JP2004315289A - Method for manufacturing single crystal - Google Patents

Method for manufacturing single crystal Download PDF

Info

Publication number
JP2004315289A
JP2004315289A JP2003111265A JP2003111265A JP2004315289A JP 2004315289 A JP2004315289 A JP 2004315289A JP 2003111265 A JP2003111265 A JP 2003111265A JP 2003111265 A JP2003111265 A JP 2003111265A JP 2004315289 A JP2004315289 A JP 2004315289A
Authority
JP
Japan
Prior art keywords
magnetic field
single crystal
melt
maximum
field strength
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2003111265A
Other languages
Japanese (ja)
Other versions
JP4193558B2 (en
Inventor
Susumu Sonokawa
将 園川
Ryoji Hoshi
亮二 星
Tatsuo Mori
達生 森
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Shin Etsu Handotai Co Ltd
Original Assignee
Shin Etsu Handotai Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Shin Etsu Handotai Co Ltd filed Critical Shin Etsu Handotai Co Ltd
Priority to JP2003111265A priority Critical patent/JP4193558B2/en
Priority to PCT/JP2004/004552 priority patent/WO2004092456A1/en
Priority to TW093110110A priority patent/TW200506114A/en
Publication of JP2004315289A publication Critical patent/JP2004315289A/en
Application granted granted Critical
Publication of JP4193558B2 publication Critical patent/JP4193558B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Images

Classifications

    • CCHEMISTRY; METALLURGY
    • C30CRYSTAL GROWTH
    • C30BSINGLE-CRYSTAL GROWTH; UNIDIRECTIONAL SOLIDIFICATION OF EUTECTIC MATERIAL OR UNIDIRECTIONAL DEMIXING OF EUTECTOID MATERIAL; REFINING BY ZONE-MELTING OF MATERIAL; PRODUCTION OF A HOMOGENEOUS POLYCRYSTALLINE MATERIAL WITH DEFINED STRUCTURE; SINGLE CRYSTALS OR HOMOGENEOUS POLYCRYSTALLINE MATERIAL WITH DEFINED STRUCTURE; AFTER-TREATMENT OF SINGLE CRYSTALS OR A HOMOGENEOUS POLYCRYSTALLINE MATERIAL WITH DEFINED STRUCTURE; APPARATUS THEREFOR
    • C30B29/00Single crystals or homogeneous polycrystalline material with defined structure characterised by the material or by their shape
    • C30B29/02Elements
    • C30B29/06Silicon
    • CCHEMISTRY; METALLURGY
    • C30CRYSTAL GROWTH
    • C30BSINGLE-CRYSTAL GROWTH; UNIDIRECTIONAL SOLIDIFICATION OF EUTECTIC MATERIAL OR UNIDIRECTIONAL DEMIXING OF EUTECTOID MATERIAL; REFINING BY ZONE-MELTING OF MATERIAL; PRODUCTION OF A HOMOGENEOUS POLYCRYSTALLINE MATERIAL WITH DEFINED STRUCTURE; SINGLE CRYSTALS OR HOMOGENEOUS POLYCRYSTALLINE MATERIAL WITH DEFINED STRUCTURE; AFTER-TREATMENT OF SINGLE CRYSTALS OR A HOMOGENEOUS POLYCRYSTALLINE MATERIAL WITH DEFINED STRUCTURE; APPARATUS THEREFOR
    • C30B15/00Single-crystal growth by pulling from a melt, e.g. Czochralski method
    • C30B15/30Mechanisms for rotating or moving either the melt or the crystal
    • C30B15/305Stirring of the melt

Abstract

<P>PROBLEM TO BE SOLVED: To manufacture a high quality single crystal with high productivity in a Czochralski method applying a magnetic field. <P>SOLUTION: In a method for manufacturing the single crystal by the Czochralski method applying the magnetic field, the single crystal is pulled by at least setting the minimum magnetic field strength in a melt accommodated in a crucible to be within a range of ≥2,000 G, setting the maximum magnetic field strength in the melt to be within a range of ≤6,000 G, and controlling the maximum magnetic field gradient, obtained by dividing the difference between the maximum and minimum magnetic field strengths with the distance, to be within a range of ≤55 G/cm. <P>COPYRIGHT: (C)2005,JPO&NCIPI

Description

【0001】
【発明の属する技術分野】
本発明は、磁場を印加するチョクラルスキー法により単結晶を製造する方法に関する。
【0002】
【従来の技術】
半導体デバイスの基板として用いられる単結晶は、例えばシリコン単結晶があり、主にチョクラルスキー法(Czochralski Method、以下CZ法と略称する)により製造されている。
【0003】
CZ法により単結晶を製造する際には、例えば図1に示すような単結晶製造装置10を用いて製造される。この単結晶製造装置10は、例えばシリコンのような原料多結晶を収容して溶融するための部材や、熱を遮断するための断熱部材などを有しており、これらは、メインチャンバー11内に収容されている。メインチャンバー11の天井部からは上に伸びる引上げチャンバー12が連接されており、この上部に単結晶4をワイヤー13で引上げる機構(不図示)が設けられている。
【0004】
メインチャンバー11内には、溶融された原料の融液14を収容するルツボ5が設けられ、このルツボ5は駆動機構(不図示)によって回転昇降自在にシャフト9で支持されている。このルツボ5の駆動機構は、単結晶4の引き上げに伴う融液14液面低下を補償すべく、ルツボ5を液面低下分だけ上昇させるようにしている。
【0005】
そして、ルツボ5を囲繞するように、原料を溶融させるための黒鉛ヒーター7が配置されている。この黒鉛ヒーター7の外側には、黒鉛ヒーター7からの熱がメインチャンバー11に直接輻射されるのを防止するために、断熱部材6がその周囲を取り囲むように設けられている。
【0006】
以上のような単結晶製造装置内に配置されたルツボ5に原料塊を収容し、このルツボ5を、黒鉛ヒーター7により加熱し、ルツボ5内の原料塊を溶融させる。このように原料塊を溶融させたものである融液14に、ワイヤー13の下端に接続している種ホルダー1で固定された種結晶2を着液させ、その後、種結晶2を回転させながら引き上げることにより、種結晶2の下方に所望の直径と品質を有する単結晶4を育成する。この際、種結晶2を原料融液14に着液させた後に、通常直径を3mm程度に一旦細くして絞り部3を形成するいわゆる種絞り(ネッキング)を行い、次いで、所望の口径になるまで太らせて、無転位の結晶を引き上げている。
【0007】
近年、製造する単結晶の結晶直径の大型化に伴い、ルツボサイズが大型化し、ルツボ内の融液の体積が増大してきている。この増大した体積の融液の熱対流をいかに制御するかということが、課題となっている。その方策の一つとして、磁場を印加したCZ法(Magnetic field applied Czochralski Method法、以下MCZ法と略称する)がある。このMCZ法では、例えば図1に示したようなメインチャンバー11の外側に設けられたマグネットコイル8で磁場を印加し、その磁場により融液の熱対流を制御する。
【0008】
MCZ法において磁場を制御して結晶を製造する方法の例としては、単結晶を製造する際に融液のアスペクト比が大きい引上げ条件下では引上げ方向に対して垂直に2000ガウス以上の磁場を印加し、融液のアスペクト比が小さい引上げ条件下では引上げ方向に対して平行に1000ガウス程度の磁場を印加することで、融液の利用率を良くするとともに高品質の単結晶を育成する方法が開示されている(例えば、特許文献1参照。)。また、シリコン単結晶を製造する際に結晶成長面における磁場強度を略一定に制御しつつ単結晶を引き上げることで、単結晶に導入される欠陥を低減する方法(例えば、特許文献2参照。)や、結晶を製造する際に強度勾配を持つ磁場中で結晶の引き上げを行うことで、結晶性に優れた低不純物濃度の結晶を得る方法(例えば、特許文献3参照。)なども開示されている。
【0009】
しかし、近年のさらなるルツボの大口径化に伴い、高品質の結晶を生産性良く製造するためには上記結晶製造方法だけでは不十分となり、さらなる磁場強度を制御した結晶の製造方法が求められていた。
【0010】
【特許文献1】
特開昭60−221392号公報
【特許文献2】
特開2000−247787号公報
【特許文献3】
特開平6−227887号公報
【0011】
【発明が解決しようとする課題】
本発明はこのような問題点に鑑みてなされたもので、磁場を印加するチョクラルスキー法において、高品質の単結晶を生産性良く製造する方法を提供することを目的とする。
【0012】
【課題を解決するための手段】
本発明は、上記課題を解決するためになされたもので、磁場を印加するチョクラルスキー法により単結晶を製造する方法において、少なくとも、ルツボに収容された融液内の最小磁場強度を2000G以上の範囲とし、融液内の最大磁場強度を6000G以下の範囲とし、かつ最大と最小の磁場強度の差をその距離で除したものである最大磁場勾配を55G/cm以下の範囲として、単結晶を引き上げることを特徴とする単結晶の製造方法が提供される(請求項1)。
【0013】
このように、ルツボに収容された融液内の最小磁場強度を2000G以上の範囲とし、融液内の最大磁場強度を6000G以下の範囲とし、かつ最大と最小の磁場強度の差をその距離で除したものである最大磁場勾配を55G/cm以下の範囲として、単結晶を引き上げることで、近年の大口径のルツボを用いた場合であっても高品質の単結晶を生産性良く製造することができる。
【0014】
この場合、前記融液を収容するルツボの直径が24インチ(600mm)以上のものを用いることができる(請求項2)。
【0015】
本発明の単結晶の製造方法では、近年用いられている直径24インチ(600mm)以上といった大口径のルツボに適用する場合に特に有効である。
【0016】
この場合、前記印加する磁場を水平磁場とするのが好ましい(請求項3)。
このように、印加する磁場が水平磁場であれば、効果的に融液の熱対流を抑制することができる。
【0017】
この場合、前記単結晶をシリコンとすることができる(請求項4)。
このように、本発明の単結晶製造方法は、近年特に大口径化が著しいシリコン単結晶を製造する際に好適に適用することができる。
【0018】
さらに、以上のような単結晶の製造方法で製造された単結晶が提供される(請求項5)。
【0019】
本発明の製造方法を用いれば、近年要求される大口径の単結晶を生産性良く製造できる上に、高品質のものとすることができる。従って、製造された単結晶は高品質かつ安価なものとなる。
【0020】
以下本発明について説明する。
単結晶の製造において、近年のルツボの大口径化にともない、融液の対流が増大するという問題がある。この増大した対流を抑制するために、MCZ法においては、従来磁場強度を増大するという対策がとられてきた。しかし、磁場強度を増大した結果、かえって単結晶の生産性が低下し、品質も悪化するというケースが見受けられた。
【0021】
この原因としては次のことが考えられる。
図2は、マグネットコイル8により磁場を印加した時の磁力線分布を模式的に示した図である。図2(a)はルツボを横から見た断面図であり、図2(b)はルツボを上から見た平面図である。このような磁力線分布の水平磁場を印加した場合、図3に示したように、磁場強度の分布が融液内で全て均一とはならず、磁場強度の強い部分と弱い部分が生じる。
【0022】
先ず、磁場強度が弱い部分を補うために全体の磁場強度を増大した場合、磁場強度が強い部分がさらに強くなり、その部分では磁場による対流抑制力が過剰となる。その結果、融液内で磁場が強い部分では、対流が生じない結果熱伝導が支配的になる。したがって、▲1▼温度の不均一による育成単結晶の無転位化の阻害、品質の不均一性の発生、▲2▼育成単結晶付近の温度勾配の低下による結晶の無転位化の阻害、成長速度の低下による生産性の低下、▲3▼結晶付近の不純物拡散の抑制による面内品質の不均一化といった問題が発生する。
【0023】
一方、磁場分布が同じ状態で、単純に全体の磁場強度を増大すると、磁場の強い部分と弱い部分とで同じ比率で磁場強度が増大することにもなる。したがって磁場の強い部分と弱い部分の磁場強度の絶対値の差は広がり、磁場勾配が大きくなる。その結果、融液内のある部分では対流が発生し、その部分では対流抑制力は不足すると考えられる。その結果生じた過剰な対流により、結晶成長界面が振動し、温度変動が大きくなり、高品質の結晶を得ることができなくなる。
【0024】
このように、融液内で部分的に対流抑制力が過剰になったり、対流抑制力が不足したりして、融液が熱的にアンバランスとなる結果として、操業が不安定になり、また単結晶の品質が悪化するという問題が生じたと考えられる。
【0025】
【発明の実施の形態】
以下、本発明の実施の形態について説明するが、本発明はこれらに限定されるものではない。
本発明者らは鋭意研究を重ねた結果、MCZ法により単結晶を製造する際に、融液内のある点での磁場強度にのみ着目するのではなく、融液内全体での磁場強度分布について考慮し、融液内の最大と最小磁場強度、さらには最大と最小の磁場強度の差をその距離で除したものである最大磁場勾配を最適な範囲に規定することにより、ルツボが大口径の場合でも、普遍的な効果を得ることが可能であることに想到し、本発明を完成させた。
【0026】
すなわち本発明では、磁場を印加するチョクラルスキー法により単結晶を製造する際に、少なくとも、ルツボに収容された融液内の最小磁場強度を2000G以上の範囲とし、融液内の最大磁場強度を6000G以下の範囲とし、かつ最大と最小の磁場強度の差をその距離で除したものである最大磁場勾配を55G/cm以下の範囲として、単結晶を引き上げる。
【0027】
このように、融液内の最小磁場強度を2000G以上とすれば、対流抑制の効果を十分に得ることができる。したがって、対流が過剰になることがないために、成長界面の振動、温度変動を適度に小さく保つことができ、高品質の単結晶を得ることができる。
また、最大磁場強度を6000G以下、より好ましくは5500G以下とすれば、対流抑制の効果が過剰になることもない。したがって、対流抑制が過剰で熱伝導のみになってしまうといった弊害もなく、高品質の単結晶を生産性良く製造することができる。
さらに、最大磁場勾配を55G/cm以下、より好ましくは45G/cm以下とすることで、磁場勾配が起因の対流の発生を防ぐことができる。
【0028】
上記条件で磁場を印加することで、融液を収容する直径が24インチ(600mm)以上、さらには32インチ(800mm)以上のルツボを用いて、例えば300Kgを超す融液から直径12インチ(300mm)以上の大口径の結晶を引き上げる場合であっても、生産性良く、高品質の単結晶を製造できる。
特に、近年大口径化が著しいシリコン単結晶を製造する際に好適に適用することができる。
【0029】
また、印加する磁場が水平磁場であれば、効果的に融液の熱対流を抑制することができる。磁場を印加する際には、融液内の磁場分布をより均一にできる磁場発生装置を使用するのが好ましい。磁場分布をより均一にする方法の例として、図4(a)に示したように複数のマグネットコイルを用いる方法や、図4(b)に示したように鞍型のマグネットコイルを用いる方法を挙げることができる。なお、複数マグネットコイル方式、鞍型マグネットコイル方式、いずれにしても、磁場強度及び分布が同じであれば、その効果は同じである。
【0030】
こうして、本発明の製造方法を用いれば、近年要求される大口径の単結晶を生産性良く製造できる上に、高品質のものとすることができる。従って、製造された単結晶は高品質かつ安価なものとなる。
【0031】
【実施例】
以下、本発明を実施例および比較例を挙げて具体的に説明する。
[実施例1〜3、比較例1,2]
図1に示した引上げ装置を用いて、MCZ法によりシリコン単結晶を製造した。具体的には、口径32インチ(800mm)ルツボを用いて原料多結晶シリコンを300Kgチャージし、内径920mmのヒーターで溶融して融液にした。そして、この融液に横磁場を印加しながら直径12インチ(300mm)のシリコン単結晶棒を引上げた。なおこの場合、横磁場を印加するマグネットコイルは図2に示すように配置し、磁場中心を融液の中央部として磁場を印加した。融液内で磁場強度が最大となる部分は、マグネットコイル中心の最近接部分であり、一方融液内で磁場強度が最小となる部分は、マグネットコイル中心の最近接部分から融液面で周方向に90°離れた部分であった。
【0032】
以上のような単結晶製造方法で、さらに磁場強度条件を以下の条件(実施例1〜3、比較例1,2)とし、それぞれの条件で、製造結晶の面内の主品質特性である抵抗率の面内分布、ならびに結晶の無転位化本数率(DF化率)を調査した。
【0033】
(実施例1)
中心磁場強度を4000Gとした。この場合、融液内の最大磁場強度は、6000Gであり、一方融液内の最小磁場強度は、3000Gであった。また、最大と最小の磁場強度の差(3000G)をその距離で除したものである最大磁場勾配は、50G/cmであった。
この条件では、抵抗率の面内分布は約5%であり、またDF化率は80%であった。抵抗率の面内分布とDF化率の両方が良好であると判断でき、シリコン単結晶を製造する上で十分に許容できる範囲である。
【0034】
(実施例2)
中心磁場強度を3500Gとした。この場合、融液内の最大磁場強度は、5200Gであり、一方融液内の最小磁場強度は、2600Gであった。また、最大と最小の磁場強度の差(2600G)をその距離で除したものである最大磁場勾配は、44G/cmであった。
この条件では、抵抗率の面内分布は約3%であり、またDF化率は82%であった。抵抗率の面内分布とDF化率の両方が十分に良好であると判断でき、シリコン単結晶を製造する上でも望ましい範囲である。
【0035】
(実施例3)
中心磁場強度を3000Gとした。この場合、融液内の最大磁場強度は、4500Gであり、一方融液内の最小磁場強度は、2250Gであった。また、最大と最小の磁場強度の差(2250G)をその距離で除したものである最大磁場勾配は、38G/cmであった。
この条件では、抵抗率の面内分布は約3%であり、またDF化率は85%であった。抵抗率の面内分布とDF化率の両方が十分に良好であると判断でき、シリコン単結晶を製造する上でも望ましい範囲である。
【0036】
(比較例1)
中心磁場強度を5000Gとした。この場合、融液内の最大磁場強度は、7000Gであり、一方融液内の最小磁場強度は、3750Gであった。また、最大と最小の磁場強度の差(3250G)をその距離で除したものである最大磁場勾配は、62G/cmであった。
この条件では、抵抗率の面内分布は約8%であり、またDF化率は50%であった。抵抗率の面内分布とDF化率の両方が悪いと判断でき、シリコン単結晶を製造する上で望ましくない範囲である。
【0037】
(比較例2)
中心磁場強度を2000Gとした。この場合、融液内の最大磁場強度は、3000Gであり、一方融液内の最小磁場強度は、1500Gであった。また、最大と最小の磁場強度の差(1500G)をその距離で除したものである最大磁場勾配は、25G/cmであった。
この条件では、抵抗率の面内分布は約3%であり、またDF化率は47%であった。抵抗率の面内分布は十分に良好であると判断できるが、DF化率が悪く、シリコン単結晶を製造する上で望ましくない範囲である。
【0038】
これらの結果を下記表1にまとめた。
【表1】

Figure 2004315289
【0039】
直径12インチ(300mm)の単結晶の製造では、直径8インチ(200mm)の単結晶の製造に比べ、ルツボ口径が大型化し、原料のチャージ量も増加している。従って、融液の対流抑制向上を目的とし磁場を印加するのであれば、中心磁場強度を増大することが望ましいことが容易に想像される。したがって、直径12インチ(300mm)の単結晶の製造する際には、従来は、例えば比較例1のように中心磁場強度を5000Gとした条件で単結晶を製造する必要があると思われていた。しかし、この条件では、最大磁場強度が6000Gを超え、しかも最大磁場勾配が55G/cmを超えることになる。その結果、抵抗の面内分布は約8%と悪く、またDF化率も50%と悪い。
【0040】
そこで、例えば実施例1のように従来よりも弱い中心磁場強度である4000Gとした条件で単結晶を製造した場合、最小磁場強度が6000G以下の範囲、最大磁場強度が2000G以上の範囲、及び最大磁場勾配が55G/cm以下の範囲となる。その結果、抵抗の面内分布は約5%と改善され、またDF化率も80%と改善された。さらに、例えば実施例2、実施例3のようにさらに弱い中心磁場である3500G、3000Gの条件で単結晶を製造した場合、最大磁場強度が5500G以下の範囲となり、しかも最大磁場勾配が45G/cm以下の範囲となる。その結果、抵抗の面内分布は約3%とさらに改善され、DF化率も82、85%とさらに改善された。
【0041】
しかし、例えば比較例2のようにさらに中心磁場強度を弱めた2000Gの条件で単結晶を製造した場合、最大磁場強度及び最大磁場勾配は所望の範囲となるが、最小磁場強度が2000G未満の範囲となる。その結果、抵抗の面内分布は約3%と良好であったが、結晶DF化率は47%と悪かった。
【0042】
[実施例4〜6、比較例3,4]
図1に示した引上げ装置を用いて、MCZ法によりシリコン単結晶を製造した。具体的には、口径32インチ(800mm)ルツボを用いて原料多結晶シリコンを300Kgチャージし、内径920mmのヒーターで溶融した。そして、この融液に横磁場を印加しながら直径12インチ(300mm)のシリコン単結晶棒を引上げた。なおこの場合、横磁場を印加するマグネットコイルは、融液内で磁場分布がより均一になるように、図4(a)に示すように配置して(複数マグネットコイル方式)磁場を印加した。
【0043】
以上のような単結晶製造方法で、さらに磁場強度条件を以下の条件(実施例4〜6、比較例3,4)とし、それぞれの条件で、製造結晶の面内の主品質特性である抵抗率の面内分布、ならびに結晶の無転位化本数率(DF化率)を調査した。
【0044】
(実施例4)
中心磁場強度を4000Gとした。この場合、融液内の最大磁場強度は、5800Gであり、一方融液内の最小磁場強度は、3700Gであった。また、最大と最小の磁場強度の差(2100G)をその距離で除したものである最大磁場勾配は、46G/cmであった。
この条件では、抵抗率の面内分布は約5%であり、またDF化率は67%であった。抵抗率の面内分布とDF化率の両方が良好であると判断でき、シリコン単結晶を製造する上で十分に許容できる範囲である。
【0045】
(実施例5)
中心磁場強度を3500Gとした。この場合、融液内の最大磁場強度は、5100Gであり、一方融液内の最小磁場強度は、3200Gであった。また、最大と最小の磁場強度の差(1900G)をその距離で除したものである最大磁場勾配は、40G/cmであった。
この条件では、抵抗率の面内分布は約3%であり、またDF化率は85%であった。抵抗率の面内分布とDF化率の両方が十分に良好であると判断でき、シリコン単結晶を製造する上で望ましい範囲である。
【0046】
(実施例6)
中心磁場強度を3000Gとした。この場合、融液内の最大磁場強度は、4400Gであり、一方融液内の最小磁場強度は、2700Gであった。また、最大と最小の磁場強度の差(1700G)をその距離で除したものである最大磁場勾配は、34G/cmであった。
この条件では、抵抗率の面内分布は約3%であり、またDF化率は88%であった。抵抗率の面内分布とDF化率の両方が十分に良好であると判断でき、シリコン単結晶を製造する上で望ましい範囲である。
【0047】
(比較例3)
中心磁場強度を4500Gとした。この場合、融液内の最大磁場強度は、6600Gであり、一方融液内の最小磁場強度は、4200Gであった。また、最大と最小の磁場強度の差(2400G)をその距離で除したものである最大磁場勾配は、52G/cmであった。
この条件では、抵抗率の面内分布は約8%であり、またDF化率は50%であった。抵抗率の面内分布とDF化率の両方が悪いと判断でき、シリコン単結晶を製造する上で望ましくない範囲である。
【0048】
(比較例4)
中心磁場強度を2000Gとした。この場合、融液内の最大磁場強度は、3000Gであり、一方融液内の最小磁場強度は、1850Gであった。また、最大と最小の磁場強度の差(1150G)をその距離で除したものである最大磁場勾配は、23G/cmであった。
この条件では、抵抗率の面内分布は約3%であり、またDF化率は56%であった。抵抗率の面内分布は十分に良好であると判断できるが、DF化率が悪く、シリコン単結晶を製造する上でも望ましくない範囲である。
【0049】
これらの結果を下記表2にまとめた。
【表2】
Figure 2004315289
【0050】
実施例5、実施例6では、最大、最小磁場勾配が所望の範囲内である上に、それぞれ同じ中心磁場強度の実施例2、実施例3と比較して最大磁場勾配が改善されている。その結果、DF化率がさらに向上した。
【0051】
[比較例5,6]
図1に示した引上げ装置を用いて、MCZ法によりシリコン単結晶を製造した。具体的には、口径32インチ(800mm)ルツボを用いて原料多結晶シリコンを300Kgチャージし、内径920mmのヒーターで溶融した。そして、この融液に横磁場を印加しながら直径12インチ(300mm)のシリコン単結晶棒を引上げた。なおこの場合、実施例1と同様に、横磁場を印加するマグネットコイルは図2に示すように配置し、磁場中心を融液の中央部として磁場を印加した。ただし、マグネットコイルを、実施例1と比較してコイル径を2割小さくしたものを配置した。融液内で磁場強度が最大となる部分は、マグネットコイル中心の最近接部分であり、一方融液内で磁場強度が最小となる部分は、マグネットコイル中心の最近接部分から融液面で周方向に90°離れた部分であった。
【0052】
以上のような単結晶製造方法で、さらに磁場強度条件を以下の条件(比較例5,6)とし、それぞれの条件で、製造結晶の面内の主品質特性である抵抗率の面内分布、ならびに結晶の無転位化本数率(DF化率)を調査した。
【0053】
(比較例5)
中心磁場強度を3500Gとした。この場合、融液内の最大磁場強度は、5700Gであり、一方融液内の最小磁場強度は、2400Gであった。また、最大と最小の磁場強度の差(3300G)をその距離で除したものである最大磁場勾配は、63G/cmであった。
この条件では、抵抗率の面内分布は約10%であり、またDF化率は40%であった。抵抗率の面内分布とDF化率の両方が悪いと判断でき、シリコン単結晶を製造する上で望ましくない範囲である。
【0054】
(比較例6)
中心磁場強度を3000Gとした。この場合、融液内の最大磁場強度は、5100Gであり、一方融液内の最小磁場強度は、2000Gであった。また、最大と最小の磁場強度の差(3100G)をその距離で除したものである最大磁場勾配は、58G/cmであった。
この条件では、抵抗率の面内分布は約8%であり、またDF化率は47%であった。抵抗率の面内分布とDF化率の両方が悪いと判断でき、シリコン単結晶を製造する上で望ましくない範囲である。
【0055】
これらの結果を下記表3に示す。
【表3】
Figure 2004315289
【0056】
比較例5、比較例6では、最大磁場強度が6000以下の範囲で、最小磁場強度が2000以上の範囲であるものの、最大磁場勾配が55G/cmを超えたものとなっている。その結果、抵抗率の面内分布とDF化率の両方が悪くなっている。
【0057】
尚、本発明は、上記実施形態に限定されるものではない。上記実施形態は、例示であり、本発明の特許請求の範囲に記載された技術的思想と実質的に同一な構成を有し、同様な作用効果を奏するものは、いかなるものであっても本発明の技術的範囲に包含される。
【0058】
【発明の効果】
以上説明したように、本発明によれば、MCZ法により単結晶を製造する際に、融液内の最小及び最大磁場強度、ならびに最大磁場勾配を所定範囲内として単結晶を引き上げることで、無転位化率が向上し製造コストの低減が達成できる上に、製造する単結晶も高品質のものにできる。
【図面の簡単な説明】
【図1】単結晶製造装置を示す概略図である。
【図2】水平磁場を印加した時の磁力線分布を模式的に示した図である。(a)ルツボを横から見た断面図、(b)ルツボを上から見た平面図。
【図3】水平磁場を印加した時の融液内の磁場強度の分布の様子を示す説明図である。
【図4】融液内の磁場分布をより均一にできる磁場発生装置の例である。
(a)複数マグネットコイル方式、
(b)鞍型マグネットコイル方式。
【符号の説明】
1…種ホルダー、 2…種結晶、 3…絞り部、 4…単結晶、
5…ルツボ、 6…断熱部材、 7…黒鉛ヒーター、
8…マグネットコイル、 9…シャフト、
10…単結晶製造装置、 11…メインチャンバー、
12…引上げチャンバー、 13…ワイヤー、 14…融液。[0001]
TECHNICAL FIELD OF THE INVENTION
The present invention relates to a method for producing a single crystal by a Czochralski method applying a magnetic field.
[0002]
[Prior art]
A single crystal used as a substrate of a semiconductor device includes, for example, a silicon single crystal, and is mainly manufactured by a Czochralski method (hereinafter abbreviated as a CZ method).
[0003]
When a single crystal is manufactured by the CZ method, the single crystal is manufactured using, for example, a single crystal manufacturing apparatus 10 as shown in FIG. The single crystal manufacturing apparatus 10 includes a member for accommodating and melting a raw material polycrystal such as silicon, a heat insulating member for shutting off heat, and the like. Is contained. A pulling chamber 12 extending upward from the ceiling of the main chamber 11 is connected, and a mechanism (not shown) for pulling the single crystal 4 with a wire 13 is provided above the pulling chamber 12.
[0004]
A crucible 5 for accommodating a melt 14 of the molten raw material is provided in the main chamber 11, and the crucible 5 is supported by a shaft 9 so as to be rotatable up and down by a driving mechanism (not shown). The driving mechanism of the crucible 5 raises the crucible 5 by an amount corresponding to the lowering of the liquid level in order to compensate for the lowering of the liquid level of the melt 14 caused by the pulling of the single crystal 4.
[0005]
A graphite heater 7 for melting the raw material is arranged so as to surround the crucible 5. Outside the graphite heater 7, a heat insulating member 6 is provided so as to surround the periphery thereof in order to prevent the heat from the graphite heater 7 from being directly radiated to the main chamber 11.
[0006]
The raw material mass is accommodated in the crucible 5 disposed in the single crystal manufacturing apparatus as described above, and the crucible 5 is heated by the graphite heater 7 to melt the raw material mass in the crucible 5. The seed crystal 2 fixed by the seed holder 1 connected to the lower end of the wire 13 is immersed in the melt 14 obtained by melting the raw material lump as described above, and then the seed crystal 2 is rotated. By pulling, a single crystal 4 having a desired diameter and quality is grown below the seed crystal 2. At this time, after the seed crystal 2 is immersed in the raw material melt 14, so-called seed drawing (necking) is performed, in which the diameter is usually reduced once to about 3 mm to form the drawing portion 3, and then a desired diameter is obtained. The crystal without dislocations is pulled up.
[0007]
In recent years, as the crystal diameter of a single crystal to be manufactured has increased, the crucible size has increased, and the volume of the melt in the crucible has increased. The challenge is how to control the thermal convection of this increased volume of melt. One of the measures is a magnetic field applied Czochralski Method (hereinafter abbreviated as MCZ method) to which a magnetic field is applied. In the MCZ method, for example, a magnetic field is applied by a magnet coil 8 provided outside the main chamber 11 as shown in FIG. 1, and the heat convection of the melt is controlled by the magnetic field.
[0008]
As an example of a method of manufacturing a crystal by controlling a magnetic field in the MCZ method, a magnetic field of 2000 Gauss or more is applied perpendicularly to a pulling direction under a pulling condition in which a melt has a large aspect ratio when manufacturing a single crystal. Under a pulling condition where the aspect ratio of the melt is small, a method of improving the utilization of the melt and growing a high-quality single crystal by applying a magnetic field of about 1000 Gauss in parallel to the pulling direction is known. It is disclosed (for example, see Patent Document 1). Further, when manufacturing a silicon single crystal, a method of reducing defects introduced into the single crystal by pulling up the single crystal while controlling the magnetic field intensity on the crystal growth surface to be substantially constant (for example, see Patent Document 2). Also, a method of obtaining a crystal with excellent crystallinity and a low impurity concentration by pulling the crystal in a magnetic field having an intensity gradient when manufacturing the crystal (for example, see Patent Document 3) has been disclosed. I have.
[0009]
However, with the recent increase in diameter of crucibles, in order to produce high-quality crystals with high productivity, the above-described crystal production method alone is not sufficient, and a crystal production method with further controlled magnetic field strength is required. Was.
[0010]
[Patent Document 1]
JP-A-60-221392 [Patent Document 2]
JP 2000-247787 A [Patent Document 3]
JP-A-6-227887
[Problems to be solved by the invention]
The present invention has been made in view of such problems, and has as its object to provide a method of manufacturing a high-quality single crystal with high productivity in the Czochralski method of applying a magnetic field.
[0012]
[Means for Solving the Problems]
The present invention has been made in order to solve the above problems, and in a method of manufacturing a single crystal by a Czochralski method of applying a magnetic field, at least a minimum magnetic field strength in a melt accommodated in a crucible of 2000 G or more. And the maximum magnetic field gradient in the melt is 6000 G or less, and the maximum magnetic field gradient which is obtained by dividing the difference between the maximum and minimum magnetic field strengths by the distance is 55 G / cm or less. The present invention provides a method for producing a single crystal, characterized by raising
[0013]
Thus, the minimum magnetic field strength in the melt accommodated in the crucible is in the range of 2000 G or more, the maximum magnetic field strength in the melt is in the range of 6000 G or less, and the difference between the maximum and minimum magnetic field strengths is determined by the distance. A high-quality single crystal can be manufactured with high productivity even when a recent large-diameter crucible is used by pulling the single crystal with the maximum magnetic field gradient, which is the maximum magnetic field gradient, within the range of 55 G / cm or less. Can be.
[0014]
In this case, a crucible containing the melt may have a diameter of 24 inches (600 mm) or more (claim 2).
[0015]
The method for producing a single crystal of the present invention is particularly effective when applied to a crucible having a large diameter of 24 inches (600 mm) or more, which is used recently.
[0016]
In this case, the applied magnetic field is preferably a horizontal magnetic field (claim 3).
Thus, if the applied magnetic field is a horizontal magnetic field, the heat convection of the melt can be effectively suppressed.
[0017]
In this case, the single crystal can be silicon (claim 4).
As described above, the single crystal production method of the present invention can be suitably applied to the production of a silicon single crystal whose diameter is remarkably increased in recent years.
[0018]
Furthermore, a single crystal manufactured by the above-described method for manufacturing a single crystal is provided (claim 5).
[0019]
By using the manufacturing method of the present invention, a single crystal having a large diameter, which is required in recent years, can be manufactured with high productivity and can be made of high quality. Therefore, the manufactured single crystal is of high quality and inexpensive.
[0020]
Hereinafter, the present invention will be described.
In the production of single crystals, there is a problem that the convection of the melt increases as the diameter of the crucible increases in recent years. In order to suppress the increased convection, the MCZ method has conventionally taken measures to increase the magnetic field strength. However, as a result of increasing the magnetic field strength, it has been found that the productivity of the single crystal is rather reduced and the quality is also deteriorated.
[0021]
The possible causes are as follows.
FIG. 2 is a diagram schematically illustrating a magnetic field line distribution when a magnetic field is applied by the magnet coil 8. 2A is a cross-sectional view of the crucible viewed from the side, and FIG. 2B is a plan view of the crucible viewed from above. When a horizontal magnetic field having such a line of magnetic force distribution is applied, as shown in FIG. 3, the distribution of the magnetic field intensity is not all uniform in the melt, and a portion having a strong magnetic field intensity and a portion having a weak magnetic field intensity are generated.
[0022]
First, when the overall magnetic field strength is increased to compensate for a weak magnetic field part, a strong magnetic field part is further strengthened, and in that part, the convection suppressing force by the magnetic field becomes excessive. As a result, in a portion where a magnetic field is strong in the melt, convection does not occur, so that heat conduction becomes dominant. Therefore, (1) non-uniformity of temperature prevents non-dislocation of the grown single crystal, generation of non-uniform quality, and (2) inhibition of non-dislocation of the crystal due to a decrease in temperature gradient near the grown single crystal, and growth. Problems such as a decrease in productivity due to a decrease in speed, and a problem of non-uniform in-plane quality due to (3) suppression of impurity diffusion near the crystal occur.
[0023]
On the other hand, if the overall magnetic field strength is simply increased while the magnetic field distribution is the same, the magnetic field strength increases at the same ratio between the strong and weak magnetic fields. Therefore, the difference between the absolute values of the magnetic field strengths of the strong part and the weak part is widened, and the magnetic field gradient becomes large. As a result, it is considered that convection occurs in a certain portion in the melt, and the convection suppressing force is insufficient in that portion. The resulting excessive convection causes the crystal growth interface to vibrate, increasing the temperature fluctuations, and making it impossible to obtain high-quality crystals.
[0024]
As described above, the convection suppressing force is partially excessive in the melt, or the convection suppressing force is insufficient, and as a result, the melt becomes thermally unbalanced, resulting in unstable operation, Further, it is considered that the problem that the quality of the single crystal deteriorated occurred.
[0025]
BEST MODE FOR CARRYING OUT THE INVENTION
Hereinafter, embodiments of the present invention will be described, but the present invention is not limited thereto.
The present inventors have conducted intensive studies and found that, when producing a single crystal by the MCZ method, the magnetic field intensity distribution in the entire melt is not focused on only the magnetic field intensity at a certain point in the melt. By considering the maximum and minimum magnetic field strengths in the melt, and further defining the maximum magnetic field gradient, which is the difference between the maximum and minimum magnetic field strengths, in the optimal range, the crucible has a large diameter. In the case of the present invention as well, the present inventors have conceived that a universal effect can be obtained, and have completed the present invention.
[0026]
That is, in the present invention, when producing a single crystal by the Czochralski method of applying a magnetic field, at least the minimum magnetic field strength in the melt accommodated in the crucible is set to a range of 2000 G or more, and the maximum magnetic field strength in the melt is set. Is set in the range of 6000 G or less, and the maximum magnetic field gradient, which is obtained by dividing the difference between the maximum and minimum magnetic field strengths by the distance, is set in the range of 55 G / cm or less.
[0027]
As described above, when the minimum magnetic field strength in the melt is 2000 G or more, the effect of suppressing convection can be sufficiently obtained. Therefore, since the convection does not become excessive, the vibration and temperature fluctuation of the growth interface can be kept appropriately small, and a high-quality single crystal can be obtained.
When the maximum magnetic field strength is 6000 G or less, more preferably 5500 G or less, the effect of suppressing convection does not become excessive. Therefore, high-quality single crystals can be manufactured with high productivity without the adverse effect of suppressing convection excessively and causing only heat conduction.
Furthermore, by setting the maximum magnetic field gradient to 55 G / cm or less, more preferably 45 G / cm or less, it is possible to prevent the occurrence of convection caused by the magnetic field gradient.
[0028]
By applying a magnetic field under the above conditions, a crucible having a diameter of 24 inches (600 mm) or more, and more preferably 32 inches (800 mm) or more, is used to melt a melt having a diameter of more than 300 kg and a diameter of 12 inches (300 mm). (2) Even when pulling a crystal having a large diameter as described above, a high-quality single crystal can be manufactured with high productivity.
In particular, it can be suitably applied to the production of a silicon single crystal whose diameter has been remarkably increased in recent years.
[0029]
If the applied magnetic field is a horizontal magnetic field, the heat convection of the melt can be effectively suppressed. When applying a magnetic field, it is preferable to use a magnetic field generator capable of making the magnetic field distribution in the melt more uniform. Examples of a method for making the magnetic field distribution more uniform include a method using a plurality of magnet coils as shown in FIG. 4A and a method using a saddle-shaped magnet coil as shown in FIG. Can be mentioned. Note that the effects are the same in any of the multiple magnet coil system and the saddle magnet coil system as long as the magnetic field intensity and distribution are the same.
[0030]
Thus, by using the manufacturing method of the present invention, a single crystal having a large diameter, which is required in recent years, can be manufactured with high productivity and can be made of high quality. Therefore, the manufactured single crystal is of high quality and inexpensive.
[0031]
【Example】
Hereinafter, the present invention will be specifically described with reference to Examples and Comparative Examples.
[Examples 1 to 3, Comparative Examples 1 and 2]
Using the pulling device shown in FIG. 1, a silicon single crystal was manufactured by the MCZ method. Specifically, using a crucible having a diameter of 32 inches (800 mm), 300 kg of the raw material polycrystalline silicon was charged and melted with a heater having an inner diameter of 920 mm to form a melt. Then, while applying a transverse magnetic field to the melt, a silicon single crystal rod having a diameter of 12 inches (300 mm) was pulled up. In this case, the magnet coil for applying the transverse magnetic field was arranged as shown in FIG. 2, and the magnetic field was applied with the center of the magnetic field as the center of the melt. The portion of the melt where the magnetic field strength is greatest is the closest part of the magnet coil center, while the part of the melt where the magnetic field strength is smallest is the circumference of the melt surface from the closest part of the magnet coil center. 90 ° apart in the direction.
[0032]
In the single crystal manufacturing method as described above, the magnetic field strength conditions are further set as the following conditions (Examples 1 to 3, Comparative Examples 1 and 2), and under each condition, the resistance which is the in-plane main quality characteristic of the manufactured crystal. The in-plane distribution of the crystal ratio and the number of dislocation-free crystals (DF conversion ratio) were investigated.
[0033]
(Example 1)
The center magnetic field strength was 4000G. In this case, the maximum magnetic field strength in the melt was 6000 G, while the minimum magnetic field strength in the melt was 3000 G. The maximum magnetic field gradient obtained by dividing the difference between the maximum and minimum magnetic field strengths (3000 G) by the distance was 50 G / cm.
Under these conditions, the in-plane distribution of resistivity was about 5%, and the DF conversion rate was 80%. It can be determined that both the in-plane distribution of the resistivity and the DF conversion rate are good, which is within a range that is sufficiently acceptable for manufacturing a silicon single crystal.
[0034]
(Example 2)
The center magnetic field strength was 3500G. In this case, the maximum magnetic field strength in the melt was 5200G, while the minimum magnetic field strength in the melt was 2600G. The maximum magnetic field gradient obtained by dividing the difference between the maximum and minimum magnetic field strengths (2600 G) by the distance was 44 G / cm.
Under these conditions, the in-plane distribution of resistivity was about 3%, and the DF conversion rate was 82%. It can be determined that both the in-plane distribution of the resistivity and the DF conversion rate are sufficiently good, which is a desirable range for producing a silicon single crystal.
[0035]
(Example 3)
The center magnetic field strength was 3000 G. In this case, the maximum magnetic field strength in the melt was 4500G, while the minimum magnetic field strength in the melt was 2250G. The maximum magnetic field gradient obtained by dividing the difference between the maximum and minimum magnetic field strengths (2250 G) by the distance was 38 G / cm.
Under these conditions, the in-plane distribution of resistivity was about 3%, and the DF conversion rate was 85%. It can be determined that both the in-plane distribution of the resistivity and the DF conversion rate are sufficiently good, which is a desirable range for producing a silicon single crystal.
[0036]
(Comparative Example 1)
The center magnetic field strength was 5000 G. In this case, the maximum magnetic field strength in the melt was 7000 G, while the minimum magnetic field strength in the melt was 3750 G. The maximum magnetic field gradient obtained by dividing the difference between the maximum and minimum magnetic field strengths (3250 G) by the distance was 62 G / cm.
Under these conditions, the in-plane distribution of resistivity was about 8%, and the DF conversion rate was 50%. It can be determined that both the in-plane distribution of resistivity and the DF conversion rate are poor, which is an undesirable range for manufacturing a silicon single crystal.
[0037]
(Comparative Example 2)
The center magnetic field strength was set to 2000G. In this case, the maximum magnetic field strength in the melt was 3000 G, while the minimum magnetic field strength in the melt was 1500 G. The maximum magnetic field gradient obtained by dividing the difference between the maximum and minimum magnetic field strengths (1500 G) by the distance was 25 G / cm.
Under these conditions, the in-plane distribution of resistivity was about 3%, and the DF conversion rate was 47%. It can be determined that the in-plane distribution of resistivity is sufficiently good, but the DF conversion rate is poor, which is an undesirable range for manufacturing a silicon single crystal.
[0038]
These results are summarized in Table 1 below.
[Table 1]
Figure 2004315289
[0039]
In the production of a single crystal having a diameter of 12 inches (300 mm), the diameter of a crucible has become larger and the amount of raw material charged has increased as compared with the production of a single crystal having a diameter of 8 inches (200 mm). Therefore, if a magnetic field is applied for the purpose of improving the convection of the melt, it is easily imagined that it is desirable to increase the central magnetic field strength. Therefore, when producing a single crystal having a diameter of 12 inches (300 mm), it has conventionally been considered that it is necessary to produce a single crystal under the condition that the central magnetic field strength is 5000 G as in Comparative Example 1, for example. . However, under these conditions, the maximum magnetic field strength exceeds 6000 G, and the maximum magnetic field gradient exceeds 55 G / cm. As a result, the in-plane distribution of resistance is as bad as about 8%, and the DF conversion rate is as bad as 50%.
[0040]
Therefore, for example, when a single crystal is manufactured under the condition that the central magnetic field strength is 4000 G, which is weaker than the conventional one, as in Example 1, the minimum magnetic field strength is in the range of 6000 G or less, the maximum magnetic field strength is in the range of 2000 G or more, and The magnetic field gradient is in the range of 55 G / cm or less. As a result, the in-plane distribution of the resistance was improved to about 5%, and the DF conversion rate was also improved to 80%. Further, for example, when a single crystal is manufactured under the condition of a weaker central magnetic field of 3500G and 3000G as in Examples 2 and 3, the maximum magnetic field intensity is in the range of 5500G or less, and the maximum magnetic field gradient is 45G / cm. The range is as follows. As a result, the in-plane distribution of the resistance was further improved to about 3%, and the DF conversion ratio was further improved to 82 and 85%.
[0041]
However, for example, when a single crystal is manufactured under the condition of 2000 G in which the central magnetic field strength is further weakened as in Comparative Example 2, the maximum magnetic field strength and the maximum magnetic field gradient are in the desired ranges, but the minimum magnetic field strength is less than 2000 G. It becomes. As a result, the in-plane distribution of the resistance was as good as about 3%, but the crystal DF conversion rate was as poor as 47%.
[0042]
[Examples 4 to 6, Comparative Examples 3 and 4]
Using the pulling device shown in FIG. 1, a silicon single crystal was manufactured by the MCZ method. Specifically, 300 kg of the raw material polycrystalline silicon was charged using a 32 inch (800 mm) diameter crucible, and was melted by a heater having an inner diameter of 920 mm. Then, while applying a transverse magnetic field to the melt, a silicon single crystal rod having a diameter of 12 inches (300 mm) was pulled up. In this case, the magnet coil to which the transverse magnetic field was applied was arranged as shown in FIG. 4A (multiple magnet coil system) so that the magnetic field was applied so that the magnetic field distribution became more uniform in the melt.
[0043]
In the single crystal manufacturing method as described above, the magnetic field intensity conditions are further set as the following conditions (Examples 4 to 6, Comparative Examples 3 and 4), and under each condition, the resistance which is the in-plane main quality characteristic of the manufactured crystal is The in-plane distribution of the crystal ratio and the number of dislocation-free crystals (DF conversion ratio) were investigated.
[0044]
(Example 4)
The center magnetic field strength was 4000G. In this case, the maximum magnetic field strength in the melt was 5800 G, while the minimum magnetic field strength in the melt was 3700 G. The maximum magnetic field gradient obtained by dividing the difference between the maximum and minimum magnetic field strengths (2100 G) by the distance was 46 G / cm.
Under these conditions, the in-plane distribution of resistivity was about 5%, and the DF conversion rate was 67%. It can be determined that both the in-plane distribution of the resistivity and the DF conversion rate are good, which is within a range that is sufficiently acceptable for manufacturing a silicon single crystal.
[0045]
(Example 5)
The center magnetic field strength was 3500G. In this case, the maximum magnetic field strength in the melt was 5100G, while the minimum magnetic field strength in the melt was 3200G. The maximum magnetic field gradient obtained by dividing the difference between the maximum and minimum magnetic field strengths (1900 G) by the distance was 40 G / cm.
Under these conditions, the in-plane distribution of resistivity was about 3%, and the DF conversion rate was 85%. It can be determined that both the in-plane distribution of resistivity and the DF conversion rate are sufficiently good, which is a desirable range for manufacturing a silicon single crystal.
[0046]
(Example 6)
The center magnetic field strength was 3000 G. In this case, the maximum magnetic field strength in the melt was 4400G, while the minimum magnetic field strength in the melt was 2700G. The maximum magnetic field gradient obtained by dividing the difference between the maximum and minimum magnetic field strengths (1700 G) by the distance was 34 G / cm.
Under these conditions, the in-plane distribution of resistivity was about 3%, and the DF conversion rate was 88%. It can be determined that both the in-plane distribution of resistivity and the DF conversion rate are sufficiently good, which is a desirable range for manufacturing a silicon single crystal.
[0047]
(Comparative Example 3)
The center magnetic field strength was 4500G. In this case, the maximum magnetic field strength in the melt was 6600G, while the minimum magnetic field strength in the melt was 4200G. The maximum magnetic field gradient obtained by dividing the difference between the maximum and minimum magnetic field strengths (2400 G) by the distance was 52 G / cm.
Under these conditions, the in-plane distribution of resistivity was about 8%, and the DF conversion rate was 50%. It can be determined that both the in-plane distribution of resistivity and the DF conversion rate are poor, which is an undesirable range for manufacturing a silicon single crystal.
[0048]
(Comparative Example 4)
The center magnetic field strength was set to 2000G. In this case, the maximum magnetic field strength in the melt was 3000 G, while the minimum magnetic field strength in the melt was 1850 G. The maximum magnetic field gradient obtained by dividing the difference between the maximum and minimum magnetic field strengths (1150 G) by the distance was 23 G / cm.
Under these conditions, the in-plane distribution of resistivity was about 3%, and the DF conversion rate was 56%. It can be determined that the in-plane distribution of resistivity is sufficiently good, but the DF conversion rate is poor, which is an undesirable range for producing a silicon single crystal.
[0049]
These results are summarized in Table 2 below.
[Table 2]
Figure 2004315289
[0050]
In the fifth and sixth embodiments, the maximum and minimum magnetic field gradients are within desired ranges, and the maximum magnetic field gradient is improved as compared with the second and third embodiments having the same central magnetic field strength. As a result, the DF conversion rate was further improved.
[0051]
[Comparative Examples 5 and 6]
Using the pulling device shown in FIG. 1, a silicon single crystal was manufactured by the MCZ method. Specifically, 300 kg of the raw material polycrystalline silicon was charged using a 32 inch (800 mm) diameter crucible, and was melted by a heater having an inner diameter of 920 mm. Then, while applying a transverse magnetic field to the melt, a silicon single crystal rod having a diameter of 12 inches (300 mm) was pulled up. In this case, as in Example 1, the magnet coil for applying the transverse magnetic field was arranged as shown in FIG. 2, and the magnetic field was applied with the center of the magnetic field as the center of the melt. However, the magnet coil whose coil diameter was smaller by 20% than that of Example 1 was arranged. The portion of the melt where the magnetic field strength is greatest is the closest part of the magnet coil center, while the part of the melt where the magnetic field strength is smallest is the circumference of the melt surface from the closest part of the magnet coil center. 90 ° apart in the direction.
[0052]
In the single crystal manufacturing method as described above, the magnetic field intensity conditions are further set as the following conditions (Comparative Examples 5 and 6), and under each condition, the in-plane distribution of resistivity, which is the main in-plane quality characteristic of the manufactured crystal, In addition, the dislocation-free number ratio (DF conversion ratio) of the crystal was investigated.
[0053]
(Comparative Example 5)
The center magnetic field strength was 3500G. In this case, the maximum magnetic field strength in the melt was 5700 G, while the minimum magnetic field strength in the melt was 2400 G. The maximum magnetic field gradient obtained by dividing the difference between the maximum and minimum magnetic field strengths (3300 G) by the distance was 63 G / cm.
Under these conditions, the in-plane distribution of the resistivity was about 10%, and the DF conversion rate was 40%. It can be determined that both the in-plane distribution of resistivity and the DF conversion rate are poor, which is an undesirable range for manufacturing a silicon single crystal.
[0054]
(Comparative Example 6)
The center magnetic field strength was 3000 G. In this case, the maximum magnetic field strength in the melt was 5100G, while the minimum magnetic field strength in the melt was 2000G. The maximum magnetic field gradient obtained by dividing the difference between the maximum and minimum magnetic field strengths (3100 G) by the distance was 58 G / cm.
Under these conditions, the in-plane distribution of the resistivity was about 8%, and the DF conversion rate was 47%. It can be determined that both the in-plane distribution of resistivity and the DF conversion rate are poor, which is an undesirable range for manufacturing a silicon single crystal.
[0055]
The results are shown in Table 3 below.
[Table 3]
Figure 2004315289
[0056]
In Comparative Examples 5 and 6, although the maximum magnetic field strength is in a range of 6000 or less and the minimum magnetic field strength is in a range of 2000 or more, the maximum magnetic field gradient exceeds 55 G / cm. As a result, both the in-plane distribution of the resistivity and the DF conversion rate are deteriorated.
[0057]
Note that the present invention is not limited to the above embodiment. The above-described embodiment is an exemplification, and has substantially the same configuration as the technical idea described in the claims of the present invention, and any device having the same operation and effect can be realized by the present invention. It is included in the technical scope of the invention.
[0058]
【The invention's effect】
As described above, according to the present invention, when a single crystal is manufactured by the MCZ method, the minimum and maximum magnetic field strengths in the melt and the maximum magnetic field gradient are set within predetermined ranges, and the single crystal is pulled up. The dislocation ratio can be improved and the production cost can be reduced, and the single crystal to be produced can be of high quality.
[Brief description of the drawings]
FIG. 1 is a schematic view showing a single crystal manufacturing apparatus.
FIG. 2 is a diagram schematically showing a magnetic field line distribution when a horizontal magnetic field is applied. (A) A sectional view of a crucible viewed from the side, and (b) a plan view of the crucible viewed from above.
FIG. 3 is an explanatory diagram showing a state of distribution of a magnetic field intensity in a melt when a horizontal magnetic field is applied.
FIG. 4 is an example of a magnetic field generator capable of making the magnetic field distribution in the melt more uniform.
(A) Multiple magnet coil system,
(B) Saddle type magnet coil system.
[Explanation of symbols]
1 ... seed holder, 2 ... seed crystal, 3 ... drawn part, 4 ... single crystal,
5 crucible, 6 heat insulation member, 7 graphite heater,
8 ... magnet coil, 9 ... shaft,
10: Single crystal production equipment, 11: Main chamber,
12 ... pulling chamber, 13 ... wire, 14 ... melt.

Claims (5)

磁場を印加するチョクラルスキー法により単結晶を製造する方法において、少なくとも、ルツボに収容された融液内の最小磁場強度を2000G以上の範囲とし、融液内の最大磁場強度を6000G以下の範囲とし、かつ最大と最小の磁場強度の差をその距離で除したものである最大磁場勾配を55G/cm以下の範囲として、単結晶を引き上げることを特徴とする単結晶の製造方法。In the method for producing a single crystal by the Czochralski method of applying a magnetic field, at least the minimum magnetic field strength in the melt accommodated in the crucible is set to a range of 2000 G or more, and the maximum magnetic field strength in the melt is set to a range of 6000 G or less. A single crystal is pulled up with a maximum magnetic field gradient, which is obtained by dividing the difference between the maximum and minimum magnetic field strengths by the distance, within a range of 55 G / cm or less. 前記融液を収容するルツボの直径が24インチ(600mm)以上のものを用いることを特徴とする請求項1に記載の単結晶の製造方法。The method for producing a single crystal according to claim 1, wherein a crucible containing the melt has a diameter of 24 inches (600 mm) or more. 前記印加する磁場を水平磁場とすることを特徴とする請求項1又は請求項2に記載の単結晶の製造方法。The method for producing a single crystal according to claim 1 or 2, wherein the applied magnetic field is a horizontal magnetic field. 前記単結晶をシリコンとすることを特徴とする請求項1乃至請求項3のいずれか1項に記載の単結晶の製造方法。The method for producing a single crystal according to any one of claims 1 to 3, wherein the single crystal is silicon. 請求項1乃至請求項4のいずれか1項に記載の方法で製造されたことを特徴とする単結晶。A single crystal produced by the method according to any one of claims 1 to 4.
JP2003111265A 2003-04-16 2003-04-16 Single crystal manufacturing method Expired - Fee Related JP4193558B2 (en)

Priority Applications (3)

Application Number Priority Date Filing Date Title
JP2003111265A JP4193558B2 (en) 2003-04-16 2003-04-16 Single crystal manufacturing method
PCT/JP2004/004552 WO2004092456A1 (en) 2003-04-16 2004-03-30 Single crystal producing method
TW093110110A TW200506114A (en) 2003-04-16 2004-04-12 Single crystal producing method

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2003111265A JP4193558B2 (en) 2003-04-16 2003-04-16 Single crystal manufacturing method

Publications (2)

Publication Number Publication Date
JP2004315289A true JP2004315289A (en) 2004-11-11
JP4193558B2 JP4193558B2 (en) 2008-12-10

Family

ID=33295992

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2003111265A Expired - Fee Related JP4193558B2 (en) 2003-04-16 2003-04-16 Single crystal manufacturing method

Country Status (3)

Country Link
JP (1) JP4193558B2 (en)
TW (1) TW200506114A (en)
WO (1) WO2004092456A1 (en)

Cited By (11)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2005320179A (en) * 2004-05-06 2005-11-17 Sumco Corp Method of manufacturing single crystal
WO2007007456A1 (en) * 2005-07-13 2007-01-18 Shin-Etsu Handotai Co., Ltd. Process for producing single crystal
WO2007007479A1 (en) * 2005-07-13 2007-01-18 Shin-Etsu Handotai Co., Ltd. Process for producing single crystal
JP2007158007A (en) * 2005-12-05 2007-06-21 Mitsubishi Materials Corp Monocrystal silicon electrode plate for plasma etching with little in-plane variation of specific resistance value
JP2007210865A (en) * 2006-02-13 2007-08-23 Sumco Corp Silicon single crystal pulling device
JP2008159773A (en) * 2006-12-22 2008-07-10 Mitsubishi Materials Corp Composite silicon electrode having small resistivity in in-plane variations and its manufacturing method
WO2008146371A1 (en) * 2007-05-30 2008-12-04 Sumco Corporation Silicon single-crystal pullup apparatus
JP2008308347A (en) * 2007-06-12 2008-12-25 Covalent Materials Corp Method for pulling single crystal
JP2009173536A (en) * 2008-01-21 2009-08-06 Siltron Inc Apparatus for manufacturing high-quality semiconductor single crystal ingot and method using the same
JP2010100474A (en) * 2008-10-23 2010-05-06 Covalent Materials Corp Method for optimizing horizontal magnetic field in pulling-up silicon single crystal, and method for manufacturing silicon single crystal
WO2017047008A1 (en) * 2015-09-18 2017-03-23 信越半導体株式会社 Single crystal pulling device and single crystal pulling method

Family Cites Families (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS60221392A (en) * 1984-04-16 1985-11-06 Toshiba Corp Device for forming single crystal
JP2940437B2 (en) * 1995-06-01 1999-08-25 信越半導体株式会社 Method and apparatus for producing single crystal
JP2000247787A (en) * 1999-02-25 2000-09-12 Toshiba Corp Method and apparatus for producing single crystal

Cited By (23)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP4513407B2 (en) * 2004-05-06 2010-07-28 株式会社Sumco Method for producing single crystal
JP2005320179A (en) * 2004-05-06 2005-11-17 Sumco Corp Method of manufacturing single crystal
EP1930484A4 (en) * 2005-07-13 2013-05-29 Shinetsu Handotai Kk Process for producing single crystal
WO2007007456A1 (en) * 2005-07-13 2007-01-18 Shin-Etsu Handotai Co., Ltd. Process for producing single crystal
EP1930484A1 (en) * 2005-07-13 2008-06-11 Shin-Etsu Handotai Co., Ltd Process for producing single crystal
KR101318183B1 (en) 2005-07-13 2013-10-16 신에쯔 한도타이 가부시키가이샤 Process for Producing Single Crystal
WO2007007479A1 (en) * 2005-07-13 2007-01-18 Shin-Etsu Handotai Co., Ltd. Process for producing single crystal
JP4710905B2 (en) * 2005-07-13 2011-06-29 信越半導体株式会社 Single crystal manufacturing method
US8147611B2 (en) 2005-07-13 2012-04-03 Shin-Etsu Handotai Co., Ltd. Method of manufacturing single crystal
JP2007158007A (en) * 2005-12-05 2007-06-21 Mitsubishi Materials Corp Monocrystal silicon electrode plate for plasma etching with little in-plane variation of specific resistance value
JP4535283B2 (en) * 2005-12-05 2010-09-01 三菱マテリアル株式会社 Single crystal silicon electrode plate for plasma etching with less in-plane variation of specific resistance
JP2007210865A (en) * 2006-02-13 2007-08-23 Sumco Corp Silicon single crystal pulling device
JP2008159773A (en) * 2006-12-22 2008-07-10 Mitsubishi Materials Corp Composite silicon electrode having small resistivity in in-plane variations and its manufacturing method
WO2008146371A1 (en) * 2007-05-30 2008-12-04 Sumco Corporation Silicon single-crystal pullup apparatus
US8795432B2 (en) 2007-05-30 2014-08-05 Sumco Corporation Apparatus for pulling silicon single crystal
JP2008308347A (en) * 2007-06-12 2008-12-25 Covalent Materials Corp Method for pulling single crystal
JP2009173536A (en) * 2008-01-21 2009-08-06 Siltron Inc Apparatus for manufacturing high-quality semiconductor single crystal ingot and method using the same
JP2010100474A (en) * 2008-10-23 2010-05-06 Covalent Materials Corp Method for optimizing horizontal magnetic field in pulling-up silicon single crystal, and method for manufacturing silicon single crystal
WO2017047008A1 (en) * 2015-09-18 2017-03-23 信越半導体株式会社 Single crystal pulling device and single crystal pulling method
JP2017057127A (en) * 2015-09-18 2017-03-23 信越半導体株式会社 Single crystal pulling-up device and single crystal pulling-up method
US10253425B2 (en) 2015-09-18 2019-04-09 Shin-Etsu Handotai Co., Ltd. Single-crystal pulling apparatus and single-crystal pulling method
KR20210107902A (en) * 2015-09-18 2021-09-01 신에쯔 한도타이 가부시키가이샤 Single crystal pulling device and single crystal pulling method
KR102478863B1 (en) 2015-09-18 2022-12-19 신에쯔 한도타이 가부시키가이샤 Single crystal pulling device and single crystal pulling method

Also Published As

Publication number Publication date
JP4193558B2 (en) 2008-12-10
WO2004092456A1 (en) 2004-10-28
TW200506114A (en) 2005-02-16

Similar Documents

Publication Publication Date Title
CN1904147B (en) Method and apparatus for growing high quality silicon single crystal, silicon single crystal and silicon wafer
EP2142686B1 (en) Method for producing a single crystal
JP3944879B2 (en) Single crystal ingot production equipment
WO2006073614A1 (en) Controlling melt-solid interface shape of a growing silicon crystal using a variable magnetic field
JP4193558B2 (en) Single crystal manufacturing method
US8268077B2 (en) Upper heater, single crystal production apparatus, and method for producing single crystal
JP2009114054A (en) Method for producing semiconductor single crystal having improved oxygen concentration characteristics
JP2006143582A (en) Method and apparatus for growing silicon single crystal and silicon wafer manufactured from the silicon single crystal
JP3086850B2 (en) Method and apparatus for growing single crystal
JP3760769B2 (en) Method for producing silicon single crystal
JP4161655B2 (en) Crystal manufacturing heater, crystal manufacturing apparatus, and crystal manufacturing method
JP2004189559A (en) Single crystal growth method
JP5034247B2 (en) Method for producing silicon single crystal
JP4187998B2 (en) Single crystal manufacturing method and manufacturing apparatus
JPH05208887A (en) Method for growing silicon single crystal rod by fz process and apparatus therefor
JP2000044387A (en) Production of silicon single crystal
JP2000239096A (en) Production of silicon single crystal
TWI282379B (en) Silicon single-crystal wafer manufacturing method, silicon single-crystal wafer, and epitaxial wafer
JP2003246695A (en) Method for producing highly doped silicon single crystal
TWI796517B (en) Single crystal silicon ingot and method for producing the same
JP2008260663A (en) Growing method of oxide single crystal
JP4007193B2 (en) Method for producing silicon single crystal
JP2004217504A (en) Graphite heater, apparatus and method for producing single crystal
JP2002249397A (en) Method for manufacturing silicon single crystal
JPH08333189A (en) Apparatus for pulling up crystal

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20050117

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20080318

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20080515

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20080610

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20080728

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20080902

A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20080915

R150 Certificate of patent or registration of utility model

Ref document number: 4193558

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

Free format text: JAPANESE INTERMEDIATE CODE: R150

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20111003

Year of fee payment: 3

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20121003

Year of fee payment: 4

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20131003

Year of fee payment: 5

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

S531 Written request for registration of change of domicile

Free format text: JAPANESE INTERMEDIATE CODE: R313531

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

LAPS Cancellation because of no payment of annual fees