JP5924181B2 - Manufacturing method of FZ single crystal silicon - Google Patents

Manufacturing method of FZ single crystal silicon Download PDF

Info

Publication number
JP5924181B2
JP5924181B2 JP2012172280A JP2012172280A JP5924181B2 JP 5924181 B2 JP5924181 B2 JP 5924181B2 JP 2012172280 A JP2012172280 A JP 2012172280A JP 2012172280 A JP2012172280 A JP 2012172280A JP 5924181 B2 JP5924181 B2 JP 5924181B2
Authority
JP
Japan
Prior art keywords
single crystal
zoning
oxygen concentration
raw material
crystal
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
JP2012172280A
Other languages
Japanese (ja)
Other versions
JP2014031290A (en
Inventor
義博 児玉
義博 児玉
佐藤 賢一
佐藤  賢一
慶一 中澤
慶一 中澤
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Shin Etsu Handotai Co Ltd
Original Assignee
Shin Etsu Handotai Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Shin Etsu Handotai Co Ltd filed Critical Shin Etsu Handotai Co Ltd
Priority to JP2012172280A priority Critical patent/JP5924181B2/en
Priority to PCT/JP2013/004228 priority patent/WO2014020831A1/en
Publication of JP2014031290A publication Critical patent/JP2014031290A/en
Application granted granted Critical
Publication of JP5924181B2 publication Critical patent/JP5924181B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • CCHEMISTRY; METALLURGY
    • C30CRYSTAL GROWTH
    • C30BSINGLE-CRYSTAL GROWTH; UNIDIRECTIONAL SOLIDIFICATION OF EUTECTIC MATERIAL OR UNIDIRECTIONAL DEMIXING OF EUTECTOID MATERIAL; REFINING BY ZONE-MELTING OF MATERIAL; PRODUCTION OF A HOMOGENEOUS POLYCRYSTALLINE MATERIAL WITH DEFINED STRUCTURE; SINGLE CRYSTALS OR HOMOGENEOUS POLYCRYSTALLINE MATERIAL WITH DEFINED STRUCTURE; AFTER-TREATMENT OF SINGLE CRYSTALS OR A HOMOGENEOUS POLYCRYSTALLINE MATERIAL WITH DEFINED STRUCTURE; APPARATUS THEREFOR
    • C30B29/00Single crystals or homogeneous polycrystalline material with defined structure characterised by the material or by their shape
    • C30B29/02Elements
    • C30B29/06Silicon
    • CCHEMISTRY; METALLURGY
    • C30CRYSTAL GROWTH
    • C30BSINGLE-CRYSTAL GROWTH; UNIDIRECTIONAL SOLIDIFICATION OF EUTECTIC MATERIAL OR UNIDIRECTIONAL DEMIXING OF EUTECTOID MATERIAL; REFINING BY ZONE-MELTING OF MATERIAL; PRODUCTION OF A HOMOGENEOUS POLYCRYSTALLINE MATERIAL WITH DEFINED STRUCTURE; SINGLE CRYSTALS OR HOMOGENEOUS POLYCRYSTALLINE MATERIAL WITH DEFINED STRUCTURE; AFTER-TREATMENT OF SINGLE CRYSTALS OR A HOMOGENEOUS POLYCRYSTALLINE MATERIAL WITH DEFINED STRUCTURE; APPARATUS THEREFOR
    • C30B13/00Single-crystal growth by zone-melting; Refining by zone-melting
    • C30B13/08Single-crystal growth by zone-melting; Refining by zone-melting adding crystallising materials or reactants forming it in situ to the molten zone
    • C30B13/10Single-crystal growth by zone-melting; Refining by zone-melting adding crystallising materials or reactants forming it in situ to the molten zone with addition of doping materials
    • C30B13/12Single-crystal growth by zone-melting; Refining by zone-melting adding crystallising materials or reactants forming it in situ to the molten zone with addition of doping materials in the gaseous or vapour state

Description

本発明は、原料結晶棒を誘導加熱コイルで加熱溶融して浮遊帯域を形成し、該浮遊帯域を移動することで単結晶棒を育成するFZ法(フローティングゾーン法又は浮遊帯溶融法)によるFZ単結晶の製造方法に関する。   The present invention is an FZ method by FZ method (floating zone method or floating zone melting method) in which a raw crystal bar is heated and melted by an induction heating coil to form a floating zone and a single crystal rod is grown by moving the floating zone. The present invention relates to a method for producing a single crystal.

従来、サイリスタ等の高耐圧パワーデバイス作製用にはFZ法により製造されたシリコン単結晶から切り出されたシリコンウェーハが使用されてきた。また近年、半導体デバイスの性能向上とコストの低減のため、大直径のシリコンウェーハが求められ、これに伴って大直径のシリコン単結晶の育成が要求されている。   Conventionally, a silicon wafer cut from a silicon single crystal manufactured by the FZ method has been used for manufacturing a high voltage power device such as a thyristor. In recent years, in order to improve the performance of semiconductor devices and reduce costs, a silicon wafer having a large diameter has been demanded, and accordingly, growth of a silicon single crystal having a large diameter has been required.

通常、FZ単結晶シリコンを製造するための原料としては、棒状の多結晶シリコンを使用する。しかし、FZ法で原料として必要である多結晶シリコン(FZ用多結晶シリコン棒)は、高純度で、クラックやワレが生じにくく、均一な粒界組織であり、製造するFZ単結晶シリコンに適した直径値で、扁平やクランクが少なく、表面状態の良い円柱状であることが必要とされる。このようなFZ用多結晶シリコン棒の製造は、CZ法で使用されるナゲット状の多結晶シリコンの製造に比較して、歩留りや、生産性が非常に低い。   Usually, rod-shaped polycrystalline silicon is used as a raw material for producing FZ single crystal silicon. However, the polycrystalline silicon (polycrystalline silicon rod for FZ) required as a raw material in the FZ method has high purity, hardly generates cracks and cracks, has a uniform grain boundary structure, and is suitable for FZ single crystal silicon to be manufactured. It is necessary to have a cylindrical shape with a good surface condition with a small flatness and crank. The manufacture of such a polycrystalline silicon rod for FZ is very low in yield and productivity as compared with the manufacture of nugget-like polycrystalline silicon used in the CZ method.

その上、近年、直径300mm向けを中心としたCZ法で使用される多結晶シリコン(CZ用多結晶シリコン)の需要が大幅に増加しており、更に、太陽電池向けの多結晶シリコンの需要も急激に増加している。このことから、形状、純度等の品質規格が厳しく、生産性も低い上に、コストも高いFZ用多結晶シリコン棒の供給が需要に対して逼迫しており、また価格も非常に高くなっている。その結果、良質なFZ用多結晶シリコンの確保が難しくなり、FZ単結晶シリコンを安定して製造することが困難になってきている。   In addition, in recent years, the demand for polycrystalline silicon (polycrystalline silicon for CZ) used in the CZ method centering on 300 mm diameter has increased significantly, and there has also been a demand for polycrystalline silicon for solar cells. It is increasing rapidly. As a result, quality standards such as shape and purity are strict, the productivity is low, and the supply of polycrystalline silicon rods for FZ, which is high in cost, is tight against the demand, and the price is very high. Yes. As a result, it becomes difficult to secure high-quality polycrystalline silicon for FZ, and it has become difficult to stably manufacture FZ single-crystal silicon.

そのため、近年、製造コストの改善や製造されるFZ単結晶の抵抗率の調整、安定した品質のFZ単結晶の供給のために、CZ法で製造した単結晶を原料としてFZ単結晶を製造する方法が検討されてきた(特許文献1、特許文献2)。   Therefore, in recent years, FZ single crystals are produced using single crystals produced by the CZ method as raw materials in order to improve production costs, adjust the resistivity of the produced FZ single crystals, and supply stable quality FZ single crystals. Methods have been studied (Patent Document 1, Patent Document 2).

図3に、FZ法による単結晶の製造装置の概略図を示した。このFZ単結晶製造装置30を用いて、FZ単結晶を製造する方法について説明する。   FIG. 3 shows a schematic diagram of an apparatus for producing a single crystal by the FZ method. A method for manufacturing an FZ single crystal using the FZ single crystal manufacturing apparatus 30 will be described.

まず、原料棒1を、チャンバー20内に設置された上軸3の上部保持治具4に保持する。一方、直径の小さい単結晶の種(種結晶)8を、原料棒1の下方に位置する下軸5の下部保持治具6に保持する。   First, the raw material rod 1 is held by the upper holding jig 4 of the upper shaft 3 installed in the chamber 20. On the other hand, a single crystal seed (seed crystal) 8 having a small diameter is held by the lower holding jig 6 of the lower shaft 5 positioned below the raw material rod 1.

次に、高周波発振機40に接続された誘導加熱コイル7により原料棒1を溶融して、種結晶8に融着させる。その後、種絞りにより絞り部9を形成して無転位化する。そして、上軸3と下軸5を回転させながら原料棒1と単結晶棒(FZ単結晶)2を下降させることで浮遊帯域(溶融帯あるいはメルトともいう。)10を原料棒1と単結晶棒2の間に形成し、当該浮遊帯域10を原料棒1の上端まで移動させてゾーニングし、単結晶棒2を成長させる。尚、このFZ単結晶の成長は、通常、Arガスに微量の窒素ガスを混合した雰囲気中で行われる。また、ガス吹き付け用ノズル11から浮遊帯域10にドーピング用ガス等を吹き付けることもできる。誘導加熱コイル7としては、通常、銅又は銀からなる単巻又は複巻の冷却用の水を流通させた誘導加熱コイルが用いられている。   Next, the raw material rod 1 is melted by the induction heating coil 7 connected to the high frequency oscillator 40 and fused to the seed crystal 8. Thereafter, the narrowed portion 9 is formed by seed drawing to make dislocation-free. Then, the raw material rod 1 and the single crystal rod (FZ single crystal) 2 are lowered while the upper shaft 3 and the lower shaft 5 are rotated, so that the floating zone (also referred to as a melting zone or a melt) 10 is made into the raw material rod 1 and the single crystal. A single crystal rod 2 is grown by forming between the rods 2 and moving the floating zone 10 to the upper end of the raw material rod 1 for zoning. The growth of the FZ single crystal is usually performed in an atmosphere in which a small amount of nitrogen gas is mixed with Ar gas. Further, a doping gas or the like can be sprayed from the gas spray nozzle 11 to the floating zone 10. As the induction heating coil 7, an induction heating coil is generally used in which single or multiple winding water made of copper or silver is circulated.

特開2007−314374号公報JP 2007-314374 A 特開2011−116570号公報JP 2011-116570 A

通常のFZ単結晶製造用の原料としては、円柱状の結晶(多結晶、単結晶、多結晶種により成長させた中間結晶、有転位結晶を含む)を使用する。このうち、CZ法(チョクラルスキー法)で製造した単結晶を原料とする場合、CZ単結晶の製造時の石英ルツボからの酸素混入によって原料とするCZ単結晶中の酸素濃度が高くなるため、ゾーニング後のFZ単結晶の酸素濃度も、多結晶シリコンを原料として製造されたFZ単結晶に比べて高くなる。このように単結晶中の酸素濃度が高くなると、酸素濃度自体が微量なものであっても、酸素単体によるドナー、又は、窒素及び酸素の複合体によるドナーが発生し、製造されたFZ単結晶の抵抗率変化の原因となるため、CZ単結晶を原料として製造したFZ単結晶中の酸素濃度の低減技術の開発が望まれていた。   As a raw material for producing an ordinary FZ single crystal, a columnar crystal (including a polycrystal, a single crystal, an intermediate crystal grown by a polycrystal seed, and a dislocation crystal) is used. Among these, when a single crystal produced by the CZ method (Czochralski method) is used as a raw material, the oxygen concentration in the CZ single crystal used as a raw material increases due to oxygen contamination from the quartz crucible during the production of the CZ single crystal. The oxygen concentration of the FZ single crystal after zoning is also higher than that of the FZ single crystal manufactured using polycrystalline silicon as a raw material. Thus, when the oxygen concentration in the single crystal increases, even if the oxygen concentration itself is very small, a donor due to oxygen alone or a donor due to a complex of nitrogen and oxygen is generated, and the manufactured FZ single crystal Therefore, it has been desired to develop a technique for reducing the oxygen concentration in an FZ single crystal manufactured using a CZ single crystal as a raw material.

本発明は上記問題点を鑑みてなされたものであって、CZ法で製造した単結晶を原料として製造したFZ単結晶の製造方法において、酸素濃度が低減され、抵抗率変化の少ないFZ単結晶を製造する方法を提供することを目的とする。   The present invention has been made in view of the above problems, and in a method for manufacturing an FZ single crystal manufactured using a single crystal manufactured by the CZ method as a raw material, the FZ single crystal has a reduced oxygen concentration and a small change in resistivity. An object of the present invention is to provide a method of producing

本発明は、上記課題を解決するためになされたもので、CZ法で製造した単結晶を原料として、FZ法によるゾーニングを行うことにより、FZ単結晶を製造する方法において、前記ゾーニングを2回以上行い、前記ゾーニングを1回行った後のFZ単結晶中の酸素濃度よりも、前記ゾーニングを2回以上行った後のFZ単結晶中の酸素濃度を低減することを特徴とするFZ単結晶の製造方法を提供する。   The present invention has been made to solve the above-described problems. In a method for producing an FZ single crystal by performing zoning by an FZ method using a single crystal produced by a CZ method as a raw material, the zoning is performed twice. The FZ single crystal is characterized by reducing the oxygen concentration in the FZ single crystal after performing the zoning twice or more than the oxygen concentration in the FZ single crystal after performing the zoning once. A manufacturing method is provided.

このように、ゾーニングを2回以上行うFZ単結晶の製造方法により、ゾーニング中に酸素をSiOxとして蒸発させる機会を増やすことができるので、結晶中の酸素濃度を低減し、抵抗率変化の少ないFZ単結晶を製造することができる。   Thus, the manufacturing method of the FZ single crystal in which zoning is performed twice or more can increase the opportunity for evaporation of oxygen as SiOx during zoning, thereby reducing the oxygen concentration in the crystal and reducing the resistivity change. Single crystals can be produced.

また、前記2回以上のゾーニングを、該FZ単結晶中の酸素濃度が8×1015atoms/cm(ASTM−79)以下になるまで繰り返し行うことが好ましい。尚、以下の結晶中の酸素濃度の表示はASTM−79表示である。 Moreover, it is preferable to repeat the zoning twice or more until the oxygen concentration in the FZ single crystal becomes 8 × 10 15 atoms / cm 3 (ASTM-79) or less. In addition, the display of the oxygen concentration in the following crystals is ASTM-79 display.

このように、FZ単結晶中の酸素濃度が上記の値になるまでゾーニングを繰り返すことで、酸素単体によるドナー、又は、窒素及び酸素の複合体によるドナーの発生をより抑制することができ、FZ単結晶の抵抗率変化をより少なくすることができる。   In this way, by repeating zoning until the oxygen concentration in the FZ single crystal reaches the above value, it is possible to further suppress the generation of donors due to oxygen alone, or donors due to a complex of nitrogen and oxygen. The change in resistivity of the single crystal can be further reduced.

また、前記2回目以降のゾーニングを行った後、前記ゾーニングを行ったFZ単結晶の端面から採取したウェーハサンプルの酸素濃度を測定し、該測定した酸素濃度に基づいて再度のゾーニングが必要か否かを判定し、該判定により前記再度のゾーニングが必要と判定された場合に前記再度のゾーニングを行うことが好ましい。   Further, after the second and subsequent zoning, the oxygen concentration of the wafer sample taken from the end face of the FZ single crystal subjected to the zoning is measured, and whether or not zoning is necessary again based on the measured oxygen concentration. It is preferable to perform the second zoning when it is determined that the second zoning is necessary.

このようにして各ゾーニング工程後のFZ単結晶の端面の酸素濃度を測定して判定に用いることにより、酸素濃度を低減したFZ単結晶をより確実に得ることができる。   In this way, by measuring the oxygen concentration at the end face of the FZ single crystal after each zoning step and using it for determination, an FZ single crystal with a reduced oxygen concentration can be obtained more reliably.

本発明に係るFZ単結晶の製造方法であれば、CZ単結晶を原料として用いても、ゾーニングを2回以上行うことによってゾーニング中に酸素をSiOxとして蒸発させる機会を増やすことができるので、結晶中の酸素濃度を低減し、抵抗率変化の少ないFZ単結晶を製造することができる。   In the method for producing an FZ single crystal according to the present invention, even if a CZ single crystal is used as a raw material, the chance of evaporating oxygen as SiOx during zoning can be increased by performing zoning twice or more. It is possible to produce an FZ single crystal with reduced oxygen concentration and little change in resistivity.

本発明のFZ単結晶の製造方法の一例(第1の実施形態)を示すフローチャートである。It is a flowchart which shows an example (1st Embodiment) of the manufacturing method of the FZ single crystal of this invention. 本発明のFZ単結晶の製造方法の別の一例(第2の実施形態)を示すフローチャートである。It is a flowchart which shows another example (2nd Embodiment) of the manufacturing method of FZ single crystal of this invention. FZ単結晶の製造装置の一例を示す概略図である。It is the schematic which shows an example of the manufacturing apparatus of FZ single crystal. 実施例と比較例の結果を示すグラフである。It is a graph which shows the result of an Example and a comparative example.

以下、本発明について詳述する。   Hereinafter, the present invention will be described in detail.

前述のように、CZ単結晶を原料として製造したFZ単結晶中の酸素濃度の低減技術の開発が望まれていた。特に、CZ法で製造した単結晶は元々の酸素濃度が高いため、これを原料とする場合、1回のゾーニング後のFZ単結晶は、ほとんどの場合8×1015atoms/cmを超えるような濃度の酸素を含んでおり、また、そのうちの多くは2×1016atoms/cmを超える濃度の酸素を含む。このようにFZ単結晶中に含まれる酸素によって、前述のように、酸素単体によるドナー、又は、窒素及び酸素の複合体によるドナーが発生し、特に1000Ωcm以上の高抵抗率領域での抵抗率変化の原因となる。 As described above, it has been desired to develop a technique for reducing the oxygen concentration in an FZ single crystal manufactured using a CZ single crystal as a raw material. In particular, since a single crystal produced by the CZ method has a high original oxygen concentration, when this is used as a raw material, the FZ single crystal after one zoning almost always exceeds 8 × 10 15 atoms / cm 3. And many of them contain oxygen at concentrations exceeding 2 × 10 16 atoms / cm 3 . Thus, as described above, the oxygen contained in the FZ single crystal generates a donor due to oxygen alone or a donor due to a composite of nitrogen and oxygen, and changes in resistivity particularly in a high resistivity region of 1000 Ωcm or more. Cause.

本発明者らは、ゾーニング中に浮遊帯域表面から浮遊帯域に含まれる酸素がSiOxとして蒸発することにより、1回のゾーニングでFZ単結晶中の酸素濃度が原料結晶中の酸素濃度の約1/50に低下するものの、CZ法で製造した単結晶を原料としてFZ単結晶を製造した場合、多結晶原料を原料として製造したFZ単結晶における、ドナー化の影響がほぼない結晶中の酸素濃度の値、即ち8×1015atoms/cm以下に比べて酸素濃度の減少効果が足りないことを見出した。酸素濃度を8×1015atoms/cm以下にすることで例えば1000Ωcmといった高抵抗であっても窒素及び酸素の複合体によるドナーによって生じる抵抗率変化を10%以下に抑えることができる。 The inventors of the present invention evaporate oxygen contained in the floating zone as SiOx from the surface of the floating zone during zoning, so that the oxygen concentration in the FZ single crystal is about 1 / of the oxygen concentration in the source crystal in one zoning. However, when an FZ single crystal is manufactured using a single crystal manufactured by the CZ method as a raw material, the oxygen concentration in the crystal has almost no influence of donor formation in the FZ single crystal manufactured using a polycrystalline raw material as a raw material. It was found that the effect of reducing the oxygen concentration was insufficient compared to the value, that is, 8 × 10 15 atoms / cm 3 or less. By setting the oxygen concentration to 8 × 10 15 atoms / cm 3 or less, the resistivity change caused by the donor due to the complex of nitrogen and oxygen can be suppressed to 10% or less even if the resistance is as high as 1000 Ωcm, for example.

以上のような知見に基づき、本発明者らは、浮遊帯域表面からのSiOxの蒸発機会を増やすために、2回以上のゾーニングを行うことで、FZ単結晶中の酸素濃度を大幅に低減することができることに想到し、本発明を完成させた。   Based on the above knowledge, the present inventors significantly reduce the oxygen concentration in the FZ single crystal by performing zoning twice or more in order to increase the opportunity for evaporation of SiOx from the surface of the floating zone. As a result, the present invention has been completed.

本発明は、CZ法で製造した単結晶を原料として、FZ法によるゾーニングを2回以上行ってFZ単結晶を製造する方法である。このとき、本発明では、ゾーニングを1回行った後のFZ単結晶中の酸素濃度よりも、ゾーニングを2回以上行った後のFZ単結晶中の酸素濃度を低減する。   The present invention is a method for producing an FZ single crystal by performing zoning by the FZ method twice or more using a single crystal produced by the CZ method as a raw material. At this time, in the present invention, the oxygen concentration in the FZ single crystal after performing zoning twice or more is reduced from the oxygen concentration in the FZ single crystal after performing zoning once.

以下、本発明の実施形態について図面を参照して説明するが、本発明はこれらに限定されるものではない。   Hereinafter, embodiments of the present invention will be described with reference to the drawings, but the present invention is not limited thereto.

図1に、本発明のFZ単結晶の製造方法の一例として、第1の実施形態のフローの概略を示した。図1にはFZ法によるゾーニングを計2回行う場合を示しているが、後述のようにゾーニングは3回又はそれ以上行ってもよい。   FIG. 1 shows an outline of the flow of the first embodiment as an example of the method for producing an FZ single crystal of the present invention. Although FIG. 1 shows a case where the zoning by the FZ method is performed twice in total, the zoning may be performed three times or more as described later.

まず、図1の(a)に示したように、原料としてCZ法で製造した単結晶(以下、単にCZ単結晶とも称する。)を準備する(工程a)。ここで準備するCZ単結晶は、CZ法により製造できる単結晶であって、FZ法の原料棒として用いることのできる単結晶であれば特に限定されない。例えば、CZ単結晶の導電型や抵抗率は特に限定されず、直径はFZ法の原料棒として用いることのできる範囲であればよい。   First, as shown in FIG. 1A, a single crystal manufactured by a CZ method (hereinafter also simply referred to as a CZ single crystal) is prepared as a raw material (step a). The CZ single crystal prepared here is not particularly limited as long as it is a single crystal that can be produced by the CZ method and can be used as a raw material rod for the FZ method. For example, the conductivity type and resistivity of the CZ single crystal are not particularly limited, and the diameter may be in a range that can be used as a raw material rod for the FZ method.

次に、図1の(b)に示したように、工程aで準備したCZ単結晶を用いて1回目のゾーニングを行う(工程b)。この工程bでは、図3に示したような通常のFZ単結晶の製造装置を使用することができる。この工程bについて、図3を参照して説明する。   Next, as shown in FIG. 1B, the first zoning is performed using the CZ single crystal prepared in step a (step b). In this step b, a normal FZ single crystal manufacturing apparatus as shown in FIG. 3 can be used. This step b will be described with reference to FIG.

原料棒1として、工程aで準備したCZ単結晶を用いる。原料棒(CZ単結晶)1の溶融を開始する部分をコーン形状に加工し、加工歪みを除去するために表面のエッチングを行う。その後、FZ法による単結晶製造装置30中のチャンバー20内に原料棒(CZ単結晶)1を収容し、チャンバー20内に設置された上軸3の上部保持治具4にネジ等で固定する。一方、下軸5の下部保持治具6には種結晶8を取り付ける。   As the raw material rod 1, the CZ single crystal prepared in step a is used. The part of the raw material rod (CZ single crystal) 1 where melting starts is processed into a cone shape, and the surface is etched to remove the processing distortion. Thereafter, the raw material rod (CZ single crystal) 1 is accommodated in the chamber 20 in the single crystal manufacturing apparatus 30 by the FZ method, and fixed to the upper holding jig 4 of the upper shaft 3 installed in the chamber 20 with screws or the like. . On the other hand, a seed crystal 8 is attached to the lower holding jig 6 of the lower shaft 5.

次に、原料棒(CZ単結晶)1のコーン部の下端をカーボンリング(不図示)で予備加熱する。その後、チャンバー20の下部から窒素ガスを含んだArガスを供給し、チャンバー上部より排気する。そして、原料棒(CZ単結晶)1を誘導加熱コイル7で加熱溶融した後、コーン部先端を種結晶8に融着させ、絞り部9により無転位化し、上軸3と下軸5を回転させながら原料棒(CZ単結晶)1を、例えば1〜5mm/minの速度で下降させることで浮遊帯域10を原料棒(CZ単結晶)1の上端まで移動させてゾーニングし、単結晶棒2を成長させる。このとき、原料棒(CZ単結晶)1の回転中心となる上軸3と、製造される単結晶の回転中心となる下軸5をずらして(偏芯させて)単結晶を育成することが好ましい。このように両中心をずらすことにより単結晶化の際に溶融部を攪拌させ、製造する単結晶の品質を均一化することができる。偏芯量は単結晶の直径に応じて設定すればよい。また、必要に応じてガス吹き付け用ノズル11から浮遊帯域10にドーピング用ガス等を吹き付けることもできる。誘導加熱コイル7としては、銅又は銀からなる単巻又は複巻の冷却用の水を流通させた誘導加熱コイルを用いることができる。   Next, the lower end of the cone part of the raw material rod (CZ single crystal) 1 is preheated with a carbon ring (not shown). Thereafter, Ar gas containing nitrogen gas is supplied from the lower part of the chamber 20 and exhausted from the upper part of the chamber. After the raw material rod (CZ single crystal) 1 is heated and melted by the induction heating coil 7, the tip of the cone portion is fused to the seed crystal 8, the dislocation is made free by the narrowed portion 9, and the upper shaft 3 and the lower shaft 5 are rotated. Then, the raw material rod (CZ single crystal) 1 is moved down to the upper end of the raw material rod (CZ single crystal) 1 by lowering the raw material rod (CZ single crystal) 1 at a speed of, for example, 1 to 5 mm / min. Grow. At this time, it is possible to grow the single crystal by shifting (eccentric) the upper shaft 3 serving as the rotation center of the raw material rod (CZ single crystal) 1 and the lower shaft 5 serving as the rotation center of the manufactured single crystal. preferable. By shifting both centers in this way, the melted portion can be stirred during single crystallization, and the quality of the single crystal to be produced can be made uniform. The amount of eccentricity may be set according to the diameter of the single crystal. Further, a doping gas or the like can be sprayed from the gas spray nozzle 11 to the floating zone 10 as necessary. As the induction heating coil 7, an induction heating coil in which a single or multiple winding water made of copper or silver is circulated can be used.

次に、図1の(c)に示したように、工程bで得られたFZ単結晶に2回目のゾーニングを行う(工程c)。工程cで用いるFZ単結晶の製造装置としては、工程bで用いた装置と同様に、図3に示した通常のFZ単結晶の製造装置を用いることができる。ただし、この時用いられる原料棒1として工程bの1回目のゾーニングを経たFZ単結晶を用いる。   Next, as shown in FIG. 1C, the second zoning is performed on the FZ single crystal obtained in step b (step c). As the FZ single crystal manufacturing apparatus used in step c, the normal FZ single crystal manufacturing apparatus shown in FIG. 3 can be used as in the apparatus used in step b. However, as the raw material rod 1 used at this time, an FZ single crystal that has undergone the first zoning in step b is used.

また、図1には、工程cを1回のみ行う場合を示しているが、この工程c、すなわち、既にゾーニングを経たFZ単結晶を再度ゾーニングする工程は、複数回繰り返してもよい。例えば、工程cを1回行う場合は、全工程において工程bと合わせて計2回のゾーニングを行うこととなり、工程cを2回行う場合は、全工程において計3回のゾーニングを行うことになる。   FIG. 1 shows the case where the step c is performed only once, but this step c, that is, the step of zoning the FZ single crystal that has already undergone zoning may be repeated a plurality of times. For example, if step c is performed once, zoning is performed twice in total with step b in all steps, and if step c is performed twice, zoning is performed three times in all steps. Become.

この工程cを行うことにより、工程bの後のFZ単結晶よりも、FZ単結晶中の酸素濃度をさらに低減する。すなわち、ゾーニングを1回行った後のFZ単結晶中の酸素濃度よりも、ゾーニングを2回以上行った後のFZ単結晶中の酸素濃度を低減する。このとき、工程cにおいて行うゾーニングをFZ単結晶中の酸素濃度が8×1015atoms/cm(ASTM−79)以下になるまで繰り返し行うことが好ましい。このような酸素濃度であれば、酸素単体によるドナー、又は、窒素及び酸素の複合体によるドナーの発生をより抑制することができ、FZ単結晶の抵抗率変化をより少なくすることができるからである。 By performing step c, the oxygen concentration in the FZ single crystal is further reduced as compared with the FZ single crystal after step b. That is, the oxygen concentration in the FZ single crystal after performing zoning twice or more is reduced from the oxygen concentration in the FZ single crystal after performing zoning once. At this time, it is preferable to repeat the zoning performed in the step c until the oxygen concentration in the FZ single crystal becomes 8 × 10 15 atoms / cm 3 (ASTM-79) or less. With such an oxygen concentration, it is possible to further suppress the generation of a donor due to oxygen alone or a donor due to a complex of nitrogen and oxygen, and the resistivity change of the FZ single crystal can be further reduced. is there.

以上のようにして、本発明に係る方法(第1の実施態様)に従ってFZ単結晶を製造することができる。本発明では、工程b及び工程cにおいて合わせてゾーニングを計2回以上行うことにより、ゾーニング中に酸素をSiOxとして蒸発させる機会を増やすことができるので、結晶中の酸素濃度を低減し、抵抗率変化の少ないFZ単結晶を製造することができる。   As described above, an FZ single crystal can be produced according to the method (first embodiment) according to the present invention. In the present invention, by performing zoning twice or more in total in step b and step c, the opportunity to evaporate oxygen as SiOx during zoning can be increased, so the oxygen concentration in the crystal is reduced, and the resistivity An FZ single crystal with little change can be produced.

このようにして製造したFZ単結晶は、図1(d)〜(f)に示したように、インゴット加工及びウェーハ加工を施して製品ウェーハとすることができる。   The FZ single crystal thus produced can be processed into an ingot and a wafer as a product wafer as shown in FIGS.

この場合、図1の(d)に示したように、工程cで得られたFZ単結晶に対してインゴット加工を行う(工程d)。この工程は公知の外周研削やエッチングによって行うことができる。   In this case, as shown in FIG. 1D, ingot processing is performed on the FZ single crystal obtained in step c (step d). This step can be performed by known peripheral grinding or etching.

次に、図1の(e)に示したように、工程dで得られたインゴットをウェーハ加工する(工程e)。この工程は、公知のスライス方法、研削、研磨、エッチング等により行うことができる。   Next, as shown in FIG. 1E, the ingot obtained in step d is processed into a wafer (step e). This step can be performed by a known slicing method, grinding, polishing, etching or the like.

このようにして、図1の(f)に示したように、製品ウェーハとすることができる。   In this way, a product wafer can be obtained as shown in FIG.

図2に、本発明のFZ単結晶の製造方法の別の一例として、第2の実施形態のフローの概略を示した。この第2の実施形態は、2回目以降のゾーニングを行った後、ゾーニングを行ったFZ単結晶の端面から採取したウェーハサンプルの酸素濃度を測定し、該測定した酸素濃度に基づいて再度のゾーニングが必要か否かを判定し、該判定により再度のゾーニングが必要と判定された場合に再度のゾーニングを行うものである。図2の(a)、(b)、(d)、(e)、(f)に示したことは、第1の実施形態と同様である。   FIG. 2 shows an outline of the flow of the second embodiment as another example of the method for producing an FZ single crystal of the present invention. In the second embodiment, after the second and subsequent zoning, the oxygen concentration of the wafer sample taken from the end face of the zoned FZ single crystal is measured, and the zoning is performed again based on the measured oxygen concentration. Is determined, and when it is determined that zoning is necessary again, the zoning is performed again. What is shown in (a), (b), (d), (e), and (f) of FIG. 2 is the same as in the first embodiment.

この第2の実施態様では、まず、図2の(a)に示したように、原料としてCZ単結晶を準備する(工程a)。次に、図2の(b)に示したように、工程aで準備したCZ単結晶を用いて1回目のゾーニングを行う(工程b)。これらの工程は第1の実施形態と同様である。   In the second embodiment, first, as shown in FIG. 2A, a CZ single crystal is prepared as a raw material (step a). Next, as shown in FIG. 2B, the first zoning is performed using the CZ single crystal prepared in step a (step b). These steps are the same as those in the first embodiment.

次に、図2の(c1)に示したように、工程bで得られたFZ単結晶に2回目のゾーニングを行う(工程c1)。この工程c1は図1に示された工程cと同様である。ただし、後述する酸素濃度の判定結果によっては、再度この工程を行い、その場合、3回目以降となる。   Next, as shown in FIG. 2 (c1), the second zoning is performed on the FZ single crystal obtained in step b (step c1). This step c1 is the same as the step c shown in FIG. However, depending on the determination result of the oxygen concentration described later, this step is performed again, and in this case, the third and subsequent times.

次に、図2の(c2)に示したように、工程c1で得られたFZ単結晶の端面からウェーハサンプルを採取し、酸素濃度の測定を行う(工程c2)。この工程では、公知の単結晶中の酸素濃度の測定方法を用いることができる。例えばASTM−79に準拠した測定方法を用いることができる。   Next, as shown in FIG. 2 (c2), a wafer sample is taken from the end face of the FZ single crystal obtained in step c1, and the oxygen concentration is measured (step c2). In this step, a known method for measuring the oxygen concentration in a single crystal can be used. For example, a measuring method based on ASTM-79 can be used.

次に、図2の(c3)に示したように、測定した酸素濃度に基づいて再度のゾーニングが必要か否かを判定する(工程c3)。この判定により再度のゾーニングが必要と判定された場合に再度のゾーニング(工程c1)を行う。この判定の基準値は、例えば上記の8×1015atoms/cm(ASTM−79)を用いることができる。工程c2で測定した単結晶の酸素濃度が基準値以下であれば、再度のゾーニングを行う必要はない。 Next, as shown in FIG. 2 (c3), it is determined whether or not zoning is necessary again based on the measured oxygen concentration (step c3). If it is determined by this determination that re-zoning is necessary, re-zoning (step c1) is performed. As a reference value for this determination, for example, the above 8 × 10 15 atoms / cm 3 (ASTM-79) can be used. If the oxygen concentration of the single crystal measured in step c2 is below the reference value, there is no need to perform zoning again.

判定により再度のゾーニングが必要と判定された場合は、再度工程c1〜c3を繰り返す。再度の工程c1〜c3を経て、2回目のゾーニング(工程bと合わせて計3回目のゾーニング)を行っても基準を満たしていないと判定された場合は、3回目(工程bと合わせて計4回目のゾーニング)を行うことになる。   If it is determined that the zoning is necessary again, the steps c1 to c3 are repeated again. If it is determined that the standard is not satisfied even though the second zoning (the third zoning in combination with the step b) is performed through the steps c1 to c3 again, the third time (in combination with the step b) (4th zoning) will be performed.

以上のようにして、本発明に係る方法(第2の実施態様)に従ってFZ単結晶を製造することができる。第2の実施態様では、各ゾーニング工程後のFZ単結晶の端面の酸素濃度を測定して判定に用いることにより、酸素濃度を低減したFZ単結晶をより確実に得ることができる。   As described above, an FZ single crystal can be produced according to the method (second embodiment) according to the present invention. In the second embodiment, by measuring the oxygen concentration at the end face of the FZ single crystal after each zoning step and using it for determination, an FZ single crystal with a reduced oxygen concentration can be obtained more reliably.

このようにして製造したFZ単結晶に対し、図2の(d)、(e)に示した工程d、eでは、第1の実施形態の場合と同様にインゴット加工及びウェーハ加工を行うことができる。このようにして、図2の(f)に示したように、製品ウェーハとすることができる。   In the steps d and e shown in FIGS. 2D and 2E, ingot processing and wafer processing can be performed on the FZ single crystal thus manufactured in the same manner as in the first embodiment. it can. In this way, a product wafer can be obtained as shown in FIG.

以下、実施例及び比較例を示して本発明をより具体的に説明するが、本発明はこれらにより限定されるものではない。   EXAMPLES Hereinafter, although an Example and a comparative example are shown and this invention is demonstrated more concretely, this invention is not limited by these.

(実施例1)
抵抗率が1000Ω・cm以上の直径130mmのCZ単結晶91本を原料棒として、図1に示した本発明の方法に従い、FZ法により2回のゾーニングを行い、直径75mm〜125mmのFZ単結晶を製造した。このFZ単結晶の製造の際には、図3に示すFZ単結晶製造装置を用いた。炉内圧を0.1〜0.2MPa、Arガス流量を30〜100L/minとした。
Example 1
Using 91 CZ single crystals with a resistivity of 1000 Ω · cm or more and a diameter of 130 mm as a raw material rod, zoning is performed twice by the FZ method according to the method of the present invention shown in FIG. 1, and an FZ single crystal having a diameter of 75 mm to 125 mm. Manufactured. When manufacturing this FZ single crystal, the FZ single crystal manufacturing apparatus shown in FIG. 3 was used. The furnace pressure was 0.1 to 0.2 MPa, and the Ar gas flow rate was 30 to 100 L / min.

このようにして2回のゾーニングを行って、FZ単結晶を91本取得した。その後、得られたFZ単結晶端面からウェーハサンプルを採取し、結晶中の酸素濃度を測定した。測定結果を図4に示す。図4に示したように結晶中の酸素濃度は、平均6.01×1015atoms/cm、最大1.60×1016atoms/cm、最小4.00×1015atoms/cm以下であり、8×1015atoms/cm以下の比率は92.3%(84本)であった。 Thus, zoning was performed twice and 91 FZ single crystals were obtained. Thereafter, a wafer sample was taken from the end face of the obtained FZ single crystal, and the oxygen concentration in the crystal was measured. The measurement results are shown in FIG. As shown in FIG. 4, the average oxygen concentration in the crystal is 6.01 × 10 15 atoms / cm 3 , a maximum of 1.60 × 10 16 atoms / cm 3 , and a minimum of 4.00 × 10 15 atoms / cm 3. The ratio of 8 × 10 15 atoms / cm 3 or less was 92.3% (84).

(実施例2)
実施例1で2回のゾーニングを行った後も結晶中の酸素濃度が8×1015atoms/cmより高かったFZ単結晶7本を原料棒として、図2に示した本発明の方法に従い、FZ法により3回目のゾーニングを行い、直径75mm〜125mmのFZ単結晶を製造した。この3回目のゾーニングの際にも、図3に示すFZ単結晶製造装置を用いた。炉内圧を0.1〜0.2MPa、Arガス流量を30〜100L/minとした。
(Example 2)
In accordance with the method of the present invention shown in FIG. 2, seven FZ single crystals whose oxygen concentration in the crystal was higher than 8 × 10 15 atoms / cm 3 even after zoning twice in Example 1 were used as raw material rods. The third zoning was performed by the FZ method to produce an FZ single crystal having a diameter of 75 mm to 125 mm. The FZ single crystal manufacturing apparatus shown in FIG. 3 was also used during the third zoning. The furnace pressure was 0.1 to 0.2 MPa, and the Ar gas flow rate was 30 to 100 L / min.

このようにして計3回のゾーニングを行って、FZ単結晶を7本取得した。その後、得られたFZ単結晶端面からウェーハサンプルを採取し、結晶中の酸素濃度を測定した。結晶中の酸素濃度は、平均6.57×1015atoms/cm、最大8.00×1015atoms/cm、最小4.00×1015atoms/cm以下であり、8×1015atoms/cm以下の比率は100%(7本)であった。 Thus, zoning was performed three times in total to obtain seven FZ single crystals. Thereafter, a wafer sample was taken from the end face of the obtained FZ single crystal, and the oxygen concentration in the crystal was measured. The oxygen concentration in the crystal is an average of 6.57 × 10 15 atoms / cm 3 , a maximum of 8.00 × 10 15 atoms / cm 3 , a minimum of 4.00 × 10 15 atoms / cm 3 or less, and 8 × 10 15 The ratio of atoms / cm 3 or less was 100% (seven).

(比較例1)
抵抗率が1000Ω・cm以上の直径130mmのCZ単結晶1028本を原料棒として、FZ法により1回のみのゾーニングを行い、直径75mm〜125mmのFZ単結晶を製造した。このFZ単結晶の製造の際には、図3に示すFZ単結晶製造装置を用いた。炉内圧を0.1〜0.2MPa、Arガス流量を30〜100L/minとした。
(Comparative Example 1)
Using 1028 CZ single crystals having a resistivity of 1000 Ω · cm or more and a diameter of 130 mm as a raw material rod, zoning was performed only once by the FZ method to produce FZ single crystals having a diameter of 75 mm to 125 mm. When manufacturing this FZ single crystal, the FZ single crystal manufacturing apparatus shown in FIG. 3 was used. The furnace pressure was 0.1 to 0.2 MPa, and the Ar gas flow rate was 30 to 100 L / min.

このようにして1回のみのゾーニングを行って、FZ単結晶を1028本取得した。その後、得られたFZ単結晶端面からウェーハサンプルを採取し、結晶中の酸素濃度を測定した。測定結果を図4に示す。図4に示したように結晶中の酸素濃度は、平均2.59×1016atoms/cm、最大5.04×1016atoms/cm、最小5.6×1015atoms/cmであり、8×1015atoms/cm以下の比率は0.4%(4本)であった。 Thus, zoning was performed only once to obtain 1028 FZ single crystals. Thereafter, a wafer sample was taken from the end face of the obtained FZ single crystal, and the oxygen concentration in the crystal was measured. The measurement results are shown in FIG. As shown in FIG. 4, the oxygen concentration in the crystal is an average of 2.59 × 10 16 atoms / cm 3 , a maximum of 5.04 × 10 16 atoms / cm 3 , and a minimum of 5.6 × 10 15 atoms / cm 3 . Yes, the ratio of 8 × 10 15 atoms / cm 3 or less was 0.4% (four).

(比較例2)
抵抗率が1000Ω・cm以上の直径75〜135mmのFZ用多結晶原料727本を原料棒として、FZ法により1回のみのゾーニングを行い、直径75mm〜125mmのFZ単結晶を製造した。このFZ単結晶の製造の際には、図3に示すFZ単結晶製造装置を用いた。炉内圧を0.1〜0.2MPa、Arガス流量を30〜100L/minとした。
(Comparative Example 2)
Using 727 FZ polycrystalline raw materials having a resistivity of 1000 Ω · cm or more and a diameter of 75 to 135 mm as raw material rods, zoning was carried out only once by the FZ method to produce FZ single crystals having a diameter of 75 mm to 125 mm. When manufacturing this FZ single crystal, the FZ single crystal manufacturing apparatus shown in FIG. 3 was used. The furnace pressure was 0.1 to 0.2 MPa, and the Ar gas flow rate was 30 to 100 L / min.

このようにして1回のみのゾーニングを行って、FZ単結晶を727本取得した。その後、得られたFZ単結晶端面からウェーハサンプルを採取し、結晶中の酸素濃度を測定した。測定結果を図4に示す。図4に示したように結晶中の酸素濃度は、平均6.43×1015atoms/cm、最大1.12×1016atoms/cm、最小4.00×1015atoms/cmであり、8×1015atoms/cm以下の比率は95.5%(694本)であった。 Thus, zoning was performed only once to obtain 727 FZ single crystals. Thereafter, a wafer sample was taken from the end face of the obtained FZ single crystal, and the oxygen concentration in the crystal was measured. The measurement results are shown in FIG. As shown in FIG. 4, the average oxygen concentration in the crystal is 6.43 × 10 15 atoms / cm 3 , the maximum is 1.12 × 10 16 atoms / cm 3 , and the minimum is 4.00 × 10 15 atoms / cm 3 . Yes, the ratio of 8 × 10 15 atoms / cm 3 or less was 95.5% (694).

本発明のFZ単結晶の製造方法に従った実施例1,2では、CZ法で製造した単結晶を原料として用いた場合でも、多結晶シリコン原料を原料として製造されたFZ単結晶と遜色ない低酸素濃度を有するFZ単結晶を得ることができた。   In Examples 1 and 2 according to the method for producing an FZ single crystal of the present invention, even when a single crystal produced by the CZ method is used as a raw material, it is comparable to an FZ single crystal produced from a polycrystalline silicon raw material. An FZ single crystal having a low oxygen concentration could be obtained.

尚、本発明は、上記実施形態に限定されるものではない。上記実施形態は例示であり、本発明の特許請求の範囲に記載された技術的思想と実質的に同一な構成を有し、同様な作用効果を奏するものは、いかなるものであっても本発明の技術的範囲に包含される。   The present invention is not limited to the above embodiment. The above-described embodiment is an exemplification, and the present invention has any configuration that has substantially the same configuration as the technical idea described in the claims of the present invention and that exhibits the same effects. Are included in the technical scope.

1…原料棒、 2…単結晶棒、 3…上軸、 4…上部保持治具、
5…下軸、 6…下部保持治具、7…誘導加熱コイル、
8…種結晶、 9…絞り部、 10…浮遊帯域、 20…チャンバー、
11…ガス吹き付け用ノズル、 30…FZ単結晶製造装置、 40…高周波発振機。
1 ... Raw material rod, 2 ... Single crystal rod, 3 ... Upper shaft, 4 ... Upper holding jig,
5 ... Lower shaft, 6 ... Lower holding jig, 7 ... Induction heating coil,
8 ... seed crystal, 9 ... throttle part, 10 ... floating zone, 20 ... chamber,
DESCRIPTION OF SYMBOLS 11 ... Nozzle for gas spraying, 30 ... FZ single crystal manufacturing apparatus, 40 ... High frequency oscillator.

Claims (2)

CZ法で製造したシリコン単結晶を原料として、FZ法によるゾーニングを行うことにより、FZ単結晶シリコンを製造する方法において、
前記ゾーニングを2回以上行い、
前記ゾーニングを1回行った後のFZ単結晶シリコン中の酸素濃度よりも、前記ゾーニングを2回以上行った後のFZ単結晶シリコン中の酸素濃度を低減させ、
前記2回以上のゾーニングを、該FZ単結晶シリコン中の酸素濃度が8×1015atoms/cm(ASTM−79)以下になるまで繰り返し行うことを特徴とするFZ単結晶シリコンの製造方法。
In a method for producing FZ single crystal silicon by performing zoning by FZ method using a silicon single crystal produced by CZ method as a raw material,
Perform the zoning twice or more,
Than the oxygen concentration of the FZ single-crystal silicon after once the zoning reduces the oxygen concentration of the FZ single-crystal silicon after the zoning more than once,
The method for producing FZ single crystal silicon , wherein the zoning is repeated twice or more until the oxygen concentration in the FZ single crystal silicon becomes 8 × 10 15 atoms / cm 3 (ASTM-79) or less.
前記2回目以降のゾーニングを行った後、前記ゾーニングを行ったFZ単結晶シリコンの端面から採取したウェーハサンプルの酸素濃度を測定し、該測定した酸素濃度に基づいて再度のゾーニングが必要か否かを判定し、
該判定により前記再度のゾーニングが必要と判定された場合に前記再度のゾーニングを行うことを特徴とする請求項1に記載のFZ単結晶シリコンの製造方法。
After the second and subsequent zoning, the oxygen concentration of the wafer sample taken from the end face of the zoned FZ single crystal silicon is measured, and whether or not zoning is necessary again based on the measured oxygen concentration. Determine
2. The method for producing FZ single crystal silicon according to claim 1, wherein the second zoning is performed when it is determined that the second zoning is necessary.
JP2012172280A 2012-08-02 2012-08-02 Manufacturing method of FZ single crystal silicon Active JP5924181B2 (en)

Priority Applications (2)

Application Number Priority Date Filing Date Title
JP2012172280A JP5924181B2 (en) 2012-08-02 2012-08-02 Manufacturing method of FZ single crystal silicon
PCT/JP2013/004228 WO2014020831A1 (en) 2012-08-02 2013-07-09 Method for manufacturing fz single crystal

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2012172280A JP5924181B2 (en) 2012-08-02 2012-08-02 Manufacturing method of FZ single crystal silicon

Publications (2)

Publication Number Publication Date
JP2014031290A JP2014031290A (en) 2014-02-20
JP5924181B2 true JP5924181B2 (en) 2016-05-25

Family

ID=50027545

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2012172280A Active JP5924181B2 (en) 2012-08-02 2012-08-02 Manufacturing method of FZ single crystal silicon

Country Status (2)

Country Link
JP (1) JP5924181B2 (en)
WO (1) WO2014020831A1 (en)

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP6119642B2 (en) * 2014-02-28 2017-04-26 信越半導体株式会社 Manufacturing method of semiconductor single crystal
JP6720841B2 (en) * 2016-11-17 2020-07-08 信越半導体株式会社 Method for manufacturing semiconductor silicon single crystal

Family Cites Families (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS62197387A (en) * 1986-02-21 1987-09-01 Sumitomo Electric Ind Ltd Device for producing high-quality seed crystal
US5436164A (en) * 1990-11-15 1995-07-25 Hemlock Semi-Conductor Corporation Analytical method for particulate silicon
JPH0517292A (en) * 1991-07-05 1993-01-26 Nippon Steel Corp Method for cooling silicon
JP2617253B2 (en) * 1991-07-30 1997-06-04 信越半導体株式会社 Floating zone molten single crystal production method
JPH05208886A (en) * 1992-01-30 1993-08-20 Kyushu Electron Metal Co Ltd Production of single crystal
JP4982034B2 (en) * 2004-03-30 2012-07-25 信越半導体株式会社 Method for producing silicon single crystal
JP5070737B2 (en) * 2006-05-26 2012-11-14 信越半導体株式会社 Method for producing FZ single crystal silicon using silicon crystal rod produced by CZ method as raw material

Also Published As

Publication number Publication date
WO2014020831A1 (en) 2014-02-06
JP2014031290A (en) 2014-02-20

Similar Documents

Publication Publication Date Title
JP5070737B2 (en) Method for producing FZ single crystal silicon using silicon crystal rod produced by CZ method as raw material
JP6537590B2 (en) Method of manufacturing silicon carbide single crystal ingot
JP2014509584A (en) Method for producing single crystal ingot and single crystal ingot and wafer produced thereby
JP4367213B2 (en) Method for producing silicon single crystal
KR20150094628A (en) Method for producing monocrystalline silicon
JP5464429B2 (en) Method for growing single crystal silicon having a square cross section
CN103403231B (en) The manufacture method of n type single crystal silicon and mix phosphorus n type single crystal silicon
JP2006248825A (en) Silicon carbide ingot and its manufacturing method
JP5924181B2 (en) Manufacturing method of FZ single crystal silicon
JP5318365B2 (en) Silicon crystal material and method for producing FZ silicon single crystal using the same
JP4060106B2 (en) Unidirectionally solidified silicon ingot, manufacturing method thereof, silicon plate, solar cell substrate and sputtering target material
JP2015514674A (en) Ingot growth method and ingot
JP6432879B2 (en) Epitaxial wafer manufacturing method
JP6645409B2 (en) Silicon single crystal manufacturing method
KR101751789B1 (en) Silicon single crystal ingot and method for growing the same
JP5880415B2 (en) Single crystal manufacturing method
JP6172013B2 (en) Method for producing GSGG single crystal and method for producing oxide garnet single crystal film
JP2010132470A (en) Method for producing silicon single crystal by fz method
JP6645408B2 (en) Silicon single crystal manufacturing method and silicon single crystal wafer
JP2009023851A (en) Method for producing raw material for producing silicon single crystal, and method for producing silicon single crystal
JP5846071B2 (en) Manufacturing method of semiconductor single crystal rod by FZ method
JP6954083B2 (en) Method for manufacturing silicon raw material rod for FZ and method for manufacturing FZ silicon single crystal
WO2020100512A1 (en) Method for producing single crystal
JP6488975B2 (en) Pulling method of silicon single crystal
KR101818250B1 (en) Apparatus of ingot growing

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20140717

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20150825

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20151007

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20160105

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20160215

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20160322

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20160404

R150 Certificate of patent or registration of utility model

Ref document number: 5924181

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250