JP5880415B2 - Single crystal manufacturing method - Google Patents

Single crystal manufacturing method Download PDF

Info

Publication number
JP5880415B2
JP5880415B2 JP2012267303A JP2012267303A JP5880415B2 JP 5880415 B2 JP5880415 B2 JP 5880415B2 JP 2012267303 A JP2012267303 A JP 2012267303A JP 2012267303 A JP2012267303 A JP 2012267303A JP 5880415 B2 JP5880415 B2 JP 5880415B2
Authority
JP
Japan
Prior art keywords
single crystal
oxygen concentration
crystal
raw material
rod
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
JP2012267303A
Other languages
Japanese (ja)
Other versions
JP2014114173A (en
Inventor
義博 児玉
義博 児玉
佐藤 賢一
佐藤  賢一
慶一 中澤
慶一 中澤
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Shin Etsu Handotai Co Ltd
Original Assignee
Shin Etsu Handotai Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Shin Etsu Handotai Co Ltd filed Critical Shin Etsu Handotai Co Ltd
Priority to JP2012267303A priority Critical patent/JP5880415B2/en
Publication of JP2014114173A publication Critical patent/JP2014114173A/en
Application granted granted Critical
Publication of JP5880415B2 publication Critical patent/JP5880415B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Landscapes

  • Crystals, And After-Treatments Of Crystals (AREA)

Description

本発明は、原料結晶棒を誘導加熱コイルで加熱溶融して浮遊帯域を形成し、該浮遊帯域を移動させることで半導体単結晶棒を製造するFZ法(フローティングゾーン法または浮遊帯溶融法)による半導体単結晶棒の製造方法に関する。   The present invention is based on the FZ method (floating zone method or floating zone melting method) in which a raw material crystal rod is heated and melted by an induction heating coil to form a floating zone and a semiconductor single crystal rod is manufactured by moving the floating zone. The present invention relates to a method for manufacturing a semiconductor single crystal rod.

図2は、一般的に用いられるFZ法による単結晶製造装置である。このFZ単結晶製造装置30を用いて、単結晶を製造する方法について説明する。
まず、原料結晶棒1を成長炉20内に設置された上軸3の上部保持治具4に保持する。一方、直径の小さい単結晶の種(種結晶)8を、原料結晶棒1の下方に位置する下軸5の下部保持治具6に保持する。
FIG. 2 shows a single crystal manufacturing apparatus using a commonly used FZ method. A method of manufacturing a single crystal using the FZ single crystal manufacturing apparatus 30 will be described.
First, the raw crystal rod 1 is held by the upper holding jig 4 of the upper shaft 3 installed in the growth furnace 20. On the other hand, a single crystal seed (seed crystal) 8 having a small diameter is held by the lower holding jig 6 of the lower shaft 5 located below the raw crystal rod 1.

次に、誘導加熱コイル7により原料結晶棒1を溶融して、種結晶8に融着させる。その後、種絞りにより絞り部9を形成して無転位化する。そして、上軸3と下軸5を回転させながら原料結晶棒1と単結晶棒2を下降させることで浮遊帯域10(溶融帯あるいはメルトともいう)を原料結晶棒1と単結晶棒2の間に形成し、当該浮遊帯域10を原料結晶棒1の上端まで移動させてゾーニングし、単結晶棒2を成長させる。
この単結晶成長は、Arガスに微量の窒素ガスを混合した雰囲気中で行われる。
Next, the raw material crystal rod 1 is melted by the induction heating coil 7 and fused to the seed crystal 8. Thereafter, the narrowed portion 9 is formed by seed drawing to make dislocation-free. Then, by rotating the upper shaft 3 and the lower shaft 5 while lowering the raw material crystal rod 1 and the single crystal rod 2, a floating zone 10 (also referred to as a melting zone or a melt) is formed between the raw material crystal rod 1 and the single crystal rod 2. The floating zone 10 is moved to the upper end of the raw crystal rod 1 and zoned to grow the single crystal rod 2.
This single crystal growth is performed in an atmosphere in which a trace amount of nitrogen gas is mixed with Ar gas.

また、上記誘導加熱コイル7としては、銅または銀からなる単巻または複巻の冷却用の水を流通させた誘導加熱コイルが用いられている。   Further, as the induction heating coil 7, an induction heating coil is used in which a single or multiple winding water made of copper or silver is circulated.

特開2007−314374号公報JP 2007-314374 A 特開2011−116570号公報JP 2011-116570 A

上記のようなFZ法による単結晶製造において用いられる原料としては、円柱状の結晶(多結晶、単結晶、多結晶種により成長させた中間結晶、有転位結晶を含む)を使用する。この円柱状の結晶として、CZ法(チョクラルスキー法)で製造した単結晶を原料とする場合もある(特許文献1、特許文献2参照)。通常、CZ法で製造した単結晶には製造時にルツボからの酸素が混入するため酸素を含んでいる。そのため、このCZ単結晶を原料として用いた場合には、ゾーニング後のFZ結晶中には0.1ppma(JEIDA:日本電子工業振興協会による換算係数を使用)を超える、多くは0.25ppmaを超える酸素が含まれる。   As a raw material used in the production of a single crystal by the FZ method as described above, a columnar crystal (including a polycrystal, a single crystal, an intermediate crystal grown by a polycrystal seed, and a dislocation crystal) is used. As this columnar crystal, a single crystal manufactured by the CZ method (Czochralski method) may be used as a raw material (see Patent Document 1 and Patent Document 2). Usually, a single crystal produced by the CZ method contains oxygen because oxygen from the crucible is mixed during production. Therefore, when this CZ single crystal is used as a raw material, the FZ crystal after zoning exceeds 0.1 ppma (JEIDA: using conversion factor by Japan Electronics Industry Promotion Association), and many exceed 0.25 ppma Contains oxygen.

しかし、このような微量な酸素であっても、製造する単結晶中に酸素単体若しくは窒素と酸素によりドナーが発生し、特に1000Ωcm以上の高抵抗率領域での抵抗率変化の原因となる。従って、製造する単結晶の酸素濃度を低減する方法が望まれていた。   However, even with such a small amount of oxygen, donors are generated in the single crystal to be produced by simple oxygen or nitrogen and oxygen, which causes a change in resistivity particularly in a high resistivity region of 1000 Ωcm or more. Therefore, a method for reducing the oxygen concentration of a single crystal to be produced has been desired.

本発明は前述のような問題に鑑みてなされたもので、特にCZ法で製造した単結晶を原料としてFZ法で製造する単結晶(以降、FZ単結晶と呼ぶことがある)の酸素濃度を、望ましくは0.1ppma以下に容易に低減できる単結晶の製造方法を提供することを目的とする。   The present invention has been made in view of the above-described problems. In particular, the oxygen concentration of a single crystal manufactured by the FZ method using a single crystal manufactured by the CZ method as a raw material (hereinafter sometimes referred to as FZ single crystal) is set. It is an object of the present invention to provide a method for producing a single crystal that can be easily reduced to 0.1 ppma or less.

上記目的を達成するために、本発明によれば、成長炉内に収容された誘導加熱コイルで原料結晶棒を部分的に溶融して溶融帯域を形成し、該溶融帯域を移動させて単結晶を成長させるFZ法による単結晶の製造方法であって、前記単結晶の製造条件である前記単結晶の成長速度SE(mm/min)、前記成長炉内の圧力P(MPa)、前記原料結晶棒の酸素濃度MO(ppma)、前記成長させる単結晶の直径D(mm)、前記成長させる単結晶の酸素濃度Oi(ppma)を含む関係式Oi=a×SE+b×P+c×MO+d×D+eの定数a、b、c、d、eを重回帰分析によって求める工程と、前記関係式を用いて前記単結晶の製造条件をそれぞれ決定する工程と、前記決定した製造条件で前記単結晶を成長させる工程とを含むことを特徴とする単結晶の製造方法が提供される。   In order to achieve the above object, according to the present invention, a raw crystal rod is partially melted by an induction heating coil housed in a growth furnace to form a melting zone, and the melting zone is moved to move a single crystal A method for producing a single crystal by the FZ method, wherein the growth rate SE (mm / min) of the single crystal, which is the production condition of the single crystal, the pressure P (MPa) in the growth furnace, and the raw crystal Constant of relation Oi = a × SE + b × P + c × MO + d × D + e including oxygen concentration MO (ppma) of rod, diameter D (mm) of single crystal to be grown, and oxygen concentration Oi (ppma) of single crystal to be grown a step of obtaining a, b, c, d, e by multiple regression analysis; a step of determining manufacturing conditions of the single crystal using the relational expression; and a step of growing the single crystal under the determined manufacturing conditions. And including Method for producing a single crystal is provided to symptoms.

このような製造方法であれば、製造する単結晶の酸素濃度を簡単かつ確実に低減して、特に酸素濃度が0.1ppma以下の単結晶を製造できる。   With such a manufacturing method, it is possible to easily and reliably reduce the oxygen concentration of the single crystal to be manufactured, and particularly to manufacture a single crystal having an oxygen concentration of 0.1 ppma or less.

このとき、前記原料結晶棒として、CZ法で製造した酸素を含む単結晶棒を用いることができる。
本発明では製造する単結晶の酸素濃度を確実に低減できるので、CZ法で製造した酸素を含む低コストの単結晶棒を原料結晶棒として用いる場合にも、低酸素濃度のFZ単結晶を得ることができる。
At this time, a single crystal rod containing oxygen produced by the CZ method can be used as the raw material crystal rod.
In the present invention, since the oxygen concentration of the produced single crystal can be reliably reduced, even when a low-cost single crystal rod containing oxygen produced by the CZ method is used as a raw material crystal rod, an FZ single crystal having a low oxygen concentration is obtained. be able to.

また、前記単結晶の製造条件を決定する工程において、前記成長させる単結晶の酸素濃度Oiを0.1ppma以下に決定することが好ましい。
このようにすれば、抵抗率変化のない酸素濃度が0.1ppma以下の単結晶を確実に製造できる。
In the step of determining the manufacturing conditions for the single crystal, it is preferable to determine the oxygen concentration Oi of the single crystal to be grown to 0.1 ppma or less.
In this way, it is possible to reliably produce a single crystal having an oxygen concentration of 0.1 ppma or less without any change in resistivity.

また、前記関係式の定数a、b、c、d、eを求める工程において、aを0.18553、bを0.59418、cを0.00834、dを0.00024、eを0.29501とすることができる。
このように予め求めておいた定数a、b、c、d、eを用いれば、成長させる単結晶の酸素濃度を低減するための製造条件をより容易に決定でき、工程時間を低減できる。
In the step of obtaining the constants a, b, c, d, and e in the relational expression, a is 0.18553, b is 0.59418, c is 0.00834, d is 0.00024, and e is 0.29501. It can be.
If the constants a, b, c, d, and e obtained in advance are used in this way, manufacturing conditions for reducing the oxygen concentration of the single crystal to be grown can be determined more easily, and the process time can be reduced.

また、前記単結晶の製造条件を決定する工程の後に前記原料結晶棒を準備する工程を有し、前記単結晶の製造条件を決定する工程において、前記単結晶の成長速度SE、前記成長炉内の圧力P、前記成長させる単結晶の直径D、前記成長させる単結晶の酸素濃度Oiをそれぞれ所望の値に決定した後、前記関係式を用いて前記原料結晶棒の酸素濃度MOを算出して決定し、前記原料結晶棒を準備する工程において、前記決定した酸素濃度MOを有する原料結晶棒を準備し、前記単結晶を成長させる工程において、前記準備した原料結晶棒を用いて前記単結晶を成長させることができる。   And a step of preparing the raw crystal rod after the step of determining the manufacturing conditions of the single crystal, and in the step of determining the manufacturing conditions of the single crystal, the growth rate SE of the single crystal, the growth furnace Pressure P, the diameter D of the single crystal to be grown, and the oxygen concentration Oi of the single crystal to be grown are set to desired values, respectively, and the oxygen concentration MO of the raw crystal rod is calculated using the relational expression. In the step of determining and preparing the raw material crystal rod, the raw material crystal rod having the determined oxygen concentration MO is prepared, and in the step of growing the single crystal, the single crystal is prepared using the prepared raw material crystal rod. Can be grown.

このようにすれば、所望の単結晶の成長速度SE、成長炉内の圧力P、単結晶の直径Dの製造条件を決定して目標とする酸素濃度Oiの単結晶を育成するときの適切な原料結晶棒の酸素濃度MOを決定でき、この決定した酸素濃度MOの原料結晶棒を用いて確実に目標とする酸素濃度Oiの単結晶を製造できる。   In this way, the growth rate SE of the desired single crystal, the pressure P in the growth furnace, the production conditions of the single crystal diameter D are determined, and appropriate for growing a single crystal with a target oxygen concentration Oi. The oxygen concentration MO of the raw material crystal rod can be determined, and a single crystal having the target oxygen concentration Oi can be reliably manufactured using the raw material crystal rod having the determined oxygen concentration MO.

また、前記単結晶の製造条件を決定する工程の前に前記原料結晶棒を準備する工程を有し、前記原料結晶棒を準備する工程において、前記準備した原料結晶棒の酸素濃度MOを測定し、前記単結晶の製造条件を決定する工程において、前記成長炉内の圧力P、前記単結晶の直径D、前記単結晶の酸素濃度Oiをそれぞれ所望の値に決定した後、前記関係式を用いて前記単結晶の成長速度SEを算出して決定し、前記単結晶を成長させる工程において、前記準備した原料結晶棒を用いて前記単結晶を前記決定した製造条件で成長させることができる。   In addition, the method includes the step of preparing the raw material crystal rod before the step of determining the manufacturing conditions of the single crystal, and in the step of preparing the raw material crystal rod, the oxygen concentration MO of the prepared raw material crystal rod is measured. In the step of determining the manufacturing conditions of the single crystal, after determining the pressure P in the growth furnace, the diameter D of the single crystal, and the oxygen concentration Oi of the single crystal to desired values, the relational expression is used. In the step of calculating and determining the growth rate SE of the single crystal and growing the single crystal, the single crystal can be grown under the production conditions determined using the prepared raw material crystal rod.

このようにすれば、用いる原料結晶棒の酸素濃度MO及び所望の成長炉内の圧力P、単結晶の直径Dの製造条件を決定して目標とする酸素濃度Oiの単結晶を育成するときの適切な成長速度SEを決定でき、これら決定した条件で確実に目標とする酸素濃度Oiの単結晶を製造できる。   In this way, the oxygen concentration MO of the raw material crystal rod to be used, the pressure P in the desired growth furnace, the production conditions of the diameter D of the single crystal are determined, and the single crystal having the target oxygen concentration Oi is grown. An appropriate growth rate SE can be determined, and a single crystal having a target oxygen concentration Oi can be reliably manufactured under these determined conditions.

また、前記単結晶の製造条件を決定する工程の前に前記原料結晶棒を準備する工程を有し、前記原料結晶棒を準備する工程において、前記準備した原料結晶棒の酸素濃度MOを測定し、前記単結晶の製造条件を決定する工程において、前記単結晶の成長速度SE、前記単結晶の直径D、前記単結晶の酸素濃度Oiをそれぞれ所望の値に決定した後、前記関係式を用いて前記成長炉内の圧力Pを算出して決定し、前記単結晶を成長させる工程において、前記準備した原料結晶棒を用いて前記単結晶を前記決定した製造条件で成長させることができる。   In addition, the method includes the step of preparing the raw material crystal rod before the step of determining the manufacturing conditions of the single crystal, and in the step of preparing the raw material crystal rod, the oxygen concentration MO of the prepared raw material crystal rod is measured. In the step of determining the manufacturing conditions of the single crystal, after determining the growth rate SE of the single crystal, the diameter D of the single crystal, and the oxygen concentration Oi of the single crystal to desired values, the relational expression is used. In the step of calculating and determining the pressure P in the growth furnace and growing the single crystal, the single crystal can be grown under the determined manufacturing conditions using the prepared raw material crystal rod.

このようにすれば、用いる原料結晶棒の酸素濃度MO及び所望の単結晶の成長速度SE、単結晶の直径Dの製造条件を決定して目標とする酸素濃度Oiの単結晶を育成するときの適切な成長炉内の圧力Pを決定でき、これら決定した条件で確実に目標とする酸素濃度Oiの単結晶を製造できる。   In this way, when the oxygen concentration MO of the raw material crystal rod to be used, the growth rate SE of the desired single crystal, and the production conditions of the diameter D of the single crystal are determined, the single crystal having the target oxygen concentration Oi is grown. An appropriate pressure P in the growth furnace can be determined, and a single crystal having a target oxygen concentration Oi can be reliably manufactured under the determined conditions.

本発明では、単結晶の製造条件である単結晶の成長速度SE(mm/min)、成長炉内の圧力P(MPa)、原料結晶棒の酸素濃度MO(ppma)、成長させる単結晶の直径D(mm)、成長させる単結晶の酸素濃度Oi(ppma)を含む関係式Oi=a×SE+b×P+c×MO+d×D+eを用いて単結晶の製造条件をそれぞれ決定し、決定した製造条件で単結晶を成長させるので、製造する単結晶の酸素濃度を簡単かつ確実に低減して、特に酸素濃度が0.1ppma以下の単結晶を製造できる。これによって抵抗率変化のない高抵抗率の単結晶を製造することができる。   In the present invention, the single crystal growth rate SE (mm / min), the pressure P (MPa) in the growth furnace, the oxygen concentration MO (ppma) of the raw crystal rod, and the diameter of the single crystal to be grown are the production conditions of the single crystal. D (mm) and the relational expression Oi = a × SE + b × P + c × MO + d × D + e including the oxygen concentration Oi (ppma) of the single crystal to be grown are respectively determined. Since the crystal is grown, the oxygen concentration of the single crystal to be produced can be easily and reliably reduced, and a single crystal having an oxygen concentration of 0.1 ppma or less can be produced. This makes it possible to produce a single crystal having a high resistivity with no change in resistivity.

本発明の単結晶の製造方法の一例を示すフロー図である。It is a flowchart which shows an example of the manufacturing method of the single crystal of this invention. FZ法による単結晶製造装置を用いて本発明の単結晶の製造方法を実施する様子を説明する説明図である。It is explanatory drawing explaining a mode that the manufacturing method of the single crystal of this invention is implemented using the single crystal manufacturing apparatus by FZ method. 原料結晶棒として、CZ法により製造した単結晶を用いた場合と、多結晶を用いた場合の成長させた単結晶中の酸素濃度を比較した図である。It is the figure which compared the oxygen concentration in the grown single crystal when the single crystal manufactured by CZ method was used as a raw material crystal | crystallization rod, and the case where a polycrystal was used. 成長速度とFZ単結晶の酸素濃度の関係の一例を示す図である。It is a figure which shows an example of the relationship between a growth rate and the oxygen concentration of FZ single crystal. 成長炉の圧力とFZ単結晶の酸素濃度の関係の一例を示す図である。It is a figure which shows an example of the relationship between the pressure of a growth furnace, and the oxygen concentration of FZ single crystal. 原料結晶棒の酸素濃度とFZ単結晶の酸素濃度の関係の一例を示す図である。It is a figure which shows an example of the relationship between the oxygen concentration of a raw material crystal rod, and the oxygen concentration of a FZ single crystal.

以下、本発明について実施の形態を説明するが、本発明はこれに限定されるものではない。
本発明者は、FZ法による単結晶製造中に浮遊帯域に含まれる酸素が浮遊帯域表面からSiOxとして蒸発することにより、1回のゾーニングで製造する結晶中の酸素濃度は原料結晶棒の酸素濃度の約1/50に低下するものの、図3に示すように、多結晶を原料としてFZ法により単結晶を製造した場合、酸素濃度はドナー化の影響がほぼない0.1ppma以下であるのに対して、CZ法で製造した単結晶棒を原料とした場合、上記低減効果だけでは0.1ppma以下の所望の酸素濃度が得られないことを知見した。
Hereinafter, although an embodiment is described about the present invention, the present invention is not limited to this.
The present inventor found that oxygen contained in the floating zone evaporates as SiOx from the surface of the floating zone during single crystal production by the FZ method, so that the oxygen concentration in the crystal produced by one zoning is the oxygen concentration of the raw crystal rod. However, as shown in FIG. 3, when a single crystal is produced by using the polycrystal as a raw material by the FZ method, the oxygen concentration is 0.1 ppma or less, which is almost unaffected by donor formation. On the other hand, when a single crystal rod produced by the CZ method is used as a raw material, it has been found that a desired oxygen concentration of 0.1 ppma or less cannot be obtained only by the above-described reduction effect.

そこで、本発明者は、SiOxの蒸発のための時間を変化させる要素として成長速度、単位時間あたりのSiOx蒸発量を変化させる要素として成長炉の圧力、酸素供給源として原料結晶棒の酸素濃度に注目し、それぞれの要素と成長させたFZ単結晶の酸素濃度との関係を調査した。
まず、成長速度に関して、直径200mm(8インチ)の単結晶を製造した際の成長速度とFZ単結晶の酸素濃度の関係を調べた。その結果、図4に示すように、成長速度が遅い程、FZ単結晶の酸素濃度が低下する傾向があり、成長速度を0.85mm/min以下にすると目標としている0.1ppma以下の酸素濃度にできることが分かった。
Therefore, the present inventor determined the growth rate as an element for changing the time for evaporation of SiOx, the pressure of the growth furnace as an element for changing the amount of SiOx evaporation per unit time, and the oxygen concentration of the raw material crystal rod as an oxygen supply source. Attention was focused on the relationship between each element and the oxygen concentration of the grown FZ single crystal.
First, regarding the growth rate, the relationship between the growth rate and the oxygen concentration of the FZ single crystal when a single crystal having a diameter of 200 mm (8 inches) was manufactured was examined. As a result, as shown in FIG. 4, the slower the growth rate, the lower the oxygen concentration of the FZ single crystal, and the target oxygen concentration of 0.1 ppma or less when the growth rate is 0.85 mm / min or less. I understood that I can do it.

また、成長炉の圧力に関して、直径100mm(4インチ)の単結晶を製造した際の成長炉内圧とFZ単結晶の酸素濃度の関係を調べた。その結果、図5に示すように、成長炉内圧が低い程、FZ単結晶の酸素濃度が低下する傾向があり、計算上、成長炉内圧を−0.013MPa以下にすると目標としている0.1ppma以下の酸素濃度にできると考えられる。   Regarding the growth furnace pressure, the relationship between the growth furnace internal pressure and the oxygen concentration of the FZ single crystal when a single crystal having a diameter of 100 mm (4 inches) was manufactured was examined. As a result, as shown in FIG. 5, the lower the growth furnace pressure, the lower the oxygen concentration of the FZ single crystal. In calculation, the target is 0.1 ppma when the growth furnace pressure is set to −0.013 MPa or less. It is considered that the following oxygen concentration can be achieved.

更に、原料結晶棒の酸素濃度に関して、直径150mm(6インチ)で原料結晶棒の酸素濃度とFZ単結晶の酸素濃度の関係を調べた。その結果、図6に示すように原料結晶棒の酸素濃度が低い程、FZ単結晶の酸素濃度が低下する傾向があり、計算上、FZ単結晶の酸素濃度を0.35ppma以下にすると目標としている0.1ppma以下の酸素濃度にできると考えられる。   Further, regarding the oxygen concentration of the raw material crystal rod, the relationship between the oxygen concentration of the raw material crystal rod and the oxygen concentration of the FZ single crystal was examined at a diameter of 150 mm (6 inches). As a result, as shown in FIG. 6, the lower the oxygen concentration of the raw crystal rod, the lower the oxygen concentration of the FZ single crystal. In calculation, the target is to reduce the oxygen concentration of the FZ single crystal to 0.35 ppma or less. It is thought that the oxygen concentration of 0.1 ppma or less can be achieved.

しかし、成長速度を1.0mm/min以下にすると、極度に原料供給速度が遅くなるため、溶融状態が不均一となり、原料外周部に溶け残りがツララ状に成長するハナと呼ばれる現象が発生しやすくなり、落下したハナが固液界面に付着して有転位化したり、放電トラブルが発生し、操業状態が極めて悪くなる。また、成長炉内圧を下げると、高周波電圧印加による放電トラブルの発生が顕著になる。さらに、原料中の酸素濃度を0.3ppma以下にすることは、CZ法による単結晶製造では極めて困難である。すなわち、1つの条件だけで酸素濃度を0.1ppma以下とするのは難しい。   However, if the growth rate is set to 1.0 mm / min or less, the raw material supply rate becomes extremely slow, so that the molten state becomes non-uniform, and a phenomenon called hana in which the undissolved portion of the raw material grows in a wiggle shape occurs. It becomes easier, and the dropped Hana adheres to the solid-liquid interface and dislocation occurs, or a discharge trouble occurs, resulting in extremely poor operating conditions. Moreover, when the growth furnace internal pressure is lowered, the occurrence of discharge troubles due to the application of high-frequency voltage becomes significant. Furthermore, it is extremely difficult to make the oxygen concentration in the raw material 0.3 ppma or less in the production of a single crystal by the CZ method. That is, it is difficult to reduce the oxygen concentration to 0.1 ppma or less under only one condition.

従って、安定して0.1ppma以下の低酸素濃度のFZ単結晶を製造するためには、成長速度SE、成長炉の圧力P、原料結晶棒の酸素濃度MOという複数の条件を組み合わせて、最適な条件を設定することが必要である。
そこで、本発明者は、最適な条件を設定する手段として、成長速度SE、成長炉の圧力P、原料結晶棒の酸素濃度MO、成長する単結晶の直径D、FZ単結晶の酸素濃度Oiのデータ(データ数N=888)を重回帰分析を行うことにより、FZ単結晶の酸素濃度を算出するための関係式を求めた。更に、本発明者は、この関係式を使用して最適な製造条件を容易に決定できることに想到し、本発明を完成させた。
Therefore, in order to stably produce an FZ single crystal having a low oxygen concentration of 0.1 ppma or less, it is optimal to combine a plurality of conditions of growth rate SE, growth furnace pressure P, and raw material crystal rod oxygen concentration MO. It is necessary to set appropriate conditions.
Therefore, the present inventor has, as means for setting optimum conditions, the growth rate SE, the growth furnace pressure P, the oxygen concentration MO of the raw material crystal rod, the diameter D of the growing single crystal, and the oxygen concentration Oi of the FZ single crystal. By performing multiple regression analysis on the data (data number N = 888), a relational expression for calculating the oxygen concentration of the FZ single crystal was obtained. Furthermore, the present inventor has come up with the idea that the optimum manufacturing conditions can be easily determined using this relational expression, thus completing the present invention.

まず、本発明の単結晶の製造方法において用いることができるFZ法による単結晶製造装置について説明する。
前述の図2に示すように、FZ単結晶製造装置30は、成長炉20を有しており、成長炉20内には、上下動および回転可能な上軸3および下軸5が設けられている。
上軸3には上部保持治具4が取り付けられており、該上部保持治具4によって、原料結晶棒1が保持されている。また下軸5に取り付けられた下部保持治具6には種結晶8が取り付けられており、該種結晶8の上方にFZ単結晶2を成長させる。
First, an apparatus for producing a single crystal by the FZ method that can be used in the method for producing a single crystal of the present invention will be described.
As shown in FIG. 2 described above, the FZ single crystal manufacturing apparatus 30 includes a growth furnace 20, and an upper shaft 3 and a lower shaft 5 that can move up and down and rotate are provided in the growth furnace 20. Yes.
An upper holding jig 4 is attached to the upper shaft 3, and the raw crystal rod 1 is held by the upper holding jig 4. A seed crystal 8 is attached to the lower holding jig 6 attached to the lower shaft 5, and the FZ single crystal 2 is grown above the seed crystal 8.

また、成長炉20内には誘導加熱コイル7が配置されている。該誘導加熱コイル7により原料結晶棒1は加熱溶融され、製造されるFZ単結晶2との間に浮遊帯域10が形成される。この浮遊帯域10を原料結晶棒1の上端まで移動させてゾーニングし、単結晶2を成長させていく。この際、必要に応じてガス吹き付け用ノズル11から浮遊帯域10にドーピング用ガス等を吹き付けることもできる。   An induction heating coil 7 is disposed in the growth furnace 20. The raw material crystal rod 1 is heated and melted by the induction heating coil 7, and a floating zone 10 is formed between the manufactured FZ single crystal 2. The floating zone 10 is moved to the upper end of the raw material crystal rod 1 to perform zoning, and the single crystal 2 is grown. At this time, a doping gas or the like can be sprayed from the gas spray nozzle 11 to the floating zone 10 as necessary.

ここで本発明の単結晶の製造方法について、上記したFZ単結晶製造装置を用いた場合を例に説明する。
図1に示すように、まず、成長速度SE、成長炉内の圧力P、原料結晶棒1の酸素濃度MO、FZ単結晶2の直径D、FZ単結晶2の酸素濃度Oiのデータを収集する(図1の(A))。これらデータは、例えば実際にFZ単結晶2を製造した際の製造条件として収集することができる。
次に、収集したデータを用い、関係式Oi=a×SE+b×P+c×MO+d×D+eの定数a、b、c、d、eを重回帰分析によって求める(図1の(B))。
Here, the case of using the above-described FZ single crystal manufacturing apparatus will be described as an example of the method for manufacturing a single crystal of the present invention.
As shown in FIG. 1, first, data on the growth rate SE, the pressure P in the growth furnace, the oxygen concentration MO of the raw material crystal rod 1, the diameter D of the FZ single crystal 2, and the oxygen concentration Oi of the FZ single crystal 2 are collected. ((A) of FIG. 1). These data can be collected, for example, as manufacturing conditions when the FZ single crystal 2 is actually manufactured.
Next, using the collected data, constants a, b, c, d, and e of the relational expression Oi = a × SE + b × P + c × MO + d × D + e are obtained by multiple regression analysis ((B) in FIG. 1).

これら工程(A)(B)は予め1度行って定数を求めておけば良く、例えば、aを0.18553、bを0.59418、cを0.00834、dを0.00024、eを0.29501とするこことができ、関係式を以下とすることができる。
Oi=0.18553×SE+0.59418×P+0.00834×MO+0.00024×D+0.29501 (1)
但し、精度を更に高めるためには、結晶回転数、偏芯量、ワークコイル形状、原料直径等の操業条件を同条件にして、重回帰分析のためのデータを収集することが好ましい。
These steps (A) and (B) may be performed once in advance to obtain constants. For example, a is 0.18553, b is 0.59418, c is 0.00834, d is 0.00024, and e is 0.29501 and the relational expression can be as follows.
Oi = 0.185553 × SE + 0.59418 × P + 0.00834 × MO + 0.00024 × D + 0.29501 (1)
However, in order to further improve the accuracy, it is preferable to collect data for multiple regression analysis under the same operating conditions such as crystal rotation speed, eccentricity, work coil shape, and raw material diameter.

次に、上記の関係式を用いて単結晶の製造条件(成長速度SE、成長炉20内の圧力P、原料結晶棒1の酸素濃度MO、FZ単結晶2の直径D、FZ単結晶2の酸素濃度Oi)をそれぞれ決定する(図1の(C))。
この製造条件を決定する工程(C)では、まず、製造するFZ単結晶2の目標とする酸素濃度Oiを決定する。ここで、決定する酸素濃度Oiは0.1ppma以下であることが好ましい。更に、上記した残りの4つの製造条件(成長速度SE、成長炉20内の圧力P、原料結晶棒1の酸素濃度MO、FZ単結晶2の直径D)のうち3つの条件を所望の値に決定し、残りの1つの条件を関係式から算出して決定する。
Next, using the above relational expression, the production conditions of the single crystal (growth rate SE, pressure P in the growth furnace 20, oxygen concentration MO of the raw crystal rod 1, the diameter D of the FZ single crystal 2, the FZ single crystal 2 Each of the oxygen concentrations Oi) is determined ((C) in FIG. 1).
In the step (C) for determining the manufacturing conditions, first, the target oxygen concentration Oi of the FZ single crystal 2 to be manufactured is determined. Here, the oxygen concentration Oi to be determined is preferably 0.1 ppma or less. Further, three of the remaining four manufacturing conditions (growth rate SE, pressure P in the growth furnace 20, oxygen concentration MO of the raw crystal rod 1 and diameter D of the FZ single crystal 2) are set to desired values. The remaining one condition is calculated from the relational expression and determined.

ここで、成長速度SEは、操業トラブル発生や品質の面から許容できる範囲内で決定することができる。また、成長炉20内の圧力Pは、例えば、FZ単結晶製造装置の能力、放電等の操業トラブルの面から許容できる範囲内で決定することができる。また、原料結晶棒1の酸素濃度MOは、例えば、CZ法で製造する単結晶棒を用いる場合には、CZ単結晶製造装置の能力や操業性の面から許容できる範囲内で決定することができる。   Here, the growth rate SE can be determined within an allowable range in terms of operation trouble occurrence and quality. Moreover, the pressure P in the growth furnace 20 can be determined within a range that can be tolerated from the viewpoint of operational troubles such as the capability of the FZ single crystal manufacturing apparatus and electric discharge. Further, the oxygen concentration MO of the raw material crystal rod 1 can be determined within the allowable range from the viewpoint of the capability and operability of the CZ single crystal production apparatus when, for example, a single crystal rod produced by the CZ method is used. it can.

製造条件を決定する工程(C)において、原料結晶棒1の酸素濃度MOを関係式(1)から算出して決定する場合について以下に説明する。
まず、成長速度SE、成長炉内の圧力P、FZ単結晶2の直径Dをそれぞれ所望の値に決定する。そして、決定したこれら条件と目標の酸素濃度Oiを関係式(1)に代入して酸素濃度MOを算出して決定する。
The case where the oxygen concentration MO of the raw material crystal rod 1 is calculated from the relational expression (1) and determined in the step (C) of determining the manufacturing conditions will be described below.
First, the growth rate SE, the pressure P in the growth furnace, and the diameter D of the FZ single crystal 2 are determined to desired values, respectively. Then, the determined oxygen concentration MO is calculated by substituting these determined conditions and the target oxygen concentration Oi into the relational expression (1).

このように決定した酸素濃度MOの原料結晶棒1を準備する。ここでは、例えばCZ法による単結晶製造装置を用いて決定した酸素濃度MOの単結晶棒を製造することができる。
次に、準備した原料結晶棒1を用い、上記決定した条件でFZ単結晶2を成長させる(図1の(D))。この際、図2に示すように、準備した原料結晶棒1を成長炉20内に設置された上軸3に取り付けられた上部保持治具4に保持する。一方、直径の小さい単結晶の種(種結晶)8を、原料結晶棒1の下方に位置する下軸5に取り付けられた下部保持治具6に保持する。
A raw material crystal rod 1 having an oxygen concentration MO determined as described above is prepared. Here, for example, a single crystal rod having an oxygen concentration MO determined using a single crystal manufacturing apparatus by the CZ method can be manufactured.
Next, the FZ single crystal 2 is grown using the prepared raw material crystal rod 1 under the above determined conditions ((D) in FIG. 1). At this time, as shown in FIG. 2, the prepared raw crystal rod 1 is held by an upper holding jig 4 attached to the upper shaft 3 installed in the growth furnace 20. On the other hand, a single crystal seed (seed crystal) 8 having a small diameter is held by a lower holding jig 6 attached to a lower shaft 5 positioned below the raw crystal rod 1.

成長炉20の下部から窒素ガスを含んだArガスを供給し、成長炉上部より排気することで炉内圧を上記決定した圧力にする。保持した原料結晶棒1を誘導加熱コイル7により溶融して、種結晶8に融着させる。その後、種絞りにより絞り部9を形成して無転位化する。そして、上軸3と下軸5を回転させながら原料結晶棒1と所定直径の単結晶2を下降させることで浮遊帯域10を原料結晶棒1と単結晶2の間に形成し、当該浮遊帯域10を原料結晶棒1の上端まで移動させてゾーニングし、上記決定した成長速度で単結晶2を成長させる。   Ar gas containing nitrogen gas is supplied from the lower part of the growth furnace 20 and exhausted from the upper part of the growth furnace, so that the pressure in the furnace is set to the pressure determined above. The held raw crystal rod 1 is melted by the induction heating coil 7 and fused to the seed crystal 8. Thereafter, the narrowed portion 9 is formed by seed drawing to make dislocation-free. A floating zone 10 is formed between the raw crystal rod 1 and the single crystal 2 by lowering the raw crystal rod 1 and the single crystal 2 having a predetermined diameter while rotating the upper shaft 3 and the lower shaft 5, and the floating zone 10 is moved to the upper end of the raw crystal rod 1 to perform zoning, and the single crystal 2 is grown at the growth rate determined above.

また、製造条件を決定する工程(C)において、成長速度SEを関係式(1)から算出して決定する場合について以下に説明する。
まず、例えばCZ法による単結晶製造装置を用いて原料結晶棒を準備する。この準備した原料結晶棒の酸素濃度MOを測定して決定する。また、成長炉20内の圧力P、FZ単結晶2の直径Dをそれぞれ所望の値に決定し、決定したこれら条件と目標の酸素濃度Oiを関係式(1)に代入して成長速度SEを算出して決定する。
次に、準備した原料結晶棒1を用い、上記決定した条件でFZ単結晶2を成長させる(図1の(D))。
The case where the growth rate SE is determined by calculating from the relational expression (1) in the step (C) of determining the manufacturing conditions will be described below.
First, a raw material crystal rod is prepared using, for example, a single crystal manufacturing apparatus based on the CZ method. The oxygen concentration MO of the prepared raw crystal rod is measured and determined. Further, the pressure P in the growth furnace 20 and the diameter D of the FZ single crystal 2 are respectively determined to desired values, and the growth rate SE is determined by substituting the determined conditions and the target oxygen concentration Oi into the relational expression (1). Calculate and decide.
Next, the FZ single crystal 2 is grown using the prepared raw material crystal rod 1 under the above determined conditions ((D) in FIG. 1).

また、製造条件を決定する工程(C)において、成長炉20内の圧力Pを関係式(1)から算出して決定する場合についても同様に、準備した原料結晶棒1の酸素濃度MOを測定し、成長速度SE、FZ単結晶2の直径Dをそれぞれ所望の値に決定する。その後、関係式(1)から成長炉20内の圧力Pを決定し、これら決定した条件でFZ単結晶2を成長させる(図1の(D))。   Similarly, in the step (C) of determining the manufacturing conditions, the oxygen concentration MO of the prepared raw material crystal rod 1 is similarly measured when the pressure P in the growth furnace 20 is calculated from the relational expression (1). Then, the growth rate SE and the diameter D of the FZ single crystal 2 are respectively set to desired values. Thereafter, the pressure P in the growth furnace 20 is determined from the relational expression (1), and the FZ single crystal 2 is grown under these determined conditions ((D) in FIG. 1).

このような本発明の単結晶の製造方法であれば、製造する単結晶の酸素濃度を、特に0.1ppma以下に低減するための製造条件を容易に決定することができる。そのため、このような酸素濃度が低減されたFZ単結晶を確実に得ることができる。   With such a method for producing a single crystal of the present invention, it is possible to easily determine the production conditions for reducing the oxygen concentration of the produced single crystal to 0.1 ppma or less. Therefore, such an FZ single crystal with reduced oxygen concentration can be obtained with certainty.

以下、本発明の実施例を示して本発明をより具体的に説明するが、本発明はこれらに限定されるものではない。   EXAMPLES Hereinafter, the present invention will be described more specifically with reference to examples of the present invention, but the present invention is not limited thereto.

(実施例1)
図2に示すFZ単結晶製造装置を用い、本発明の単結晶の製造方法に従ってシリコン単結晶を製造し、その酸素濃度を評価した。
まず、成長速度SEを1.5mm/min、成長炉内の圧力Pを0.05MPa、FZ単結晶の直径Dを150mm、目標の酸素濃度Oiを0.1ppmaと決定した。これらを上記関係式(1)に代入して酸素濃度MOを6ppmaと決定した。
Example 1
Using the FZ single crystal manufacturing apparatus shown in FIG. 2, a silicon single crystal was manufactured according to the method for manufacturing a single crystal of the present invention, and the oxygen concentration was evaluated.
First, the growth rate SE was determined to be 1.5 mm / min, the pressure P in the growth furnace was 0.05 MPa, the diameter D of the FZ single crystal was 150 mm, and the target oxygen concentration Oi was determined to be 0.1 ppma. By substituting these into the relational expression (1), the oxygen concentration MO was determined to be 6 ppma.

次に、酸素濃度が6ppma、直径130mmのシリコン単結晶をCZ法により製造し、原料結晶棒として準備した。この原料結晶棒を用いて上記決定した条件でFZ法によりゾーニングを行い、シリコン単結晶を製造した。
製造したシリコン単結晶の直胴部の種結晶側からサンプルウェーハを切り出し、赤外分光法(FTIR)にて製造したシリコン単結晶中の酸素濃度を測定した。その結果、酸素濃度は0.098ppmaと0.1ppma以下に低減できた。
Next, a silicon single crystal having an oxygen concentration of 6 ppma and a diameter of 130 mm was manufactured by the CZ method and prepared as a raw material crystal rod. Using this raw crystal rod, zoning was performed by the FZ method under the conditions determined above to produce a silicon single crystal.
A sample wafer was cut out from the seed crystal side of the straight body portion of the manufactured silicon single crystal, and the oxygen concentration in the silicon single crystal manufactured by infrared spectroscopy (FTIR) was measured. As a result, the oxygen concentration was reduced to 0.098 ppma and 0.1 ppma or less.

(実施例2)
図2に示すFZ単結晶製造装置を用い、本発明の単結晶の製造方法に従ってシリコン単結晶を製造し、その酸素濃度を評価した。
まず、CZ法により直径130mmのシリコン単結晶を製造し、原料結晶棒として準備した。その酸素濃度を測定したところ、13ppmaであったので酸素濃度MOを13ppmaと決定した。
次に、成長炉内の圧力Pを0.1MPa、FZ単結晶の直径Dを150mm、目標の酸素濃度Oiを0.1ppmaと決定した。これらを上記関係式(1)に代入して成長速度SEを1.0mm/minと決定した。
(Example 2)
Using the FZ single crystal manufacturing apparatus shown in FIG. 2, a silicon single crystal was manufactured according to the method for manufacturing a single crystal of the present invention, and the oxygen concentration was evaluated.
First, a silicon single crystal having a diameter of 130 mm was manufactured by the CZ method and prepared as a raw material crystal rod. When the oxygen concentration was measured, it was 13 ppma, so the oxygen concentration MO was determined to be 13 ppma.
Next, the pressure P in the growth furnace was determined to be 0.1 MPa, the diameter D of the FZ single crystal was 150 mm, and the target oxygen concentration Oi was determined to be 0.1 ppma. By substituting these into the relational expression (1), the growth rate SE was determined to be 1.0 mm / min.

次に、上記準備した原料結晶棒を用いて上記決定した条件でFZ法によりゾーニングを行い、シリコン単結晶を製造した。
製造したシリコン単結晶の直胴部の種結晶側からサンプルウェーハを切り出し、FTIRにて製造したシリコン単結晶中の酸素濃度を測定した。その結果、酸素濃度は0.095ppmaと0.1ppma以下に低減できた。
Next, zoning was performed by the FZ method using the prepared raw material crystal rod under the conditions determined above to produce a silicon single crystal.
A sample wafer was cut out from the seed crystal side of the straight body portion of the manufactured silicon single crystal, and the oxygen concentration in the silicon single crystal manufactured by FTIR was measured. As a result, the oxygen concentration could be reduced to 0.095 ppma and 0.1 ppma or less.

(実施例3)
図2に示すFZ単結晶製造装置を用い、本発明の単結晶の製造方法に従ってシリコン単結晶を製造し、その酸素濃度を評価した。
まず、CZ法により直径170mmのシリコン単結晶を製造し、原料結晶棒として準備した。その酸素濃度を測定したところ、8ppmaであったので酸素濃度MOを8ppmaと決定した。
次に、成長速度SEを1.0mm/min、FZ単結晶の直径Dを200mm、目標の酸素濃度Oiを0.1ppmaと決定した。これらを上記関係式(1)に代入して成長炉内の圧力Pを0.15MPaと決定した。
(Example 3)
Using the FZ single crystal manufacturing apparatus shown in FIG. 2, a silicon single crystal was manufactured according to the method for manufacturing a single crystal of the present invention, and the oxygen concentration was evaluated.
First, a silicon single crystal having a diameter of 170 mm was manufactured by the CZ method and prepared as a raw material crystal rod. When the oxygen concentration was measured and found to be 8 ppma, the oxygen concentration MO was determined to be 8 ppma.
Next, the growth rate SE was determined to be 1.0 mm / min, the diameter D of the FZ single crystal was 200 mm, and the target oxygen concentration Oi was determined to be 0.1 ppma. By substituting these into the relational expression (1), the pressure P in the growth furnace was determined to be 0.15 MPa.

次に、上記準備した原料結晶棒を用いて上記決定した条件でFZ法によりゾーニングを行い、シリコン単結晶を製造した。
製造したシリコン単結晶の直胴部の種結晶側からサンプルウェーハを切り出し、FTIRにて製造したシリコン単結晶中の酸素濃度を測定した。その結果、酸素濃度は0.1ppmaと0.1ppma以下に低減できた。
Next, zoning was performed by the FZ method using the prepared raw material crystal rod under the conditions determined above to produce a silicon single crystal.
A sample wafer was cut out from the seed crystal side of the straight body portion of the manufactured silicon single crystal, and the oxygen concentration in the silicon single crystal manufactured by FTIR was measured. As a result, the oxygen concentration could be reduced to 0.1 ppma and 0.1 ppma or less.

また、実施例1−3の約1000Ωcmのサンプルウェーハに1200℃で100分間の熱処理を施したところ、抵抗率変化量は、ロッド状の多結晶シリコン結晶を原料として製造したFZ単結晶並の10%以下の値であった。
以上、実施例1−3に示すように、本発明の単結晶の製造方法は酸素を含有するCZ法で製造した単結晶を原料としてFZ法で製造する単結晶の酸素濃度を0.1ppma以下に容易に低減できることが確認できた。
Further, when the sample wafer of about 1000 Ωcm of Example 1-3 was subjected to a heat treatment at 1200 ° C. for 100 minutes, the resistivity change amount was 10 times that of an FZ single crystal manufactured using a rod-shaped polycrystalline silicon crystal as a raw material. % Or less.
As described above, as shown in Example 1-3, the method for producing a single crystal according to the present invention uses the single crystal produced by the CZ method containing oxygen as a raw material, and the oxygen concentration of the single crystal produced by the FZ method is 0.1 ppma or less. It was confirmed that it can be easily reduced.

なお、本発明は、上記実施形態に限定されるものではない。上記実施形態は例示であり、本発明の特許請求の範囲に記載された技術的思想と実質的に同一な構成を有し、同様な作用効果を奏するものは、いかなるものであっても本発明の技術的範囲に包含される。   The present invention is not limited to the above embodiment. The above-described embodiment is an exemplification, and the present invention has any configuration that has substantially the same configuration as the technical idea described in the claims of the present invention and that exhibits the same effects. Are included in the technical scope.

1…原料結晶棒、 2…単結晶、 3…上軸、 4…上部保持治具、
5…下軸、 6…下部保持治具、7…誘導加熱コイル、 8…種結晶、
9…絞り部、 10…浮遊帯域、 11…ガス吹き付け用ノズル、
20…成長炉、 30…FZ単結晶製造装置。
1 ... Raw material crystal rod, 2 ... Single crystal, 3 ... Upper shaft, 4 ... Upper holding jig,
5 ... Lower shaft, 6 ... Lower holding jig, 7 ... Induction heating coil, 8 ... Seed crystal,
9 ... throttle part, 10 ... floating zone, 11 ... nozzle for gas spraying,
20 ... Growth furnace, 30 ... FZ single crystal manufacturing apparatus.

Claims (7)

成長炉内に収容された誘導加熱コイルで原料結晶棒を部分的に溶融して溶融帯域を形成し、該溶融帯域を移動させて単結晶を成長させるFZ法による単結晶の製造方法であって、
前記単結晶の製造条件である前記単結晶の成長速度SE(mm/min)、前記成長炉内の圧力P(MPa)、前記原料結晶棒の酸素濃度MO(ppma)、前記成長させる単結晶の直径D(mm)、前記成長させる単結晶の酸素濃度Oi(ppma)を含む関係式Oi=a×SE+b×P+c×MO+d×D+eの定数a、b、c、d、eを重回帰分析によって求める工程と、
前記関係式を用いて前記単結晶の製造条件をそれぞれ決定する工程と、
前記決定した製造条件で前記単結晶を成長させる工程とを含むことを特徴とする単結晶の製造方法。
A method for producing a single crystal by an FZ method in which a raw material crystal rod is partially melted by an induction heating coil housed in a growth furnace to form a melting zone, and the melting zone is moved to grow a single crystal. ,
The single crystal growth rate SE (mm / min), the pressure P (MPa) in the growth furnace, the oxygen concentration MO (ppma) of the raw crystal rod, the growth conditions of the single crystal, Constants a, b, c, d, e of the relational expression Oi = a × SE + b × P + c × MO + d × D + e including the diameter D (mm) and the oxygen concentration Oi (ppma) of the single crystal to be grown are obtained by multiple regression analysis. Process,
Determining each of the manufacturing conditions of the single crystal using the relational expression;
And a step of growing the single crystal under the determined manufacturing conditions.
前記原料結晶棒として、CZ法で製造した酸素を含む単結晶棒を用いることを特徴とする請求項1に記載の単結晶の製造方法。   The method for producing a single crystal according to claim 1, wherein a single crystal rod containing oxygen produced by a CZ method is used as the raw material crystal rod. 前記単結晶の製造条件を決定する工程において、前記成長させる単結晶の酸素濃度Oiを0.1ppma以下に決定することを特徴とする請求項1又は請求項2に記載の単結晶の製造方法。   The method for producing a single crystal according to claim 1 or 2, wherein, in the step of determining the production condition of the single crystal, an oxygen concentration Oi of the single crystal to be grown is determined to be 0.1 ppma or less. 前記関係式の定数a、b、c、d、eを求める工程において、aを0.18553、bを0.59418、cを0.00834、dを0.00024、eを0.29501とすることを特徴とする請求項1乃至請求項3のいずれか1項に記載の単結晶の製造方法。   In the step of obtaining the constants a, b, c, d, e of the relational expression, a is 0.18553, b is 0.59418, c is 0.00834, d is 0.00024, and e is 0.29501. The method for producing a single crystal according to any one of claims 1 to 3, wherein: 前記単結晶の製造条件を決定する工程の後に前記原料結晶棒を準備する工程を有し、
前記単結晶の製造条件を決定する工程において、前記単結晶の成長速度SE、前記成長炉内の圧力P、前記成長させる単結晶の直径D、前記成長させる単結晶の酸素濃度Oiをそれぞれ所望の値に決定した後、前記関係式を用いて前記原料結晶棒の酸素濃度MOを算出して決定し、
前記原料結晶棒を準備する工程において、前記決定した酸素濃度MOを有する原料結晶棒を準備し、
前記単結晶を成長させる工程において、前記準備した原料結晶棒を用いて前記単結晶を成長させることを特徴とする請求項1乃至請求項4のいずれか1項に記載の単結晶の製造方法。
Having the step of preparing the raw crystal rod after the step of determining the manufacturing conditions of the single crystal,
In the step of determining the manufacturing conditions of the single crystal, the growth rate SE of the single crystal, the pressure P in the growth furnace, the diameter D of the single crystal to be grown, and the oxygen concentration Oi of the single crystal to be grown are each desired. After determining the value, the oxygen concentration MO of the raw material crystal rod is calculated and determined using the relational expression,
In the step of preparing the raw material crystal rod, preparing the raw material crystal rod having the determined oxygen concentration MO,
The method for producing a single crystal according to any one of claims 1 to 4, wherein, in the step of growing the single crystal, the single crystal is grown using the prepared raw crystal rod.
前記単結晶の製造条件を決定する工程の前に前記原料結晶棒を準備する工程を有し、
前記原料結晶棒を準備する工程において、前記準備した原料結晶棒の酸素濃度MOを測定し、
前記単結晶の製造条件を決定する工程において、前記成長炉内の圧力P、前記単結晶の直径D、前記単結晶の酸素濃度Oiをそれぞれ所望の値に決定した後、前記関係式を用いて前記単結晶の成長速度SEを算出して決定し、
前記単結晶を成長させる工程において、前記準備した原料結晶棒を用いて前記単結晶を前記決定した製造条件で成長させることを特徴とする請求項1乃至請求項4のいずれか1項に記載の単結晶の製造方法。
Having the step of preparing the raw crystal rod before the step of determining the manufacturing conditions of the single crystal,
In the step of preparing the raw material crystal rod, the oxygen concentration MO of the prepared raw material crystal rod is measured,
In the step of determining the manufacturing condition of the single crystal, after determining the pressure P in the growth furnace, the diameter D of the single crystal, and the oxygen concentration Oi of the single crystal to desired values, respectively, using the relational expression Calculating and determining the growth rate SE of the single crystal;
5. The method according to claim 1, wherein in the step of growing the single crystal, the single crystal is grown under the determined manufacturing conditions using the prepared raw material crystal rod. A method for producing a single crystal.
前記単結晶の製造条件を決定する工程の前に前記原料結晶棒を準備する工程を有し、
前記原料結晶棒を準備する工程において、前記準備した原料結晶棒の酸素濃度MOを測定し、
前記単結晶の製造条件を決定する工程において、前記単結晶の成長速度SE、前記単結晶の直径D、前記単結晶の酸素濃度Oiをそれぞれ所望の値に決定した後、前記関係式を用いて前記成長炉内の圧力Pを算出して決定し、
前記単結晶を成長させる工程において、前記準備した原料結晶棒を用いて前記単結晶を前記決定した製造条件で成長させることを特徴とする請求項1乃至請求項4のいずれか1項に記載の単結晶の製造方法。
Having the step of preparing the raw crystal rod before the step of determining the manufacturing conditions of the single crystal,
In the step of preparing the raw material crystal rod, the oxygen concentration MO of the prepared raw material crystal rod is measured,
In the step of determining the manufacturing condition of the single crystal, after determining the growth rate SE of the single crystal, the diameter D of the single crystal, and the oxygen concentration Oi of the single crystal to desired values, respectively, using the relational expression Calculating and determining the pressure P in the growth furnace,
5. The method according to claim 1, wherein in the step of growing the single crystal, the single crystal is grown under the determined manufacturing conditions using the prepared raw material crystal rod. A method for producing a single crystal.
JP2012267303A 2012-12-06 2012-12-06 Single crystal manufacturing method Active JP5880415B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2012267303A JP5880415B2 (en) 2012-12-06 2012-12-06 Single crystal manufacturing method

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2012267303A JP5880415B2 (en) 2012-12-06 2012-12-06 Single crystal manufacturing method

Publications (2)

Publication Number Publication Date
JP2014114173A JP2014114173A (en) 2014-06-26
JP5880415B2 true JP5880415B2 (en) 2016-03-09

Family

ID=51170597

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2012267303A Active JP5880415B2 (en) 2012-12-06 2012-12-06 Single crystal manufacturing method

Country Status (1)

Country Link
JP (1) JP5880415B2 (en)

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP6756244B2 (en) * 2016-11-17 2020-09-16 信越半導体株式会社 Manufacturing method of semiconductor silicon single crystal
JP6996477B2 (en) * 2018-11-13 2022-01-17 信越半導体株式会社 Single crystal manufacturing method

Family Cites Families (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US4094730A (en) * 1977-03-11 1978-06-13 The United States Of America As Represented By The Secretary Of The Air Force Method for fabrication of high minority carrier lifetime, low to moderate resistivity, single crystal silicon
JPS59102891A (en) * 1982-11-30 1984-06-14 Shin Etsu Handotai Co Ltd Preparation of silicon single crystal
JPH05208886A (en) * 1992-01-30 1993-08-20 Kyushu Electron Metal Co Ltd Production of single crystal
JP5070737B2 (en) * 2006-05-26 2012-11-14 信越半導体株式会社 Method for producing FZ single crystal silicon using silicon crystal rod produced by CZ method as raw material

Also Published As

Publication number Publication date
JP2014114173A (en) 2014-06-26

Similar Documents

Publication Publication Date Title
JP5070737B2 (en) Method for producing FZ single crystal silicon using silicon crystal rod produced by CZ method as raw material
JP3601328B2 (en) Method for producing silicon single crystal and silicon single crystal and silicon wafer produced by this method
WO2012114375A1 (en) Method for manufacturing n-type silicon single crystal, and phosphorus-doped n-type silicon single crystal
JP5880415B2 (en) Single crystal manufacturing method
JP6471683B2 (en) Method for producing silicon single crystal
JP2011093770A (en) Resistivity calculation program and method for producing single crystal
JP6119642B2 (en) Manufacturing method of semiconductor single crystal
KR20060028425A (en) Method for producing single crystal and single crystal
JP7067267B2 (en) Method for measuring resistivity of raw material crystal and method for manufacturing FZ silicon single crystal
JP6152784B2 (en) Manufacturing method of semiconductor crystal
JP2004338979A (en) Method for manufacturing single crystal, and single crystal
JP5201730B2 (en) Manufacturing method of FZ method silicon single crystal
JP5924181B2 (en) Manufacturing method of FZ single crystal silicon
JP2020007163A (en) Method of measuring resistivities of raw material crystal and method of manufacturing fz silicon single crystal
KR101751789B1 (en) Silicon single crystal ingot and method for growing the same
JP5223513B2 (en) Single crystal manufacturing method
JP2018080084A (en) Production method of semiconductor silicon single crystal
JP6007892B2 (en) Method for producing silicon single crystal
KR20030069822A (en) Process for producing a highly doped silicon single crystal
JP2005015287A (en) Method and apparatus for manufacturing single crystal
JP5895875B2 (en) Manufacturing method of semiconductor single crystal
JP2003327494A (en) Method for manufacturing silicon single crystal, program for operating silicon single crystal production, and apparatus for manufacturing silicon single crystal
JP7452314B2 (en) Method for producing silicon raw material crystal for FZ and production system for silicon raw material crystal for FZ
JP2011098847A (en) Silicon wafer and method for manufacturing the same
JP2022084731A (en) Measurement method for resistivity of raw material crystal manufactured by cz method, and manufacturing method for fz silicon single crystal

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20141226

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20151028

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20151104

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20160105

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20160118

R150 Certificate of patent or registration of utility model

Ref document number: 5880415

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250