liquid surface. You may do so. However, in this case, there is a possibility that the concentration of the dopant in the molten metal may slightly fluctuate from a steady state.

次に、今回の実験例で得られた半導体単結晶体の抵抗率
分布を第4図に示す。この図かられかるように、結晶長
さく凝固分率に対応)方向の抵抗率分布は、従来のパッ
チ式での分布(151と・比較して、本発明による連続
的な原料供給法による抵抗率分布(1ωば、結晶の全長
にわたって、はぼ1%以内の変動率であり、C−MO3
用ウェハを考えた場合、従来の40%程度の歩留から、
−気に、100%近い歩留が得られる。
Next, FIG. 4 shows the resistivity distribution of the semiconductor single crystal obtained in this experimental example. As can be seen from this figure, the resistivity distribution in the direction (corresponding to the crystal length and solidification fraction) is higher than that of the conventional patch method (151). rate distribution (1ω, the variation rate is within 1% over the entire length of the crystal, and C-MO3
When considering commercial wafers, the yield is about 40% compared to the conventional one.
- A yield of nearly 100% can be obtained.

なお、半導体単結晶の育成性及び品質性から、シリコン
融液の流動を防止する目的で磁場を印加ずろ設備を本発
明の構成に付加しても良いことは言うまでもない。
It goes without saying that from the viewpoint of the growth and quality of the semiconductor single crystal, a magnetic field applying device may be added to the configuration of the present invention for the purpose of preventing the silicon melt from flowing.

〔発明の効果〕〔Effect of the invention〕

この発明は以上説明したように、原料溶解部の温度変動
及び溶湯流動の乱れを半導体単結晶育成部に及ぼさせな
いようにしたので、半径方向及び長さ方向に共に均質て
tS電気抵抗率を有する半導停車結晶体を連続的に製造
することができるという効果がある。
As explained above, this invention prevents temperature fluctuations in the raw material melting part and disturbances in the flow of the molten metal from affecting the semiconductor single crystal growth part, so that it has a homogeneous tS electrical resistivity in both the radial direction and the length direction. This has the effect that semiconductor stopped crystals can be manufactured continuously.

【図面の簡単な説明】[Brief explanation of drawings]

第1図はこの発明の一実施例を示す説明図、第2図は第
1図の■−■矢視図、第3図はルツボ内における温度分
布を示すグラフ、第4図は凝固分率と電気抵抗率との関
係を示すグラフである。 図において、(11はカーボンルツボ、(2)はヒータ
ー、(3)は断熱材、(4)は石英ルツボ、(5)は半
導体溶湯池、(6)は半導体単結晶育成炉、(7)は半
導体単結晶、(8)は原料半導体供給炉、(9)は原料
棒、DIは高周波予熱コイル、(11)は原料棒融解部
、(14は単結晶育成部、(+31は断熱円筒、(14
1はゲートパルプである。 なお、各図中同一符号は同一または相当部分を示す。
Fig. 1 is an explanatory diagram showing one embodiment of the present invention, Fig. 2 is a view from the ■-■ arrow in Fig. 1, Fig. 3 is a graph showing the temperature distribution in the crucible, and Fig. 4 is a solidification fraction. It is a graph showing the relationship between and electrical resistivity. In the figure, (11 is a carbon crucible, (2) is a heater, (3) is a heat insulator, (4) is a quartz crucible, (5) is a semiconductor molten metal pool, (6) is a semiconductor single crystal growth furnace, (7) is a semiconductor single crystal, (8) is a raw material semiconductor supply furnace, (9) is a raw material rod, DI is a high-frequency preheating coil, (11) is a raw material rod melting section, (14 is a single crystal growth section, (+31 is a heat insulating cylinder, (14
1 is gate pulp. Note that the same reference numerals in each figure indicate the same or corresponding parts.

Claims (1)

【特許請求の範囲】[Claims] 溶融半導体の溶湯池から該溶融半導体を少しずつ引き上
げて柱状に凝固成長させ、これにより半導体単結晶体を
得る半導体単結晶製造装置において、少なくとも1個以
上の原料半導体装填室と、該原料半導体装填室を密閉隔
離するゲートパルプと、該原料半導体装填室に装填され
た多結晶半導体からなる原料棒と、該原料棒を予熱する
高周波誘導予熱コイルと、該溶湯池を該原料棒の下方の
原料棒融解部と該半導体単結晶体の下方の単結晶育成部
とに区画する断熱円筒とを備えたことを特徴とする半導
体単結晶製造装置。
A semiconductor single crystal manufacturing apparatus for obtaining a semiconductor single crystal by pulling up a molten semiconductor little by little from a pool of molten semiconductor and solidifying and growing it into a columnar shape, which comprises at least one raw material semiconductor loading chamber and the raw material semiconductor loading chamber. A gate pulp that seals and isolates the chamber, a raw material rod made of polycrystalline semiconductor loaded in the raw material semiconductor loading chamber, a high frequency induction preheating coil that preheats the raw material rod, and a molten metal pool that connects the raw material below the raw material rod. 1. An apparatus for manufacturing a semiconductor single crystal, comprising: a heat insulating cylinder partitioned into a rod melting section and a single crystal growth section below the semiconductor single crystal.
JP24411585A 1985-11-01 1985-11-01 Apparatus for producing semiconductor single crystal Pending JPS62105992A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP24411585A JPS62105992A (en) 1985-11-01 1985-11-01 Apparatus for producing semiconductor single crystal

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP24411585A JPS62105992A (en) 1985-11-01 1985-11-01 Apparatus for producing semiconductor single crystal

Publications (1)

Publication Number Publication Date
JPS62105992A true JPS62105992A (en) 1987-05-16

Family

ID=17113981

Family Applications (1)

Application Number Title Priority Date Filing Date
JP24411585A Pending JPS62105992A (en) 1985-11-01 1985-11-01 Apparatus for producing semiconductor single crystal

Country Status (1)

Country Link
JP (1) JPS62105992A (en)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH059096A (en) * 1991-06-28 1993-01-19 Shin Etsu Handotai Co Ltd Production of silicon single crystal
JPH05238874A (en) * 1992-02-28 1993-09-17 Shin Etsu Handotai Co Ltd Production apparatus for silicon single crystal
CN110195256A (en) * 2019-06-10 2019-09-03 苏州亚傲鑫企业管理咨询有限公司 Monocrystalline silicon repeatedly feeds the device continuously grown and technique

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH059096A (en) * 1991-06-28 1993-01-19 Shin Etsu Handotai Co Ltd Production of silicon single crystal
JPH05238874A (en) * 1992-02-28 1993-09-17 Shin Etsu Handotai Co Ltd Production apparatus for silicon single crystal
CN110195256A (en) * 2019-06-10 2019-09-03 苏州亚傲鑫企业管理咨询有限公司 Monocrystalline silicon repeatedly feeds the device continuously grown and technique

Similar Documents

Publication Publication Date Title
JP2007314374A (en) Manufacturing method of fz single crystal silicon using silicon crystal rod manufactured by cz method as raw material
KR101574749B1 (en) Upper heater for manufacturing single crystal, single crystal manufacturing apparatus and single crystal manufacturing method
JPS6046998A (en) Pulling up of single crystal and its device
US20020129759A1 (en) Method for producing silicon single crystal
TWI738352B (en) Semiconductor crystal growth apparatus
KR101105475B1 (en) Method for manufacturing single crystal minimizing process-deviation
JPS62105992A (en) Apparatus for producing semiconductor single crystal
TWI745974B (en) Semiconductor crystal growing apparatus
JPS6046073B2 (en) Manufacturing method of semiconductor single crystal
JPS6027684A (en) Apparatus for producing single crystal
TW202117098A (en) A semiconductor crystal growth apparatus
JPH10287488A (en) Pulling up of single crystal
JPH0557235B2 (en)
FI84498B (en) Device for producing a single crystal for semiconductors
KR20150053121A (en) Apparatus and method for manufacturing silicone single crystal ingot
TWI745973B (en) A semiconductor crystal growth apparatus
CN110735180A (en) crystal pulling furnace
CN1015649B (en) Apparatus for manufacturing semiconductor single crystals
WO2022074908A1 (en) Method for growing silicon single crystal
JPS6395196A (en) Method for growing single crystal
CN116876073A (en) Single crystal furnace heating structure and single crystal furnace
KR20240038957A (en) Manufacturing method of silicon single crystal
JPS6033297A (en) Pulling device for single crystal semiconductor
KR100784585B1 (en) Method of growing semiconductor crystal using unbalanced magnetic field and apparatus for implementing the same
JPH0138078B2 (en)