JP2007158007A - Monocrystal silicon electrode plate for plasma etching with little in-plane variation of specific resistance value - Google Patents

Monocrystal silicon electrode plate for plasma etching with little in-plane variation of specific resistance value Download PDF

Info

Publication number
JP2007158007A
JP2007158007A JP2005350927A JP2005350927A JP2007158007A JP 2007158007 A JP2007158007 A JP 2007158007A JP 2005350927 A JP2005350927 A JP 2005350927A JP 2005350927 A JP2005350927 A JP 2005350927A JP 2007158007 A JP2007158007 A JP 2007158007A
Authority
JP
Japan
Prior art keywords
crystal silicon
electrode plate
single crystal
resistance value
specific resistance
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2005350927A
Other languages
Japanese (ja)
Other versions
JP4535283B2 (en
Inventor
Takashi Yonehisa
孝志 米久
Takafumi Iwamoto
尚文 岩元
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Mitsubishi Materials Corp
Original Assignee
Mitsubishi Materials Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Mitsubishi Materials Corp filed Critical Mitsubishi Materials Corp
Priority to JP2005350927A priority Critical patent/JP4535283B2/en
Publication of JP2007158007A publication Critical patent/JP2007158007A/en
Application granted granted Critical
Publication of JP4535283B2 publication Critical patent/JP4535283B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Landscapes

  • Crystals, And After-Treatments Of Crystals (AREA)
  • Drying Of Semiconductors (AREA)

Abstract

<P>PROBLEM TO BE SOLVED: To provide a monocrystal silicon electrode plate for plasma etching with little in-plane variation of a specific resistance value, wherein a wafer surface is uniformly etched without variations thereby. <P>SOLUTION: In the monocrystal silicon electrode plate for plasma etching, the in-plane variations of the specific resistance value is within 5%. <P>COPYRIGHT: (C)2007,JPO&INPIT

Description

この発明は、比抵抗値の面内バラツキが少ないプラズマエッチング用単結晶シリコン電極板に関するものであり、この比抵抗値の面内バラツキが少ない単結晶シリコン電極板を使用すると、ウエハ表面をバラツキなく均一にエッチングすることができる。   The present invention relates to a single-crystal silicon electrode plate for plasma etching that has a small in-plane variation in specific resistance value, and when a single-crystal silicon electrode plate with a small in-plane variation in specific resistance value is used, the wafer surface does not vary. It can etch uniformly.

一般に、半導体集積回路を製造する工程において使用するウエハをエッチングするためのプラズマエッチング装置は、図1に示されるように、真空容器1内にシリコン電極板2および架台3が間隔をおいて設けられており、架台3の上にウエハ4を載置し、エッチングガス7をシリコン電極板2に設けられた貫通細孔5を通してウエハ4に向って流しながら高周波電源6により電極板2と架台3の間に高周波電圧を印加し、高周波電圧の印加によりシリコン電極板2と架台3の間の空間にプラズマ10を発生させ、このプラズマ10による物理反応と、シリコン−エッチングガス7による化学反応により、ウエハ4の表面をエッチングする装置であることは知られている。   In general, in a plasma etching apparatus for etching a wafer used in a process of manufacturing a semiconductor integrated circuit, as shown in FIG. 1, a silicon electrode plate 2 and a pedestal 3 are provided in a vacuum container 1 at intervals. The wafer 4 is placed on the gantry 3, and the etching gas 7 flows through the through-hole 5 provided in the silicon electrode plate 2 toward the wafer 4 while the electrode plate 2 and the gantry 3 are A high frequency voltage is applied between them, plasma 10 is generated in the space between the silicon electrode plate 2 and the gantry 3 by the application of the high frequency voltage, and the wafer undergoes a physical reaction by the plasma 10 and a chemical reaction by the silicon-etching gas 7. It is known that this is an apparatus for etching the surface of 4.

シリコン電極板2としては、単結晶シリコン電極板、多結晶シリコン電極板、柱状晶シリコン電極板などが知られているが、現在ではCZ法により引き上げられた単結晶シリコンインゴットを輪切り状に切断したのち表面研磨して作製した単結晶シリコン電極板が主に使用されている。(特許文献1参照)。
特開2003−51485号公報
As the silicon electrode plate 2, a single crystal silicon electrode plate, a polycrystalline silicon electrode plate, a columnar crystal silicon electrode plate, and the like are known, but at present, a single crystal silicon ingot pulled up by the CZ method is cut into a ring shape. After that, single crystal silicon electrode plates produced by surface polishing are mainly used. (See Patent Document 1).
JP 2003-51485 A

従来の単結晶シリコン電極板を使用してウエハのプラズマエッチングを行うと
被エッチング物であるウエハの中心部と周辺部とでエッチングレートにバラツキが生じるなどウエハ表面の位置によってエッチングレートにバラツキが生じ、ウエハの均一なプラズマエッチングができないことがあった。特に、近年、高純度で比抵抗の高い比抵抗値が:10〜100×10−2Ω・mを有する単結晶シリコン電極板を使用されるようになり、この比抵抗の高い単結晶シリコン電極板ではウエハの表面位置によるエッチングレートのバラツキが大きくなるなどの問題点があった。
When plasma etching of a wafer is performed using a conventional single crystal silicon electrode plate, the etching rate varies depending on the position of the wafer surface, for example, the etching rate varies between the central portion and the peripheral portion of the wafer to be etched. In some cases, uniform plasma etching of the wafer could not be performed. In particular, in recent years, a single crystal silicon electrode plate having a high purity and high specific resistance value of 10 to 100 × 10 −2 Ω · m has come to be used. There is a problem that the plate has a large variation in etching rate depending on the surface position of the wafer.

そこで、本発明者等は、プラズマエッチングに際してウエハ表面のエッチングレートのバラツキが少ない単結晶シリコン電極板を得るべく研究を行った。その結果、
(イ)プラズマエッチングに際して使用する単結晶シリコン電極板の比抵抗値の面内バラツキが被エッチング物であるウエハ表面のエッチングレートのバラツキに大きく影響を及ぼし、単結晶シリコン電極板の比抵抗値の面内バラツキが少ないほどウエハ表面のエッチングレートのバラツキが少なくなる、
(ロ)従来の単結晶シリコン電極板における比抵抗値の面内バラツキは10%程度であったが、比抵抗値の面内バラツキを5%以下にすると、ウエハ表面のエッチングレートのバラツキが格段に少なくなる、
(ハ)ウエハ表面のエッチングレートのバラツキに及ぼす影響は比抵抗値が高い単結晶シリコン電極板で大きくなり、特に比抵抗値が10〜100×10−2Ω・mの比抵抗値が高い単結晶シリコン電極板に対して大きく影響を及ぼす、などの研究結果が得られたのである。
Therefore, the present inventors conducted research to obtain a single crystal silicon electrode plate with less variation in the etching rate of the wafer surface during plasma etching. as a result,
(A) In-plane variation of the specific resistance value of the single crystal silicon electrode plate used for plasma etching greatly affects the variation of the etching rate of the wafer surface to be etched, and the specific resistance value of the single crystal silicon electrode plate The smaller the in-plane variation, the less the variation in the etching rate on the wafer surface.
(B) The in-plane variation of the specific resistance value in the conventional single crystal silicon electrode plate was about 10%. However, when the in-plane variation of the specific resistance value is 5% or less, the variation in the etching rate on the wafer surface is marked. To be less,
(C) The influence on the variation in the etching rate on the wafer surface is greater with a single crystal silicon electrode plate having a high specific resistance value. In particular, the single resistance value with a high specific resistance value of 10 to 100 × 10 −2 Ω · m is high. Research results, such as having a great influence on the crystalline silicon electrode plate, were obtained.

この発明は、かかる研究結果に基づいてなされたものであって、
(1)比抵抗値の面内バラツキが5%以内であるプラズマエッチング用単結晶シリコン電極板、
(2)前記単結晶シリコン電極板は比抵抗値が10〜100×10−2Ω・mの高抵抗を有する前記(1)記載のプラズマエッチング用単結晶シリコン電極板、に特長を有するものである。
The present invention has been made based on the results of such research,
(1) A single-crystal silicon electrode plate for plasma etching whose in-plane variation of specific resistance value is within 5%,
(2) The single crystal silicon electrode plate is characterized by the single crystal silicon electrode plate for plasma etching according to the above (1), which has a high resistivity of 10 to 100 × 10 −2 Ω · m. is there.

この発明の比抵抗値の面内バラツキが5%以内であるプラズマエッチング用単結晶シリコン電極板を製造するには、先ず、所望の径よりも大きな単結晶シリコンインゴットを通常のCZ法により作製し、この所望の径よりも大きな単結晶シリコンインゴットを輪切りに切断して単結晶シリコン基板を作製し、得られた単結晶シリコン基板の外周を通常よりも厚く研削することにより作製することができる。   In order to manufacture a single-crystal silicon electrode plate for plasma etching having an in-plane variation of the specific resistance value within 5% according to the present invention, first, a single-crystal silicon ingot larger than a desired diameter is manufactured by a normal CZ method. The single crystal silicon ingot larger than the desired diameter can be cut into round pieces to produce a single crystal silicon substrate, and the resulting single crystal silicon substrate can be produced by grinding the outer periphery thicker than usual.

この輪切りにした単結晶シリコン基板の外周を通常よりも厚く研削する理由は、一般に、CZ法により引き上げられた単結晶シリコンインゴットは外周部ほど純度が高く、中心部に近いほど純度が低くなっているところから、中心部と外周部との比抵抗値の差が大きくなっているが、単結晶シリコン基板の外周を通常よりも厚く研削することにより中心部と外周部との純度を均等にし、中心部と外周部との比抵抗値の差を小さくして面内バラツキを小さくするという理由によるものである。   The reason for grinding the outer periphery of the single crystal silicon substrate cut into a thicker thickness than usual is that the single crystal silicon ingot pulled up by the CZ method is generally higher in purity at the outer periphery and lower in purity as it is closer to the center. From there, the difference in specific resistance value between the central portion and the outer peripheral portion is large, but by grinding the outer periphery of the single crystal silicon substrate thicker than usual, the purity of the central portion and the outer peripheral portion is made uniform, This is because the in-plane variation is reduced by reducing the difference in specific resistance value between the central portion and the outer peripheral portion.

従来の単結晶シリコン電極板は、単結晶シリコンインゴットを輪切りに切断して得られた単結晶シリコン基板の外周を薄く研削して作製しているために比抵抗値の面内バラツキは10%程度になっていたが、前述のように径の大きな単結晶シリコンインゴットを輪切りに切断した単結晶シリコン基板の外周を通常より厚く研削することにより比抵抗値の面内バラツキが5%以内であるこの発明のプラズマエッチング用単結晶シリコン電極板を製造することができる。   Since the conventional single crystal silicon electrode plate is manufactured by thinly grinding the outer periphery of a single crystal silicon substrate obtained by cutting a single crystal silicon ingot into round pieces, the in-plane variation of the specific resistance value is about 10%. However, as described above, the in-plane variation of the specific resistance value is within 5% by grinding the outer periphery of the single crystal silicon substrate obtained by cutting the single crystal silicon ingot having a large diameter into round pieces as described above. The single crystal silicon electrode plate for plasma etching of the invention can be manufactured.

なお、比抵抗値の面内バラツキが5%以内であるプラズマエッチング用単結晶シリコン電極板を製造する方法として、CZ法による引き上げ速度や回転数を制御して中心部と外周部の不純物の含有量が均等に含まれる単結晶シリコンインゴットを作製し、この単結晶シリコンインゴットを輪切りにして作製することもできる。   In addition, as a method for producing a single-crystal silicon electrode plate for plasma etching whose in-plane variation of specific resistance value is within 5%, inclusion of impurities in the central portion and the outer peripheral portion by controlling the pulling speed and the rotational speed by the CZ method It is also possible to produce a single crystal silicon ingot containing the same amount, and to produce the single crystal silicon ingot by slicing it.

この発明のプラズマエッチング用単結晶シリコン電極板は、ウエハのプラズマエッチングレートを均一化し、不良品が発生することなく半導体集積回路を効率良く生産することができ、半導体装置産業の発展に大いに貢献しうるものである。   The single-crystal silicon electrode plate for plasma etching according to the present invention makes the plasma etching rate of the wafer uniform and enables efficient production of semiconductor integrated circuits without causing defective products, greatly contributing to the development of the semiconductor device industry. It can be.

この発明のプラズマエッチング用単結晶シリコン電極板を実施例に基づいて具体的に説明する。
実施例1
CZ法により引き上げることにより直径:450mmの単結晶シリコンインゴットを作製し、この単結晶シリコンインゴットをダイヤモンドバンドソーにより厚さ:5mmに輪切り切断し、外周を厚さ:75mmに渡って研削することにより直径:300mmを有する単結晶シリコン基板を作製した。この単結晶シリコン基板の中心における比抵抗値Xを測定してその結果を表1に示し、さらに単結晶シリコン基板の外周から半径方向に10mmの任意の地点における比抵抗値を複数個所測定し、その内の最大比抵抗値Yを表1に示し、前記XおよびYの値から(Y−X)/Y×100(%)の式にしたがって比抵抗値の面内バラツキを求めたところ、比抵抗値の面内バラツキは2%であった。
The single-crystal silicon electrode plate for plasma etching according to the present invention will be specifically described based on examples.
Example 1
A single crystal silicon ingot having a diameter of 450 mm is produced by pulling up by the CZ method, this single crystal silicon ingot is cut into a ring of 5 mm in thickness with a diamond band saw, and the outer periphery is ground to a thickness of 75 mm. A single crystal silicon substrate having a thickness of 300 mm was prepared. The specific resistance value X at the center of the single crystal silicon substrate was measured and the results are shown in Table 1. Further, the specific resistance values at arbitrary points 10 mm in the radial direction from the outer periphery of the single crystal silicon substrate were measured at a plurality of locations. The maximum specific resistance value Y among them is shown in Table 1, and when the in-plane variation of the specific resistance value is obtained from the X and Y values according to the formula of (Y−X) / Y × 100 (%), The in-plane variation of the resistance value was 2%.

得られた単結晶シリコン基板に内径0.5mmの貫通細孔をダイヤモンドドリルを用いて孔間ピッチ8mmで直径:200mmの範囲内に形成し、本発明プラズマエッチング用単結晶シリコン電極板(以下、本発明電極板という)1を作製した。   Through-holes having an inner diameter of 0.5 mm were formed in the obtained single crystal silicon substrate within a range of diameter: 200 mm with a pitch between holes of 8 mm using a diamond drill. 1) was prepared.

このようにして作製した本発明電極板を1をエッチング装置にセットし、予めCVDによりSiO2 層を形成したウエハをエッチング装置にセットし、
チャンバー内圧力:10-1Torr、
エッチングガス組成:90sccmCHF3 +4sccmO2 +150sccmHe、
高周波電力:2kW、
周波数:20kHz、
の条件で、ウエハ表面のSiO2 層のプラズマエッチングを行ない、エッチング開始から10分間経過した時点および400時間経過した時点でのウエハ表面のSiO2 層の中心部のエッチングの深xさおよび周辺部のエッチングの深さyをそれぞれ測定し、その測定値から(y−x)/y×100(%)の値を求め、その結果を表1に示してウエハ表面のエッチング均一性を評価した。
実施例2
CZ法により引き上げることにより直径:420mmの単結晶シリコンインゴットを作製し、この単結晶シリコンインゴットをダイヤモンドバンドソーにより厚さ:5mmに輪切り切断し、外周を厚さ:60mmに渡って研削することにより直径:300mmを有する単結晶シリコン基板を作製した。この単結晶シリコン基板の中心における比抵抗値Xを測定してその結果を表1に示し、さらに単結晶シリコン基板の外周から半径方向に10mmの任意の地点における比抵抗値を複数個所測定し、その内の最大比抵抗値Yを表1に示し、前記XおよびYの値から(Y−X)/Y×100(%)の式にしたがって比抵抗値の面内バラツキを求めたところ、比抵抗値の面内バラツキは3%であった。
The electrode plate 1 of the present invention thus produced was set in an etching apparatus, a wafer on which a SiO 2 layer was previously formed by CVD was set in an etching apparatus,
Chamber internal pressure: 10 −1 Torr,
Etching gas composition: 90 sccm CHF 3 +4 sccm O 2 +150 sccm He,
High frequency power: 2kW
Frequency: 20kHz,
Under these conditions, plasma etching of the SiO 2 layer on the wafer surface is performed, and the etching depth x depth at the central portion of the SiO 2 layer on the wafer surface and the peripheral portion at the time when 10 minutes have elapsed and 400 hours have elapsed since the start of etching. Each etching depth y was measured, and a value of (y−x) / y × 100 (%) was obtained from the measured value. The results are shown in Table 1, and the etching uniformity on the wafer surface was evaluated.
Example 2
A single crystal silicon ingot having a diameter of 420 mm is produced by pulling up by the CZ method, the single crystal silicon ingot is cut into a ring of 5 mm in thickness with a diamond band saw, and the outer periphery is ground to a thickness of 60 mm. A single crystal silicon substrate having a thickness of 300 mm was prepared. The specific resistance value X at the center of the single crystal silicon substrate was measured and the results are shown in Table 1. Further, the specific resistance values at arbitrary points 10 mm in the radial direction from the outer periphery of the single crystal silicon substrate were measured at a plurality of locations. The maximum specific resistance value Y among them is shown in Table 1, and when the in-plane variation of the specific resistance value is obtained from the X and Y values according to the formula of (Y−X) / Y × 100 (%), The in-plane variation of the resistance value was 3%.

得られた単結晶シリコン基板に内径0.5mmの貫通細孔をダイヤモンドドリルを用いて孔間ピッチ8mmで直径:200mmの範囲内に形成し、本発明電極板2を作製した。   Through-holes having an inner diameter of 0.5 mm were formed in the obtained single crystal silicon substrate within a range of diameter: 200 mm with a pitch between holes of 8 mm using a diamond drill, thereby producing the electrode plate 2 of the present invention.

このようにして作製した本発明電極板2をエッチング装置にセットし、さらに予めCVDによりSiO2 層を形成したウエハをエッチング装置にセットし、実施例1と同じ条件でウエハ表面のSiO2 層のプラズマエッチングを行ない、エッチング開始から10分間経過した時点および400時間経過した時点でのウエハ表面のSiO2 層の中心部のエッチングの深xさおよび周辺部のエッチングの深さyをそれぞれ測定し、その測定値から(y−x)/y×100(%)の値を求め、その結果を表1に示してウエハ表面のエッチング均一性を評価した。
実施例3
CZ法により引き上げることにより直径:400mmの単結晶シリコンインゴットを作製し、この単結晶シリコンインゴットをダイヤモンドバンドソーにより厚さ:5mmに輪切り切断し、外周を厚さ:50mmに渡って研削することにより直径:300mmを有する単結晶シリコン基板を作製した。この単結晶シリコン基板の中心における比抵抗値Xを測定してその結果を表1に示し、さらに単結晶シリコン基板の外周から半径方向に10mmの任意の地点における比抵抗値を複数個所測定し、その内の最大比抵抗値Yを表1に示し、前記XおよびYの値から(Y−X)/Y×100(%)の式にしたがって比抵抗値の面内バラツキを求めたところ、比抵抗値の面内バラツキは4%であった。
Thus the present invention the electrode plate 2 was prepared in the set in an etching apparatus, further in advance by CVD sets the wafer to form a SiO 2 layer to the etching apparatus, the SiO 2 layer on the wafer surface under the same conditions as in Example 1 Perform plasma etching and measure the etching depth x of the central portion of the SiO 2 layer on the wafer surface and the etching depth y of the peripheral portion at the time when 10 minutes have passed and 400 hours have passed since the start of etching, A value of (y−x) / y × 100 (%) was obtained from the measured value, and the result is shown in Table 1 to evaluate the etching uniformity of the wafer surface.
Example 3
A single crystal silicon ingot having a diameter of 400 mm is produced by pulling up by the CZ method, and this single crystal silicon ingot is cut into a ring with a diamond band saw to a thickness of 5 mm and the outer periphery is ground to a thickness of 50 mm to obtain a diameter. A single crystal silicon substrate having a thickness of 300 mm was prepared. The specific resistance value X at the center of the single crystal silicon substrate was measured and the results are shown in Table 1. Further, the specific resistance values at arbitrary points 10 mm in the radial direction from the outer periphery of the single crystal silicon substrate were measured at a plurality of locations. The maximum specific resistance value Y among them is shown in Table 1, and when the in-plane variation of the specific resistance value is obtained from the X and Y values according to the formula of (Y−X) / Y × 100 (%), The in-plane variation of the resistance value was 4%.

得られた単結晶シリコン基板に内径0.5mmの貫通細孔をダイヤモンドドリルを用いて孔間ピッチ8mmで直径:200mmの範囲内に形成し、本発明電極板3を作製した。   Through-holes having an inner diameter of 0.5 mm were formed in the obtained single crystal silicon substrate within a range of diameter: 200 mm with a pitch between holes of 8 mm using a diamond drill, and the electrode plate 3 of the present invention was produced.

このようにして作製した本発明電極板3をエッチング装置にセットし、さらに予めCVDによりSiO2 層を形成したウエハをエッチング装置にセットし、実施例1と同じ条件でウエハ表面のSiO2 層のプラズマエッチングを行ない、エッチング開始から10分間経過した時点および400時間経過した時点でのウエハ表面のSiO2 層の中心部のエッチングの深xさおよび周辺部のエッチングの深さyをそれぞれ測定し、その測定値から(y−x)/y×100(%)の値を求め、その結果を表1に示してウエハ表面のエッチング均一性を評価した。
実施例4
CZ法により引き上げることにより直径:380mmの単結晶シリコンインゴットを作製し、この単結晶シリコンインゴットをダイヤモンドバンドソーにより厚さ:5mmに輪切り切断し、外周を厚さ:40mmに渡って研削することにより直径:300mmを有する単結晶シリコン基板を作製した。この単結晶シリコン基板の中心における比抵抗値Xを測定してその結果を表1に示し、さらに単結晶シリコン基板の外周から半径方向に10mmの任意の地点における比抵抗値を複数個所測定し、その内の最大比抵抗値Yを表1に示し、前記XおよびYの値から(Y−X)/Y×100(%)の式にしたがって比抵抗値の面内バラツキを求めたところ、比抵抗値の面内バラツキは5%であった。 得られた単結晶シリコン基板に内径0.5mmの貫通細孔をダイヤモンドドリルを用いて孔間ピッチ8mmで直径:200mmの範囲内に形成し、本発明電極板4を作製した。
Thus the present invention the electrode plate 3 prepared in the set in an etching apparatus, further in advance by CVD sets the wafer to form a SiO 2 layer to the etching apparatus, the SiO 2 layer on the wafer surface under the same conditions as in Example 1 Perform plasma etching and measure the etching depth x of the central portion of the SiO 2 layer on the wafer surface and the etching depth y of the peripheral portion at the time when 10 minutes have passed and 400 hours have passed since the start of etching, A value of (y−x) / y × 100 (%) was obtained from the measured value, and the result is shown in Table 1 to evaluate the etching uniformity of the wafer surface.
Example 4
A single crystal silicon ingot having a diameter of 380 mm is produced by pulling it up by the CZ method, and this single crystal silicon ingot is cut by a diamond band saw into a thickness of 5 mm and the outer periphery is ground to a thickness of 40 mm. A single crystal silicon substrate having a thickness of 300 mm was prepared. The specific resistance value X at the center of the single crystal silicon substrate was measured and the results are shown in Table 1. Further, the specific resistance values at arbitrary points 10 mm in the radial direction from the outer periphery of the single crystal silicon substrate were measured at a plurality of locations. The maximum specific resistance value Y among them is shown in Table 1, and when the in-plane variation of the specific resistance value is obtained from the X and Y values according to the formula of (Y−X) / Y × 100 (%), The in-plane variation of the resistance value was 5%. Through-holes having an inner diameter of 0.5 mm were formed in the obtained single crystal silicon substrate within a range of diameter: 200 mm with a pitch between holes of 8 mm using a diamond drill, and the electrode plate 4 of the present invention was produced.

このようにして作製した本発明電極板4をエッチング装置にセットし、さらに予めCVDによりSiO2 層を形成したウエハをエッチング装置にセットし、実施例1と同じ条件でウエハ表面のSiO2 層のプラズマエッチングを行ない、エッチング開始から10分間経過した時点および400時間経過した時点でのウエハ表面のSiO2 層の中心部のエッチングの深xさおよび周辺部のエッチングの深さyをそれぞれ測定し、その測定値から(y−x)/y×100(%)の値を求め、その結果を表1に示してウエハ表面のエッチング均一性を評価した。
比較例
CZ法により引き上げることにより直径:340mmの単結晶シリコンインゴットを作製し、この単結晶シリコンインゴットをダイヤモンドバンドソーにより厚さ:5mmに輪切り切断し、外周を厚さ:20mmに渡って研削することにより直径:300mmを有する単結晶シリコン基板を作製した。この単結晶シリコン基板の中心における比抵抗値Xを測定してその結果を表1に示し、さらに単結晶シリコン基板の外周から半径方向に10mmの任意の地点における比抵抗値を複数個所測定し、その内の最大比抵抗値Yを表1に示し、前記XおよびYの値から(Y−X)/Y×100(%)の式にしたがって比抵抗値の面内バラツキを求めたところ、比抵抗値の面内バラツキは7%であった。
Thus the present invention electrode plate 4 was prepared in the set in an etching apparatus, further in advance by CVD sets the wafer to form a SiO 2 layer to the etching apparatus, the SiO 2 layer on the wafer surface under the same conditions as in Example 1 Perform plasma etching and measure the etching depth x of the central portion of the SiO 2 layer on the wafer surface and the etching depth y of the peripheral portion at the time when 10 minutes have passed and 400 hours have passed since the start of etching, A value of (y−x) / y × 100 (%) was obtained from the measured value, and the result is shown in Table 1 to evaluate the etching uniformity of the wafer surface.
Comparative Example A single crystal silicon ingot having a diameter of 340 mm is produced by pulling up by the CZ method, this single crystal silicon ingot is cut into a ring of 5 mm in thickness with a diamond band saw, and the outer periphery is ground over a thickness of 20 mm. Thus, a single crystal silicon substrate having a diameter of 300 mm was manufactured. The specific resistance value X at the center of the single crystal silicon substrate was measured and the results are shown in Table 1. Further, the specific resistance values at arbitrary points 10 mm in the radial direction from the outer periphery of the single crystal silicon substrate were measured at a plurality of locations. The maximum specific resistance value Y among them is shown in Table 1, and when the in-plane variation of the specific resistance value is obtained from the X and Y values according to the formula of (Y−X) / Y × 100 (%), The in-plane variation of the resistance value was 7%.

得られた単結晶シリコン基板に内径0.5mmの貫通細孔をダイヤモンドドリルを用いて孔間ピッチ8mmで直径:200mmの範囲内に形成し、比較電極板を作製した。   Through-holes having an inner diameter of 0.5 mm were formed in the obtained single crystal silicon substrate within a range of diameter: 200 mm with a pitch between holes of 8 mm using a diamond drill, to prepare a comparative electrode plate.

このようにして作製した比較電極板をエッチング装置にセットし、さらに予めCVDによりSiO2 層を形成したウエハをエッチング装置にセットし、実施例1と同じ条件でウエハ表面のSiO2 層のプラズマエッチングを行ない、エッチング開始から10分間経過した時点および400時間経過した時点でのウエハ表面のSiO2 層の中心部のエッチングの深xさおよび周辺部のエッチングの深さyをそれぞれ測定し、その測定値から(y−x)/y×100(%)の値を求め、その結果を表1に示してウエハ表面のエッチング均一性を評価した。
従来例
CZ法により引き上げることにより直径:310mmの単結晶シリコンインゴットを作製し、この単結晶シリコンインゴットをダイヤモンドバンドソーにより厚さ:5mmに輪切り切断し、外周を厚さ:5mmに渡って研削することにより直径:300mmを有する単結晶シリコン基板を作製した。この単結晶シリコン基板の中心における比抵抗値Xを測定してその結果を表1に示し、さらに単結晶シリコン基板の外周から半径方向に10mmの任意の地点における比抵抗値を複数個所測定し、その内の最大比抵抗値Yを表1に示し、前記XおよびYの値から(Y−X)/Y×100(%)の式にしたがって比抵抗値の面内バラツキを求めたところ、比抵抗値の面内バラツキは10%であった。
The thus prepared comparative electrode plate was set in an etching apparatus, and a wafer on which a SiO 2 layer was previously formed by CVD was set in an etching apparatus, and plasma etching of the SiO 2 layer on the wafer surface was performed under the same conditions as in Example 1. And the etching depth x of the central portion of the SiO 2 layer on the wafer surface and the etching depth y of the peripheral portion at the time when 10 minutes have passed and 400 hours have elapsed from the start of etching, respectively. A value of (y−x) / y × 100 (%) was obtained from the value, and the result is shown in Table 1 to evaluate the etching uniformity of the wafer surface.
Conventional Example A single crystal silicon ingot having a diameter of 310 mm is produced by pulling up by the CZ method, and this single crystal silicon ingot is cut into a circle with a diamond band saw to a thickness of 5 mm and the outer periphery is ground over a thickness of 5 mm. Thus, a single crystal silicon substrate having a diameter of 300 mm was manufactured. The specific resistance value X at the center of the single crystal silicon substrate was measured and the results are shown in Table 1. Further, the specific resistance values at arbitrary points 10 mm in the radial direction from the outer periphery of the single crystal silicon substrate were measured at a plurality of locations. The maximum specific resistance value Y among them is shown in Table 1, and when the in-plane variation of the specific resistance value is obtained from the X and Y values according to the formula of (Y−X) / Y × 100 (%), The in-plane variation of the resistance value was 10%.

得られた単結晶シリコン基板に内径0.5mmの貫通細孔をダイヤモンドドリルを用いて孔間ピッチ8mmで直径:200mmの範囲内に形成し、従来電極板を作製した。   A through-hole having an inner diameter of 0.5 mm was formed in the obtained single crystal silicon substrate using a diamond drill in a range of a hole diameter of 8 mm and a diameter of 200 mm to produce a conventional electrode plate.

このようにして作製した従来電極板をエッチング装置にセットし、さらに予めCVDによりSiO2 層を形成したウエハをエッチング装置にセットし、実施例1と同じ条件でウエハ表面のSiO2 層のプラズマエッチングを行ない、エッチング開始から10分間経過した時点および400時間経過した時点でのウエハ表面のSiO2 層の中心部のエッチングの深xさおよび周辺部のエッチングの深さyをそれぞれ測定し、その測定値から(y−x)/y×100(%)の値を求め、その結果を表1に示してウエハ表面のエッチング均一性を評価した。 The conventional electrode plate thus prepared is set in an etching apparatus, and a wafer on which a SiO 2 layer is formed in advance by CVD is set in an etching apparatus, and plasma etching of the SiO 2 layer on the wafer surface is performed under the same conditions as in Example 1. And the etching depth x of the central portion of the SiO 2 layer on the wafer surface and the etching depth y of the peripheral portion at the time when 10 minutes have passed and 400 hours have elapsed from the start of etching, respectively. A value of (y−x) / y × 100 (%) was obtained from the value, and the result is shown in Table 1 to evaluate the etching uniformity of the wafer surface.

Figure 2007158007
Figure 2007158007

表1に示される結果から、面内バラツキが5%以下の本発明電極板1〜4は、面内バラツキが5%を超える比較電極板および従来電極板に比べて(y−x)/y×100(%)の値が格段に小さいところからSiO2 層を均一にプラズマエッチングできることがわかる。 From the results shown in Table 1, the electrode plates 1 to 4 of the present invention having an in-plane variation of 5% or less are (yx) / y compared to the comparative electrode plate and the conventional electrode plate having an in-plane variation of more than 5%. From the fact that the value of × 100 (%) is remarkably small, it can be seen that the SiO 2 layer can be uniformly plasma etched.

従来のプラズマエッチング装置の断面説明図である。It is sectional explanatory drawing of the conventional plasma etching apparatus.

符号の説明Explanation of symbols

1:真空容器、2:電極板、3:架台、4:Siウエハ、5:貫通細孔、6:高周波電源、7:プラズマエッチングガス、8:下面、9:上面、10:ブラズマ、
1: vacuum vessel, 2: electrode plate, 3: mount, 4: Si wafer, 5: through-hole, 6: high frequency power supply, 7: plasma etching gas, 8: lower surface, 9: upper surface, 10: plasma,

Claims (2)

比抵抗値の面内バラツキが5%以内であることを特徴とするプラズマエッチング用単結晶シリコン電極板。 A single crystal silicon electrode plate for plasma etching, wherein the in-plane variation in specific resistance value is within 5%. 前記単結晶シリコン電極板は比抵抗値が10〜100×10−2Ω・mの高抵抗を有することを特徴とする請求項1記載のプラズマエッチング用単結晶シリコン電極板。

2. The single-crystal silicon electrode plate for plasma etching according to claim 1, wherein the single-crystal silicon electrode plate has a high resistance of 10 to 100 * 10 <-2 > [Omega] .m.

JP2005350927A 2005-12-05 2005-12-05 Single crystal silicon electrode plate for plasma etching with less in-plane variation of specific resistance Active JP4535283B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2005350927A JP4535283B2 (en) 2005-12-05 2005-12-05 Single crystal silicon electrode plate for plasma etching with less in-plane variation of specific resistance

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2005350927A JP4535283B2 (en) 2005-12-05 2005-12-05 Single crystal silicon electrode plate for plasma etching with less in-plane variation of specific resistance

Publications (2)

Publication Number Publication Date
JP2007158007A true JP2007158007A (en) 2007-06-21
JP4535283B2 JP4535283B2 (en) 2010-09-01

Family

ID=38241975

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2005350927A Active JP4535283B2 (en) 2005-12-05 2005-12-05 Single crystal silicon electrode plate for plasma etching with less in-plane variation of specific resistance

Country Status (1)

Country Link
JP (1) JP4535283B2 (en)

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2008159773A (en) * 2006-12-22 2008-07-10 Mitsubishi Materials Corp Composite silicon electrode having small resistivity in in-plane variations and its manufacturing method
DE102013107189A1 (en) 2013-03-22 2014-09-25 Schott Ag Blank of silicon, process for its preparation and use thereof
WO2014147262A1 (en) 2013-03-22 2014-09-25 Schott Ag Blank made of silicon, method for the production thereof and use thereof
DE102013107193A1 (en) 2013-04-08 2014-10-09 Schott Ag Blank of silicon, process for its preparation and use thereof
JP2022016604A (en) * 2014-12-26 2022-01-21 エーサット株式会社 Electrode for plasma etching device

Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH1017393A (en) * 1996-06-28 1998-01-20 Nisshinbo Ind Inc Plasma etching electrode and its manufacture
JP2004315289A (en) * 2003-04-16 2004-11-11 Shin Etsu Handotai Co Ltd Method for manufacturing single crystal

Patent Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH1017393A (en) * 1996-06-28 1998-01-20 Nisshinbo Ind Inc Plasma etching electrode and its manufacture
JP2004315289A (en) * 2003-04-16 2004-11-11 Shin Etsu Handotai Co Ltd Method for manufacturing single crystal

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2008159773A (en) * 2006-12-22 2008-07-10 Mitsubishi Materials Corp Composite silicon electrode having small resistivity in in-plane variations and its manufacturing method
DE102013107189A1 (en) 2013-03-22 2014-09-25 Schott Ag Blank of silicon, process for its preparation and use thereof
WO2014147262A1 (en) 2013-03-22 2014-09-25 Schott Ag Blank made of silicon, method for the production thereof and use thereof
DE102013107193A1 (en) 2013-04-08 2014-10-09 Schott Ag Blank of silicon, process for its preparation and use thereof
JP2022016604A (en) * 2014-12-26 2022-01-21 エーサット株式会社 Electrode for plasma etching device

Also Published As

Publication number Publication date
JP4535283B2 (en) 2010-09-01

Similar Documents

Publication Publication Date Title
JP6237848B2 (en) Method for manufacturing silicon carbide single crystal substrate for epitaxial silicon carbide wafer and silicon carbide single crystal substrate for epitaxial silicon carbide wafer
JP3551867B2 (en) Silicon focus ring and manufacturing method thereof
TWI258818B (en) Silicon electrode plate for plasma etching having high durability
JP4535283B2 (en) Single crystal silicon electrode plate for plasma etching with less in-plane variation of specific resistance
KR100637915B1 (en) Silicon electrode plate
JP4905855B2 (en) Focus ring and shield ring for plasma etching
JP4849247B2 (en) Composite silicon electrode with small in-plane variation of specific resistance value and manufacturing method thereof
JP2007273707A (en) Method for carrying out uniformly plasma etching of wafer surface using silicon electrode board of almost the same size as wafer
JP4045592B2 (en) Silicon electrode plate for plasma etching
JP5088483B2 (en) Composite silicon ring for plasma etching equipment to support wafer
JP2003051485A (en) Coating silicon electrode plate for plasma etching
JP5713182B2 (en) Silicon electrode plate for plasma etching
KR101485830B1 (en) Single Crystal Silicon Componet with Improved Durability for Plasma Appratus and Preparation Method Thereof
JP4883368B2 (en) Single crystal silicon electrode plate for plasma etching
JP4517364B2 (en) Silicon electrode plate for plasma etching
JP6421611B2 (en) Electrode plate for plasma processing apparatus and method for manufacturing the same
JP4517363B2 (en) Silicon electrode plate for plasma etching
JP5924181B2 (en) Manufacturing method of FZ single crystal silicon
JPH09245994A (en) Electrode for processing device utilizing plasma, and manufacture of same electrode
JP2000306886A (en) Plasma etching electrode
JP2000138206A (en) Electrode plate for plasma etching system enabling formation of uniformly etched surface
JP4517370B2 (en) Silicon ring for plasma etching equipment
JP3339429B2 (en) Electrode plate of plasma etching equipment that can form uniform etching surface
JP2006128281A (en) Silicon electrode board coated with etching-resistance film for plasma etching
JP2006128372A (en) Silicon ring for plasma etcher

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20080321

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20100126

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20100201

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20100331

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20100526

A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130625

Year of fee payment: 3

R150 Certificate of patent or registration of utility model

Ref document number: 4535283

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

Free format text: JAPANESE INTERMEDIATE CODE: R150

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20100608