JP6756244B2 - Manufacturing method of semiconductor silicon single crystal - Google Patents

Manufacturing method of semiconductor silicon single crystal Download PDF

Info

Publication number
JP6756244B2
JP6756244B2 JP2016223825A JP2016223825A JP6756244B2 JP 6756244 B2 JP6756244 B2 JP 6756244B2 JP 2016223825 A JP2016223825 A JP 2016223825A JP 2016223825 A JP2016223825 A JP 2016223825A JP 6756244 B2 JP6756244 B2 JP 6756244B2
Authority
JP
Japan
Prior art keywords
oxygen concentration
crystal
single crystal
silicon single
semiconductor silicon
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
JP2016223825A
Other languages
Japanese (ja)
Other versions
JP2018080085A (en
Inventor
鈴木 聡
聡 鈴木
義博 児玉
義博 児玉
慶一 中澤
慶一 中澤
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Shin Etsu Handotai Co Ltd
Original Assignee
Shin Etsu Handotai Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Shin Etsu Handotai Co Ltd filed Critical Shin Etsu Handotai Co Ltd
Priority to JP2016223825A priority Critical patent/JP6756244B2/en
Publication of JP2018080085A publication Critical patent/JP2018080085A/en
Application granted granted Critical
Publication of JP6756244B2 publication Critical patent/JP6756244B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Description

本発明は、FZ法(フローティングゾーン法または浮遊帯溶融法)による半導体シリコン単結晶(以下、FZシリコン単結晶と言う場合もある)の製造方法に関する。 The present invention relates to a method for producing a semiconductor silicon single crystal (hereinafter, also referred to as FZ silicon single crystal) by the FZ method (floating zone method or floating zone melting method).

FZ法は、例えば、現在半導体素子として最も多く使用されているシリコン単結晶等の半導体単結晶の製造方法の一つとして、使用される。 The FZ method is used, for example, as one of the methods for producing a semiconductor single crystal such as a silicon single crystal, which is currently most often used as a semiconductor element.

図9はFZ法によるFZシリコン単結晶の製造方法における各製造工程の一例を説明する概略図である。図9に示すように、原料となる半導体棒(原料棒)104の下端部を溶融して種結晶105に融着させ((a)種付工程)、更にこの種付の際に結晶に生じた転位を抜くための絞り(ネッキング)を行い((b)ネッキング工程)、その後に晶出側半導体棒(半導体単結晶棒)109を所望の直径まで拡大させながら成長させる((c)コーン部形成工程)。更に、晶出側半導体棒109を所望の直径に制御しつつ成長を行い((d)直胴部形成工程)、原料の供給を止め、晶出側半導体棒109の直径を縮小させて該晶出側半導体棒109を原料半導体棒104から切り離す((e)切り離し工程)。以上のような工程を経て、半導体結晶(FZシリコン単結晶)を製造することができる。 FIG. 9 is a schematic view illustrating an example of each manufacturing process in the method for manufacturing an FZ silicon single crystal by the FZ method. As shown in FIG. 9, the lower end of the semiconductor rod (raw material rod) 104 as a raw material is melted and fused to the seed crystal 105 ((a) seeding step), and further generated in the crystal during this seeding. A drawing (necking) is performed to remove the dislocations ((b) necking step), and then the crystallized semiconductor rod (semiconductor single crystal rod) 109 is grown while expanding to a desired diameter ((c) cone portion. Formation process). Further, the crystallizing side semiconductor rod 109 is grown while being controlled to a desired diameter ((d) straight body forming step), the supply of raw materials is stopped, and the diameter of the crystallizing side semiconductor rod 109 is reduced to reduce the crystal. The outgoing semiconductor rod 109 is separated from the raw material semiconductor rod 104 ((e) separation step). A semiconductor crystal (FZ silicon single crystal) can be produced through the above steps.

通常、半導体シリコン単結晶に所望の電気抵抗率を与えるためにはN型或いはP型の不純物ドーピングが必要である。FZ法においては、ドーパントガスを溶融帯域に吹き付けるガスドーピング法が知られている(非特許文献1参照)。 Usually, N-type or P-type impurity doping is required to give a desired electrical resistivity to a semiconductor silicon single crystal. In the FZ method, a gas doping method in which a dopant gas is blown to a melting zone is known (see Non-Patent Document 1).

ドーパントガスとして、例えばN型ドーパントであるP(リン)のドーピングにはPH等が、P型ドーパントであるB(ホウ素)のドーピングにはB等が用いられる。シリコン単結晶の電気抵抗率は、これらN型ドーパントとP型ドーパントの結晶中の濃度差により変化するが、通常の結晶製造においてN型ドーパントのみ、或いはP型ドーパントのみをドーピングする場合には、電気抵抗率はドーパント添加量が増加するにつれて低くなる。 As the dopant gas, for example, PH 3 or the like is used for doping P (phosphorus) which is an N-type dopant, and B 2 H 6 or the like is used for doping B (boron) which is a P-type dopant. The electrical resistivity of a silicon single crystal changes depending on the concentration difference between these N-type dopants and P-type dopants in the crystal. However, when doping only N-type dopants or only P-type dopants in normal crystal production, The electrical resistivity decreases as the amount of dopant added increases.

所望の電気抵抗率の半導体シリコン単結晶を得るためには、原料の電気抵抗率と所望の電気抵抗率を基に算出されたドーパント添加量が、適正に保たれる必要がある。供給されるドーパントガスの濃度や流量等を調整することによりドーパント添加量を適正に保ちつつFZ法により単結晶を成長させることで、所望の電気抵抗率を持つFZシリコン単結晶を得ることができる。 In order to obtain a semiconductor silicon single crystal having a desired electrical resistivity, it is necessary to appropriately maintain the amount of dopant added based on the electrical resistivity of the raw material and the desired electrical resistivity. An FZ silicon single crystal having a desired electrical resistivity can be obtained by growing a single crystal by the FZ method while maintaining an appropriate amount of dopant added by adjusting the concentration and flow rate of the supplied dopant gas. ..

FZ法ではシリコン融液は浮遊帯域であり、炉内雰囲気以外には他のいずれの部材とも接触することなく製造されるため、FZ法により製造されるFZシリコン単結晶の不純物濃度は極めて低く高純度であることが特徴である。 In the FZ method, the silicon melt is in a floating zone and is produced without contacting any other members other than the atmosphere inside the furnace. Therefore, the impurity concentration of the FZ silicon single crystal produced by the FZ method is extremely low and high. It is characterized by its purity.

例えば、石英坩堝を用いてシリコン単結晶を製造するCZ法(チョクラルスキー法)では、シリコン融液と坩堝のSiOとの反応によりSiOが生成されてシリコン融液に酸素が溶け込むため、製造されるCZシリコン単結晶には酸素が混入して高酸素濃度となるが、これに対しFZシリコン単結晶は極めて酸素濃度が低くなる。高純度ポリシリコン棒に比べて酸素濃度が高いCZシリコン結晶棒を原料として使用したFZ法の場合でも、通常はその酸素濃度は可能な限り低いことが求められる。 For example, in the CZ method (Czochralski method) in which a silicon single crystal is produced using a quartz crucible, SiO is generated by the reaction between the silicon melt and SiO 2 in the crucible, and oxygen dissolves in the silicon melt. Oxygen is mixed in the CZ silicon single crystal to have a high oxygen concentration, whereas the FZ silicon single crystal has an extremely low oxygen concentration. Even in the case of the FZ method using a CZ silicon crystal rod having a higher oxygen concentration than a high-purity polysilicon rod as a raw material, the oxygen concentration is usually required to be as low as possible.

一方で、FZシリコンウェーハにもCZシリコンウェーハ同様のイントリンシックゲッタリング効果或いはスリップ耐性を付与するために、FZシリコン単結晶製造中にシリコン融液に高純度石英のような酸素供給物を接触もしくは挿入させて、シリコン融液に酸素をドープすることによりCZシリコン単結晶並みの酸素濃度であるFZシリコン単結晶を取得する方法(例えば特許文献1、2、3)や、FZシリコン単結晶の周辺部のみ酸素濃度をCZシリコン単結晶並みにすることで機械的強度を上げる方法(例えば特許文献4)が提案されている。 On the other hand, in order to impart the same intrinsic gettering effect or slip resistance to the FZ silicon wafer as the CZ silicon wafer, an oxygen supply such as high-purity quartz is contacted or contacted with the silicon melt during the production of the FZ silicon single crystal. A method of obtaining an FZ silicon single crystal having an oxygen concentration equivalent to that of a CZ silicon single crystal by inserting and doping the silicon melt with oxygen (for example, Patent Documents 1, 2 and 3) and the periphery of the FZ silicon single crystal. A method of increasing the mechanical strength by making the oxygen concentration of only a portion equal to that of a CZ silicon single crystal (for example, Patent Document 4) has been proposed.

また、特許文献5には、炉内雰囲気の酸素分圧を高圧にすることによりメルトの温度変動を変化させ、酸素濃度バラツキを均一にするという方法が開示されている。また、特許文献6には不純物、例えば酸素を多く含む原料を準備し、取得するFZシリコン単結晶が所望の酸素濃度となるような成長条件に決定し導入量を制御する方法が開示されている。 Further, Patent Document 5 discloses a method in which the temperature fluctuation of the melt is changed by increasing the oxygen partial pressure in the furnace atmosphere to make the oxygen concentration variation uniform. Further, Patent Document 6 discloses a method of preparing a raw material containing a large amount of impurities, for example, oxygen, determining growth conditions so that the obtained FZ silicon single crystal has a desired oxygen concentration, and controlling the introduction amount. ..

特開昭59−102891号公報Japanese Unexamined Patent Publication No. 59-10281 特開平02−197118号公報Japanese Unexamined Patent Publication No. 02-197118 特許第2807688号公報Japanese Patent No. 2807688 特開平07−291783号公報Japanese Unexamined Patent Publication No. 07-2917883 特開2000−335995号公報Japanese Unexamined Patent Publication No. 2000-335995 特開2015−160800号公報Japanese Unexamined Patent Publication No. 2015-160800

WOLFGANG KELLER、ALFRED MUHLBAUER著「Floating−Zone Silicon」p.82−92、MARCEL DEKKER, INC.発行WOLFGANG KELLER, ALFRED MUHLBAUER, "Floating-Zone Silicon" p. 82-92, MARCEL DEKKER, INC. Issue

近年、省エネルギーの面からパワーデバイスが脚光を浴びているが、サイリスタ、ダイオード、IGBT(Insulated Gate Bipolar Transistor)などで、He照射や電子線照射を行って格子欠陥を導入しキャリアライフタイムを制御する技術を使用したデバイスがある。このようなデバイスの製造に用いられる半導体ウェーハにおいては、その酸素濃度をある程度高くすることで、比較的簡単に所望の格子欠陥量に制御することができる。 In recent years, power devices have been in the limelight from the aspect of energy saving, but thyristors, diodes, IGBTs (Insulated Gate Bipolar Transistors), etc. are used to perform He irradiation and electron beam irradiation to introduce lattice defects and control the carrier lifetime. There are devices that use technology. In the semiconductor wafer used for manufacturing such a device, the desired amount of lattice defects can be controlled relatively easily by increasing the oxygen concentration to some extent.

このようなスイッチングデバイスに用いられるシリコンウェーハの原料となるFZ法による半導体シリコン単結晶は、高純度ポリシリコン棒或いはCZ法により製造されたCZシリコン結晶棒を原料として製造されるものである。これらの半導体シリコン単結晶の酸素濃度は、高純度ポリシリコン棒を原料とした場合では5.6×1015atoms/cmより小さくなり、またCZシリコン結晶を原料として使用した場合では1.4×1016atoms/cm〜1.9×1016atoms/cmといずれも低いレベルである。一方、CZ法による半導体シリコン単結晶の場合は、その酸素濃度は1.6×1017atoms/cm以上と高いレベルである。デバイス特性を更に高めようとすると、材料であるシリコンウェーハの酸素濃度を、前記のFZ法による半導体シリコン単結晶とCZ法による半導体シリコン単結晶の間のレベルである程度狭い範囲に収めることが望ましく、実質的にはFZ法による半導体シリコン単結晶の酸素濃度を前記で述べた従来のレベルよりも高める必要がある。 A semiconductor silicon single crystal produced by the FZ method, which is a raw material for a silicon wafer used in such a switching device, is produced using a high-purity polysilicon rod or a CZ silicon crystal rod produced by the CZ method as a raw material. The oxygen concentration of these semiconductor silicon single crystals is smaller than 5.6 × 10 15 atoms / cm 3 when a high-purity polysilicon rod is used as a raw material, and 1.4 when a CZ silicon crystal is used as a raw material. × 10 16 atoms / cm 3 to 1.9 × 10 16 atoms / cm 3 are all low levels. On the other hand, in the case of the semiconductor silicon single crystal by the CZ method, the oxygen concentration is as high as 1.6 × 10 17 atoms / cm 3 or more. In order to further improve the device characteristics, it is desirable to keep the oxygen concentration of the silicon wafer as a material within a somewhat narrow range at the level between the semiconductor silicon single crystal by the FZ method and the semiconductor silicon single crystal by the CZ method. Substantially, it is necessary to increase the oxygen concentration of the semiconductor silicon single crystal by the FZ method from the conventional level described above.

また、FZ法による半導体シリコン単結晶の酸素濃度を高めることについては、CZシリコン単結晶と同等の酸素濃度まで高める目的で製造されることはあっても、所定の範囲に酸素濃度を収めるという目的で製造されることは無かった。 Further, regarding increasing the oxygen concentration of the semiconductor silicon single crystal by the FZ method, the purpose is to keep the oxygen concentration within a predetermined range even though it may be produced for the purpose of increasing the oxygen concentration to the same level as that of the CZ silicon single crystal. It was never manufactured in.

そこで、所望の酸素濃度であるFZ法による半導体シリコン単結晶を製造しようとした時に、先行文献の方法はいずれも、酸素濃度の低い半導体シリコン単結晶に対してFZ中に何らかの形で外部から酸素を追加するという手法により行う。この場合、半導体シリコン単結晶の酸素濃度はCZシリコン単結晶並みのかなりの高濃度となる。更に、近年のFZ法による大直径半導体シリコン単結晶製造(例えば200mm)において、このような手法を適用した場合、半導体シリコン単結晶の取得自体が困難になる、酸素濃度以外の品質(例えば面内抵抗率分布)が悪化する、などの不具合が出ることが確実であり、結晶取得可能でより簡単・確実な方法での所望品質のFZ法による半導体シリコン単結晶の製造が望まれている。 Therefore, when trying to produce a semiconductor silicon single crystal by the FZ method, which has a desired oxygen concentration, all the methods of the preceding documents form oxygen from the outside in the FZ with respect to the semiconductor silicon single crystal having a low oxygen concentration. It is done by the method of adding. In this case, the oxygen concentration of the semiconductor silicon single crystal is considerably as high as that of the CZ silicon single crystal. Further, in the recent production of a large-diameter semiconductor silicon single crystal by the FZ method (for example, 200 mm), when such a method is applied, it becomes difficult to obtain the semiconductor silicon single crystal itself, and the quality other than the oxygen concentration (for example, in-plane). It is certain that problems such as deterioration of the resistivity distribution) will occur, and it is desired to produce a semiconductor silicon single crystal by the FZ method of desired quality by a simpler and more reliable method capable of obtaining crystals.

このような場合、CZシリコン結晶を原料としてFZ法によるシリコン単結晶を製造する方法を用い、その際に半導体シリコン単結晶が所望の酸素濃度となるようなCZシリコン結晶を予め準備し、従来通りの製造条件で半導体シリコン単結晶製造を行うことで、半導体シリコン単結晶の生産性を損なうことなく所望の品質を得ることがある程度は可能である。この場合原料に要求される酸素濃度は所望とする半導体シリコン単結晶の酸素濃度の50倍以上となる。 In such a case, a method of producing a silicon single crystal by the FZ method using a CZ silicon crystal as a raw material is used, and at that time, a CZ silicon crystal having a desired oxygen concentration is prepared in advance so that the semiconductor silicon single crystal has a desired oxygen concentration. By manufacturing the semiconductor silicon single crystal under the above manufacturing conditions, it is possible to obtain a desired quality to some extent without impairing the productivity of the semiconductor silicon single crystal. In this case, the oxygen concentration required for the raw material is 50 times or more the oxygen concentration of the desired semiconductor silicon single crystal.

しかしながら、半導体シリコン単結晶はその成長方向に直行する断面、すなわちウェーハ面内において酸素濃度が完全に均一ではなく分布を持つものである。更に、原料となるCZシリコン結晶においてもその酸素濃度は結晶全体で均一というわけではなく、成長方向に酸素濃度分布が生じている。このため、製造する半導体シリコン単結晶全体が所望とする酸素濃度範囲に収まるようにするためには断面内及び成長方向の酸素濃度分布を考慮する必要があり、特に要求される酸素濃度範囲が小さくなる場合には、品質不適合な部分が生じてしまう可能性が高くなるため、工夫が必要となる。 However, the semiconductor silicon single crystal has a cross section orthogonal to the growth direction, that is, the oxygen concentration is not completely uniform and has a distribution in the wafer surface. Further, even in the CZ silicon crystal used as a raw material, the oxygen concentration is not uniform in the entire crystal, and an oxygen concentration distribution occurs in the growth direction. Therefore, in order to make the entire semiconductor silicon single crystal to be manufactured fall within the desired oxygen concentration range, it is necessary to consider the oxygen concentration distribution in the cross section and in the growth direction, and the oxygen concentration range particularly required is small. In that case, there is a high possibility that a part that does not conform to the quality will occur, so some ingenuity is required.

また、要求される酸素濃度範囲が、ある程度の変動が許容される程度に広く、品質不適合な部分が生ずることが無くても、同一結晶内の各部分により酸素濃度レベルに差があれば、サーマルドナー発生の程度も変化するなど品質差に繋がり、半導体デバイス製造時の歩留に影響を与える可能性がある。 Further, even if the required oxygen concentration range is wide enough to allow some fluctuation and there is no quality incompatibility, if there is a difference in oxygen concentration level between each part in the same crystal, thermal It may lead to quality differences such as changes in the degree of donor generation, which may affect the yield during semiconductor device manufacturing.

本発明はこのような問題に鑑みてなされたものであり、FZ法による半導体シリコン単結晶の製造において、製造する半導体シリコン単結晶全体で酸素濃度が所望とする範囲に収まるような、半導体シリコン単結晶の製造方法を提供することを目的とする。 The present invention has been made in view of such a problem, and in the production of a semiconductor silicon single crystal by the FZ method, the semiconductor silicon single crystal is such that the oxygen concentration of the entire semiconductor silicon single crystal to be produced falls within a desired range. It is an object of the present invention to provide a method for producing a crystal.

上記目的を達成するために、本発明によれば、CZ法により製造したCZシリコン結晶を原料としたFZ法による半導体シリコン単結晶の製造方法において、
前記CZシリコン結晶の軸方向の酸素濃度を予め測定して酸素濃度分布を取得する工程と、
前記CZシリコン結晶を原料として用い、前記取得したCZシリコン結晶の軸方向の酸素濃度分布に応じて製造条件を変更して、FZ法により前記半導体シリコン単結晶を製造する工程とを有することを特徴とするFZ法による半導体シリコン単結晶の製造方法を提供する。
In order to achieve the above object, according to the present invention, in a method for producing a semiconductor silicon single crystal by the FZ method using a CZ silicon crystal produced by the CZ method as a raw material,
The step of measuring the oxygen concentration in the axial direction of the CZ silicon crystal in advance to obtain the oxygen concentration distribution, and
It is characterized by having a step of manufacturing the semiconductor silicon single crystal by the FZ method by using the CZ silicon crystal as a raw material and changing the production conditions according to the oxygen concentration distribution in the axial direction of the acquired CZ silicon crystal. Provided is a method for producing a semiconductor silicon single crystal by the FZ method.

このように、予め取得したCZシリコン結晶の軸方向の酸素濃度分布に応じて製造条件を変更して、FZ法により半導体シリコン単結晶を製造することにより、製造するFZ半導体シリコン単結晶全体で酸素濃度が所望とする範囲に収まるように制御することができる。 In this way, by changing the manufacturing conditions according to the axial oxygen concentration distribution of the CZ silicon crystal obtained in advance and manufacturing the semiconductor silicon single crystal by the FZ method, oxygen is produced in the entire FZ semiconductor silicon single crystal to be manufactured. The concentration can be controlled to be within the desired range.

このとき、前記製造条件は結晶成長速度、炉内圧力、炉内雰囲気ガス流量のうち一つ以上とすることが好ましい。 At this time, the production condition is preferably one or more of the crystal growth rate, the pressure in the furnace, and the atmospheric gas flow rate in the furnace.

これらの製造条件を調整することで、より円滑にFZ法による半導体シリコン単結晶全体の酸素濃度をより均一に近づけることができる。 By adjusting these manufacturing conditions, the oxygen concentration of the entire semiconductor silicon single crystal by the FZ method can be made closer to more uniform.

またこのとき、前記取得したCZシリコン結晶の軸方向の酸素濃度分布における、前記CZシリコン結晶の前記酸素濃度が高い位置における前記結晶成長速度に比べて、前記CZシリコン結晶の前記酸素濃度が低い位置における前記結晶成長速度が速くなるように製造条件を変更することが好ましい。 At this time, in the axial oxygen concentration distribution of the acquired CZ silicon crystal, the position where the oxygen concentration of the CZ silicon crystal is low as compared with the crystal growth rate at the position where the oxygen concentration of the CZ silicon crystal is high. It is preferable to change the production conditions so that the crystal growth rate in the above is increased.

このように、予め取得した原料の酸素濃度分布の大小に合わせて、それを打ち消すように結晶成長速度の製造条件に変化を与えながら結晶製造することにより、FZ法による半導体シリコン単結晶の酸素濃度を成長方向で均一に近づけて、結晶全体で所望の酸素濃度範囲に制御することがより確実にできる。 In this way, the oxygen concentration of the semiconductor silicon single crystal by the FZ method is obtained by manufacturing the crystal while changing the manufacturing conditions of the crystal growth rate so as to cancel it according to the magnitude of the oxygen concentration distribution of the raw material obtained in advance. Can be more reliably controlled to a desired oxygen concentration range throughout the crystal by bringing the crystals closer to uniform in the growth direction.

またこのとき、前記取得したCZシリコン結晶の軸方向の酸素濃度分布における、前記CZシリコン結晶の前記酸素濃度が高い位置における前記炉内圧力に比べて、前記CZシリコン結晶の前記酸素濃度が低い位置における前記炉内圧力が高くなるように製造条件を変更することが好ましい。 At this time, in the axial oxygen concentration distribution of the acquired CZ silicon crystal, the position where the oxygen concentration of the CZ silicon crystal is lower than the pressure in the furnace at the position where the oxygen concentration of the CZ silicon crystal is high. It is preferable to change the manufacturing conditions so that the pressure inside the furnace becomes high.

このように、予め取得した原料の酸素濃度分布の大小に合わせて、それを打ち消すように炉内圧力の製造条件に変化を与えながら結晶製造することにより、FZ法による半導体シリコン単結晶の酸素濃度を成長方向で均一に近づけて、結晶全体で所望の酸素濃度範囲に制御することがより確実にできる。 In this way, the oxygen concentration of the semiconductor silicon single crystal by the FZ method is produced by crystallizing while changing the manufacturing conditions of the furnace pressure so as to cancel the oxygen concentration distribution of the raw material obtained in advance. Can be more reliably controlled to a desired oxygen concentration range throughout the crystal by bringing the crystals closer to uniform in the growth direction.

またこのとき、前記取得したCZシリコン結晶の軸方向の酸素濃度分布における、前記CZシリコン結晶の前記酸素濃度が高い位置における前記炉内雰囲気ガス流量に比べて、前記CZシリコン結晶の前記酸素濃度が低い位置における前記炉内雰囲気ガス流量が少なくなるように製造条件を変更することが好ましい。 At this time, the oxygen concentration of the CZ silicon crystal is higher than the flow rate of the atmosphere gas in the furnace at the position where the oxygen concentration of the CZ silicon crystal is high in the oxygen concentration distribution in the axial direction of the acquired CZ silicon crystal. It is preferable to change the manufacturing conditions so that the flow rate of the atmospheric gas in the furnace at a low position is reduced.

このように、予め取得した原料の酸素濃度分布の大小に合わせて、それを打ち消すように炉内雰囲気ガス流量の製造条件に変化を与えながら結晶製造することにより、FZ法による半導体シリコン単結晶の酸素濃度を成長方向で均一に近づけて、結晶全体で所望の酸素濃度範囲に制御することがより確実にできる。 In this way, the semiconductor silicon single crystal by the FZ method is produced by crystallizing while changing the manufacturing conditions of the atmospheric gas flow rate in the furnace so as to cancel the oxygen concentration distribution of the raw material obtained in advance. It is possible to make the oxygen concentration more uniform in the growth direction and control the oxygen concentration range in the entire crystal more reliably.

またこのとき、前記FZ法で製造する半導体シリコン単結晶の直径を150mm以上とすることが好ましい。 At this time, it is preferable that the diameter of the semiconductor silicon single crystal produced by the FZ method is 150 mm or more.

このような大直径単結晶の製造においても、本発明では確実に酸素濃度が均一な単結晶を取得することが可能となる。 Even in the production of such a large-diameter single crystal, in the present invention, it is possible to surely obtain a single crystal having a uniform oxygen concentration.

またこのとき、所望とする前記FZ法で製造する半導体シリコン単結晶の酸素濃度の50倍以上の酸素濃度を有する前記CZシリコン結晶を原料として用いることが好ましい。 At this time, it is preferable to use the CZ silicon crystal having an oxygen concentration of 50 times or more the oxygen concentration of the desired semiconductor silicon single crystal produced by the FZ method as a raw material.

このようにすれば、高品質なFZ単結晶を取得するための製造条件で、所望とする酸素濃度範囲の半導体シリコン単結晶を得ることができ、FZ法の製造条件を大幅に変更するような制約を設けることがない。 By doing so, it is possible to obtain a semiconductor silicon single crystal in a desired oxygen concentration range under the manufacturing conditions for obtaining a high-quality FZ single crystal, and the manufacturing conditions of the FZ method are significantly changed. There are no restrictions.

またこのとき、前記FZ法で製造する半導体シリコン単結晶の軸方向の全体で、酸素濃度が2.1×1016atoms/cm以上8.0×1016atoms/cm以下、より好ましくは、4.0×1016atoms/cm以上5.0×1016atoms/cm以下の範囲であることが好ましい。なお、本発明において用いる酸素濃度は、ASTM’79に基づくものである。 At this time, the oxygen concentration is 2.1 × 10 16 atoms / cm 3 or more and 8.0 × 10 16 atoms / cm 3 or less in the entire axial direction of the semiconductor silicon single crystal manufactured by the FZ method, more preferably. It is preferably in the range of 4.0 × 10 16 atoms / cm 3 or more and 5.0 × 10 16 atoms / cm 3 or less. The oxygen concentration used in the present invention is based on ASTM '79.

このようにすれば、FZ法で製造する半導体シリコン単結晶の軸方向の全体で酸素濃度が、従来のFZ法による半導体シリコン単結晶より高いレベルで、かつ所定の狭い範囲内に収まる半導体シリコン単結晶を製造することができる。 By doing so, the oxygen concentration in the entire axial direction of the semiconductor silicon single crystal manufactured by the FZ method is higher than that of the semiconductor silicon single crystal produced by the conventional FZ method, and the semiconductor silicon single crystal is contained within a predetermined narrow range. Crystals can be produced.

本発明の半導体シリコン単結晶の製造方法であれば、予め取得したCZシリコン結晶の軸方向の酸素濃度分布に応じて製造条件を変更して、FZ法により半導体シリコン単結晶を製造することにより、製造するFZ半導体シリコン単結晶全体で酸素濃度が所望とする範囲に収まるように制御することができる。これにより半導体シリコン単結晶全体においてデバイス製造時に要求される品質を満たすことができるため、当該結晶の品質および生産性が向上するとともに、安定するため、製品の安定供給が可能となる。 In the method for producing a semiconductor silicon single crystal of the present invention, the production conditions are changed according to the axial oxygen concentration distribution of the CZ silicon crystal obtained in advance, and the semiconductor silicon single crystal is produced by the FZ method. The oxygen concentration of the entire FZ semiconductor silicon single crystal to be produced can be controlled to be within a desired range. As a result, the quality of the entire semiconductor silicon single crystal can be satisfied at the time of device manufacturing, so that the quality and productivity of the crystal are improved and stable, so that a stable supply of the product is possible.

本発明の半導体シリコン単結晶の製造方法の一例を示した工程図である。It is a process drawing which showed an example of the manufacturing method of the semiconductor silicon single crystal of this invention. 本発明の半導体シリコン単結晶の製造方法に用いられる半導体シリコン単結晶製造装置を示す概略図である。It is the schematic which shows the semiconductor silicon single crystal manufacturing apparatus used in the manufacturing method of the semiconductor silicon single crystal of this invention. 半導体シリコン単結晶の断面内の酸素濃度分布の一例を示すグラフである。It is a graph which shows an example of the oxygen concentration distribution in the cross section of a semiconductor silicon single crystal. CZシリコン原料結晶の軸方向の酸素濃度分布の一例を示すグラフである。It is a graph which shows an example of the oxygen concentration distribution in the axial direction of a CZ silicon raw material crystal. 不純物導入率(FZ結晶中酸素濃度/原料中酸素濃度)と数値Kとの関係を表すグラフである。It is a graph which shows the relationship between the impurity introduction rate (oxygen concentration in FZ crystal / oxygen concentration in raw material) and numerical value K. 実施例において、取得したCZシリコン結晶の軸方向の酸素濃度分布に応じて変更した結晶成長速度を示したグラフである。It is a graph which showed the crystal growth rate changed according to the oxygen concentration distribution in the axial direction of the acquired CZ silicon crystal in an Example. 実施例において製造したFZシリコン単結晶の軸方向の酸素濃度分布を示したグラフである。It is a graph which showed the oxygen concentration distribution in the axial direction of the FZ silicon single crystal produced in an Example. 比較例において製造したFZシリコン単結晶の軸方向の酸素濃度分布を示したグラフである。It is a graph which showed the oxygen concentration distribution in the axial direction of the FZ silicon single crystal produced in the comparative example. FZ法による半導体単結晶の製造方法における各製造工程の一例を説明する概略図である。It is the schematic explaining an example of each manufacturing process in the manufacturing method of the semiconductor single crystal by the FZ method.

以下、本発明について実施の形態を説明するが、本発明はこれに限定されるものではない。 Hereinafter, embodiments of the present invention will be described, but the present invention is not limited thereto.

前述のように、従来、FZ法による半導体シリコン単結晶に求められる品質としては高純度化、すなわちできるだけ不純物濃度は低くすることが望ましく、またそれがFZ法による半導体シリコン単結晶の特徴の一つでもあった。 As described above, it is desirable that the quality required for a semiconductor silicon single crystal by the FZ method is high purity, that is, the impurity concentration is as low as possible, which is one of the characteristics of the semiconductor silicon single crystal by the FZ method. But it was also.

しかしながら、FZ法による半導体シリコンウェーハから製造されるデバイスの製造方法によっては、ある程度の不純物、例えば酸素が半導体シリコン単結晶に一定量含有していた方が好ましい場合があり、本発明者らは前記のような問題に対処すべく鋭意・検討を行った。その結果、予め取得した原料のCZシリコン結晶の軸方向の酸素濃度分布に応じて製造条件を変更して、FZ法により半導体シリコン単結晶を製造することにより、製造する半導体シリコン単結晶全体で酸素濃度が所望とする範囲に収まるように制御することができることを見出した。そして、これらを実施するための最良の形態について精査し、本発明を完成させた。 However, depending on the manufacturing method of the device manufactured from the semiconductor silicon wafer by the FZ method, it may be preferable that a certain amount of impurities, for example, oxygen is contained in the semiconductor silicon single crystal. Diligently and examined to deal with such problems. As a result, by changing the manufacturing conditions according to the axial oxygen concentration distribution of the CZ silicon crystal of the raw material obtained in advance and manufacturing the semiconductor silicon single crystal by the FZ method, oxygen is produced in the entire semiconductor silicon single crystal to be manufactured. It has been found that the concentration can be controlled to be within the desired range. Then, the best mode for carrying out these was scrutinized, and the present invention was completed.

まず、本発明の半導体シリコン単結晶の製造を行うことができる半導体シリコン単結晶製造装置の一例について、図2を参照して説明する。 First, an example of a semiconductor silicon single crystal manufacturing apparatus capable of manufacturing the semiconductor silicon single crystal of the present invention will be described with reference to FIG.

図2に示すように、半導体シリコン単結晶製造装置10のチャンバー11内には上軸12及び下軸13が設けられている。上軸12には原料半導体棒(CZシリコン結晶14)として所定の直径のCZシリコン結晶14が、下軸13には種結晶15が取り付けられるようになっている。 As shown in FIG. 2, an upper shaft 12 and a lower shaft 13 are provided in the chamber 11 of the semiconductor silicon single crystal manufacturing apparatus 10. A CZ silicon crystal 14 having a predetermined diameter is attached to the upper shaft 12 as a raw material semiconductor rod (CZ silicon crystal 14), and a seed crystal 15 is attached to the lower shaft 13.

さらに、CZシリコン結晶14を溶融する高周波加熱コイル16を備え、溶融帯域18をCZシリコン結晶14に対して相対的に移動させながら晶出半導体棒(半導体シリコン単結晶19)を成長させることができる。また、成長中に、ドープノズル20(ドーパントガス供給手段)からドーパントガスを供給できるようになっている。 Further, a high-frequency heating coil 16 for melting the CZ silicon crystal 14 is provided, and the crystallized semiconductor rod (semiconductor silicon single crystal 19) can be grown while the melting zone 18 is relatively moved with respect to the CZ silicon crystal 14. .. Further, during growth, the dopant gas can be supplied from the dopant nozzle 20 (dopant gas supply means).

次に、本発明の半導体シリコン単結晶の製造方法について図1を参照して説明する。以下では、上記した図2の半導体シリコン単結晶製造装置を用いる場合について説明する。 Next, the method for producing the semiconductor silicon single crystal of the present invention will be described with reference to FIG. Hereinafter, the case where the semiconductor silicon single crystal manufacturing apparatus of FIG. 2 described above is used will be described.

まず、原料として、CZ法により製造したCZシリコン結晶を準備する。そして、CZシリコン結晶の軸方向の酸素濃度を予め測定して酸素濃度分布を取得する工程を行う(図1のSP1)。 First, as a raw material, a CZ silicon crystal produced by the CZ method is prepared. Then, a step of measuring the oxygen concentration in the axial direction of the CZ silicon crystal in advance to acquire the oxygen concentration distribution is performed (SP1 in FIG. 1).

ここで、所望とするFZ法で製造する半導体シリコン単結晶の酸素濃度の50倍以上の酸素濃度を有するCZシリコン結晶を原料として用いることが好ましい。このようにすれば、例え、FZ中に酸素が飛散して低酸素となったとしても、高品質なFZ単結晶を取得するための製造条件で、所望とする酸素濃度範囲の半導体シリコン結晶を得ることができ、製造条件を大幅に変更するような制約を設けることがない。 Here, it is preferable to use a CZ silicon crystal having an oxygen concentration of 50 times or more the oxygen concentration of the semiconductor silicon single crystal produced by the desired FZ method as a raw material. By doing so, even if oxygen is scattered in the FZ and the oxygen becomes low, the semiconductor silicon crystal in the desired oxygen concentration range can be obtained under the manufacturing conditions for obtaining a high-quality FZ single crystal. It can be obtained, and there are no restrictions that significantly change the manufacturing conditions.

またこのとき、上記所望とする酸素濃度は、FZ法で製造する半導体シリコン単結晶の軸方向の全体で、酸素濃度が2.1×1016atoms/cm以上8.0×1016atoms/cm以下、より好ましくは、4.0×1016atoms/cm以上5.0×1016atoms/cm以下の範囲であることが好ましい。なお、本発明において用いる酸素濃度は、ASTM’79に基づくものである。 At this time, the desired oxygen concentration is 2.1 × 10 16 atoms / cm 3 or more and 8.0 × 10 16 atoms / cm in the entire axial direction of the semiconductor silicon single crystal manufactured by the FZ method. The range is preferably cm 3 or less, more preferably 4.0 × 10 16 atoms / cm 3 or more and 5.0 × 10 16 atoms / cm 3 or less. The oxygen concentration used in the present invention is based on ASTM '79.

このように、FZ法で製造する半導体シリコン単結晶の軸方向の全体で酸素濃度が、従来のFZ法による半導体シリコン単結晶より高いレベルで、かつ所定の狭い範囲内に収まる半導体シリコン単結晶を製造することができる。 As described above, the semiconductor silicon single crystal produced by the FZ method in which the oxygen concentration in the entire axial direction is higher than that of the conventional semiconductor silicon single crystal by the FZ method and falls within a predetermined narrow range can be obtained. Can be manufactured.

次に、CZシリコン結晶を原料として用い、取得したCZシリコン結晶の軸方向の酸素濃度分布に応じて製造条件を変更して、FZ法により半導体シリコン単結晶を製造する工程を行う(図1のSP2)。 Next, using CZ silicon crystals as a raw material, the production conditions are changed according to the axial oxygen concentration distribution of the acquired CZ silicon crystals, and a step of producing a semiconductor silicon single crystal by the FZ method is performed (FIG. 1). SP2).

このとき、FZ法で製造する半導体シリコン単結晶の直径を150mm以上とすることが好ましい。本発明では、このような大直径単結晶の製造においても確実に所望の酸素濃度範囲の単結晶を取得することが可能となる。 At this time, it is preferable that the diameter of the semiconductor silicon single crystal produced by the FZ method is 150 mm or more. In the present invention, it is possible to surely obtain a single crystal in a desired oxygen concentration range even in the production of such a large-diameter single crystal.

まず、上軸12には原料半導体棒として、上記のように予め軸方向の酸素濃度を測定したCZシリコン結晶14を取り付ける。また、下軸13には種結晶15を取り付ける。 First, a CZ silicon crystal 14 whose oxygen concentration in the axial direction has been measured in advance as described above is attached to the upper shaft 12 as a raw material semiconductor rod. A seed crystal 15 is attached to the lower shaft 13.

そして、CZシリコン結晶14を高周波加熱コイル16等で溶融した後、種結晶15に融着させる。種結晶から成長させる晶出側半導体棒(半導体シリコン単結晶19)を絞り17により無転位化し、両軸を回転させながら高周波加熱コイル16に対して相対的に下降させ、溶融帯域18をCZシリコン結晶14に対して相対的に上へと移動させながら半導体シリコン単結晶19を成長させる。 Then, the CZ silicon crystal 14 is melted by a high-frequency heating coil 16 or the like, and then fused to the seed crystal 15. The crystallizing side semiconductor rod (semiconductor silicon single crystal 19) grown from the seed crystal is dislocated by a drawing 17 and lowered relative to the high frequency heating coil 16 while rotating both axes, and the melting zone 18 is set to CZ silicon. The semiconductor silicon single crystal 19 is grown while moving upward relative to the crystal 14.

絞り17を形成した後、種結晶15から成長させる半導体シリコン単結晶19を所望の直径まで拡径させながら成長させてコーン部22を形成し、CZシリコン結晶14と半導体シリコン単結晶19との間に溶融帯域18を形成して、原料結晶の直径に応じて上軸の下降速度を調整しつつ、半導体シリコン単結晶19を所望の直径に制御しながら成長させて、直胴部21を形成する。このとき、取得したCZシリコン結晶の軸方向の酸素濃度分布に応じて製造条件を変更する。 After the drawing 17 is formed, the semiconductor silicon single crystal 19 grown from the seed crystal 15 is grown while expanding the diameter to a desired diameter to form the cone portion 22, and between the CZ silicon crystal 14 and the semiconductor silicon single crystal 19. The melting zone 18 is formed in the above, and the semiconductor silicon single crystal 19 is grown while controlling the descending speed of the upper shaft according to the diameter of the raw material crystal to a desired diameter to form the straight body portion 21. .. At this time, the production conditions are changed according to the oxygen concentration distribution in the axial direction of the acquired CZ silicon crystal.

そして、溶融帯域18をCZシリコン結晶14の上端まで移動させて半導体シリコン単結晶19の直胴部21の成長を終え、半導体シリコン単結晶19の直径を縮径させて該半導体シリコン単結晶19をCZシリコン結晶14から切り離して、半導体シリコン単結晶の製造を終了する。 Then, the melting zone 18 is moved to the upper end of the CZ silicon crystal 14 to finish the growth of the straight body portion 21 of the semiconductor silicon single crystal 19, and the diameter of the semiconductor silicon single crystal 19 is reduced to obtain the semiconductor silicon single crystal 19. The production of the semiconductor silicon single crystal is completed by separating from the CZ silicon crystal 14.

ここで、取得したCZシリコン結晶の軸方向の酸素濃度分布に応じて変更する製造条件は、結晶成長速度、炉内圧力、炉内雰囲気ガス流量のうち一つ以上とすることが好ましい。これらの製造条件を調整することで、より円滑にFZ法による半導体シリコン単結晶全体の酸素濃度をより均一に近づけることができる。 Here, it is preferable that the production condition to be changed according to the oxygen concentration distribution in the axial direction of the acquired CZ silicon crystal is one or more of the crystal growth rate, the pressure in the furnace, and the atmospheric gas flow rate in the furnace. By adjusting these manufacturing conditions, the oxygen concentration of the entire semiconductor silicon single crystal by the FZ method can be made closer to more uniform.

以下にこれらの製造条件(結晶成長速度、炉内圧力、炉内雰囲気ガス流量)を調整することで、FZ法で製造する半導体シリコン単結晶の軸方向の酸素濃度分布を改善できることについて説明する。 It will be described below that the axial oxygen concentration distribution of the semiconductor silicon single crystal produced by the FZ method can be improved by adjusting these production conditions (crystal growth rate, pressure in the furnace, atmospheric gas flow rate in the furnace).

FZ法により製造する半導体シリコン単結晶に導入される酸素は、CZ原料中の含有酸素がメルト(図2中の溶融帯域18)に供給され、メルトから蒸発する分を除いた量がFZ単結晶に導入されるものと考えられ、実際に単結晶に導入される酸素量を決定するのはその時々のメルト内酸素濃度、特に凝固界面近傍の酸素濃度であると考えられる。メルト中の酸素は炉内雰囲気と接するメルト表面から蒸発するため、メルト表面近傍ではメルト内酸素濃度は低くなる。このため結晶直径方向での凝固界面近傍のメルト内酸素濃度分布は、メルト表面に近い結晶外周側は低くなり、結晶中央は高くなる。よって、半導体シリコン単結晶の断面方向の酸素濃度も一様にはならず、メルト内酸素濃度分布と同様の傾向となる。図3に半導体シリコン単結晶の断面内酸素濃度分布の一例を示す。 The amount of oxygen introduced into the semiconductor silicon single crystal produced by the FZ method is the amount excluding the amount of oxygen contained in the CZ raw material supplied to the melt (melt zone 18 in FIG. 2) and evaporated from the melt. It is considered that the amount of oxygen actually introduced into the single crystal is determined by the oxygen concentration in the melt at that time, particularly the oxygen concentration near the solidification interface. Since the oxygen in the melt evaporates from the melt surface in contact with the atmosphere in the furnace, the oxygen concentration in the melt becomes low in the vicinity of the melt surface. Therefore, the oxygen concentration distribution in the melt near the solidification interface in the crystal diameter direction is low on the outer peripheral side of the crystal near the melt surface and high on the center of the crystal. Therefore, the oxygen concentration in the cross-sectional direction of the semiconductor silicon single crystal is not uniform, and the tendency is the same as the oxygen concentration distribution in the melt. FIG. 3 shows an example of the oxygen concentration distribution in the cross section of the semiconductor silicon single crystal.

更に、メルトに供給される酸素はCZ原料中の含有酸素であるため、FZ法により半導体シリコン単結晶成長中の各時点で溶融する原料の酸素濃度によって供給される酸素量は変化する。すなわち、原料として使用するCZシリコン結晶の軸方向(長手方向)の酸素濃度変化が、FZ法で製造する半導体シリコン単結晶の成長方向(軸方向)の酸素濃度変化に影響する。 Further, since the oxygen supplied to the melt is the oxygen contained in the CZ raw material, the amount of oxygen supplied varies depending on the oxygen concentration of the raw material to be melted at each time point during the growth of the semiconductor silicon single crystal by the FZ method. That is, the change in oxygen concentration in the axial direction (longitudinal direction) of the CZ silicon crystal used as a raw material affects the change in oxygen concentration in the growth direction (axial direction) of the semiconductor silicon single crystal produced by the FZ method.

前記のように、製造する半導体シリコン単結晶全体で考えた場合、結晶のどの部分でもその酸素濃度が完全に均一とは言い難く、断面内及び結晶成長方向の酸素濃度の変化によりある程度の酸素濃度範囲を持つことになる。このため、結晶全体を所望の酸素濃度範囲に収める場合、断面内の酸素濃度変化及び/又は結晶成長方向の酸素濃度変化を小さくする必要がある。 As described above, when considering the entire semiconductor silicon single crystal to be manufactured, it is difficult to say that the oxygen concentration is completely uniform in any part of the crystal, and the oxygen concentration to some extent is due to changes in the oxygen concentration in the cross section and in the crystal growth direction. Will have a range. Therefore, when the entire crystal is contained within a desired oxygen concentration range, it is necessary to reduce the change in oxygen concentration in the cross section and / or the change in oxygen concentration in the crystal growth direction.

しかしながら、半導体シリコン単結晶断面内の酸素濃度変化を均一にすることはその成長原理上難しく、結晶が断面内酸素濃度分布を持つことは避けられないと考えられる。このため、結晶成長方向の酸素濃度変動を抑える必要があるが、そのための一つの方法として原料となるCZシリコン結晶の軸方向の酸素濃度変動を抑えることが考えられる。ところが、特に従来のレベルよりも高い酸素濃度となる半導体シリコン単結晶を取得しようとする時には原料となるCZシリコン結晶もより高酸素濃度にする必要があり、このような場合、CZシリコン結晶の長手方向の酸素濃度変化を抑えることも難しい。 However, it is difficult to make the change in oxygen concentration in the cross section of the semiconductor silicon single crystal uniform due to its growth principle, and it is considered inevitable that the crystal has an oxygen concentration distribution in the cross section. Therefore, it is necessary to suppress the fluctuation of the oxygen concentration in the crystal growth direction, and one method for that purpose is to suppress the fluctuation of the oxygen concentration in the axial direction of the CZ silicon crystal as a raw material. However, especially when trying to obtain a semiconductor silicon single crystal having a higher oxygen concentration than the conventional level, the CZ silicon crystal as a raw material also needs to have a higher oxygen concentration. In such a case, the length of the CZ silicon crystal is long. It is also difficult to suppress changes in oxygen concentration in the direction.

よって、原料となるCZシリコン結晶の軸方向の酸素濃度の変化も避けられないものとして、原料中の酸素濃度変化に応じて製造条件の調整を行いながら、FZ法により半導体シリコン単結晶を成長させることで、取得するFZシリコン単結晶の酸素濃度を軸方向の全体で、所望の範囲内に収めることを実現する。 Therefore, assuming that a change in the oxygen concentration in the axial direction of the CZ silicon crystal as a raw material is unavoidable, the semiconductor silicon single crystal is grown by the FZ method while adjusting the production conditions according to the change in the oxygen concentration in the raw material. This makes it possible to keep the oxygen concentration of the acquired FZ silicon single crystal within a desired range in the entire axial direction.

そこで、上記したように、予め原料となるCZシリコン結晶の酸素濃度を測定し(SP1)、長手方向の変化を確認しておく。図4に典型的なCZシリコン原料結晶の軸方向の酸素濃度分布の一例を示す。例えば図4のような酸素濃度分布を持つ原料を用いた場合、半導体シリコン単結晶の成長とともにメルトに供給される酸素量が減少するため、通常では、取得するFZ半導体シリコン単結晶の酸素濃度は成長初期の方が高く、終盤の方が低くなる。すなわち、半導体シリコン単結晶の成長方向酸素濃度分布はCZシリコン原料結晶の軸方向の酸素濃度分布の傾向と同様となる。 Therefore, as described above, the oxygen concentration of the CZ silicon crystal as a raw material is measured in advance (SP1), and the change in the longitudinal direction is confirmed. FIG. 4 shows an example of the axial oxygen concentration distribution of a typical CZ silicon raw material crystal. For example, when a raw material having an oxygen concentration distribution as shown in FIG. 4 is used, the amount of oxygen supplied to the melt decreases as the semiconductor silicon single crystal grows, so that the oxygen concentration of the FZ semiconductor silicon single crystal to be acquired is usually increased. It is higher at the beginning of growth and lower at the end of growth. That is, the growth direction oxygen concentration distribution of the semiconductor silicon single crystal is the same as the tendency of the axial oxygen concentration distribution of the CZ silicon raw material crystal.

ここで、実際に半導体シリコン単結晶に導入される酸素量は、蒸発により大半は除去されてしまうためにメルトに供給される酸素量よりも少なくなる。 Here, the amount of oxygen actually introduced into the semiconductor silicon single crystal is less than the amount of oxygen supplied to the melt because most of the oxygen is removed by evaporation.

半導体シリコン単結晶成長中のメルトからの酸素蒸発量は、メルト滞留時間、メルト表面積と比例し、炉内圧力と相反する関係にある。更に、炉内雰囲気である不活性ガスの流量(炉内雰囲気ガス流量)の調整により、酸素蒸発量を調整することも可能であり、酸素蒸発量は炉内雰囲気ガス流量とは相関する関係にある。よって、原料酸素濃度を分母とし、FZシリコン単結晶酸素濃度を分子とした酸素導入率は、(メルト滞留時間)×(メルト表面積)×(炉内ガス流量)/(炉内圧力)という関係で求められる数値Kでコントロールできる。 The amount of oxygen evaporated from the melt during the growth of the semiconductor silicon single crystal is proportional to the melt residence time and the melt surface area, and has a relationship opposite to the pressure inside the furnace. Furthermore, it is possible to adjust the amount of oxygen evaporation by adjusting the flow rate of the inert gas that is the atmosphere in the furnace (flow rate of the atmosphere gas in the furnace), and the amount of oxygen evaporation correlates with the flow rate of the atmosphere gas in the furnace. is there. Therefore, the oxygen introduction rate with the raw material oxygen concentration as the denominator and the FZ silicon single crystal oxygen concentration as the numerator has the relationship of (melt residence time) × (melt surface area) × (gas flow rate in the furnace) / (pressure in the furnace). It can be controlled by the required numerical value K.

図5は半導体シリコン単結晶製造における数値Kと、原料結晶と半導体シリコン単結晶の酸素濃度比(酸素導入率)との関係を示す。メルト滞留時間は直胴時の溶融メルト量と結晶単位時間内の原料溶融量(結晶成長量)から算出し、メルト表面積は製造結晶断面積を近似的に用いた。図5に示すように、数値Kと酸素導入率は逆相関の関係となる。 FIG. 5 shows the relationship between the numerical value K in the production of the semiconductor silicon single crystal and the oxygen concentration ratio (oxygen introduction rate) of the raw material crystal and the semiconductor silicon single crystal. The melt residence time was calculated from the melt melt amount at the time of straight cylinder and the raw material melt amount (crystal growth amount) within the crystal unit time, and the melt surface area was approximately used as the manufactured crystal cross section. As shown in FIG. 5, the numerical value K and the oxygen introduction rate have an inverse correlation.

予め測定しておいた原料酸素濃度変化、すなわちFZ結晶成長各時点の供給酸素濃度変化と数値Kにより、取得する半導体シリコン単結晶の成長方向の酸素濃度変化範囲が推定できる。 The oxygen concentration change range in the growth direction of the semiconductor silicon single crystal to be acquired can be estimated from the raw material oxygen concentration change measured in advance, that is, the supply oxygen concentration change at each time of FZ crystal growth and the numerical value K.

このときに結晶断面内の酸素濃度の変化量(ROG、Radial Oxygen−concentration Gradient)を考慮して、取得する半導体シリコン単結晶の所望とする酸素濃度範囲と比較して、その範囲に収まるようであればそのまま従来通り結晶製造を行えばよいが、そうでない場合は結晶成長中に製造条件の変更を行うことにより原料の酸素濃度変化を相殺するような操作を行う。 At this time, the amount of change in oxygen concentration in the crystal cross section (ROG, Radial Oxygen-concentration Grade) is taken into consideration, and it seems that the oxygen concentration range is within the desired oxygen concentration range of the semiconductor silicon single crystal to be acquired. If there is, the crystal can be produced as it is as before, but if not, the operation is performed so as to cancel the change in the oxygen concentration of the raw material by changing the production conditions during the crystal growth.

すなわち、酸素導入率に関わる数値Kの構成要素の中で、メルト対流時間に関わるパラメータである結晶成長速度、及び/または炉内圧力、及び/または炉内雰囲気ガス流量を、結晶成長中に変化させながらFZシリコン単結晶を製造することによって、FZシリコン単結晶の成長方向の酸素濃度変動を低減させることができる。 That is, among the components of the numerical value K related to the oxygen introduction rate, the crystal growth rate and / or the furnace pressure and / or the furnace atmosphere gas flow rate, which are parameters related to the melt convection time, are changed during crystal growth. By producing the FZ silicon single crystal while doing so, it is possible to reduce the fluctuation of the oxygen concentration in the growth direction of the FZ silicon single crystal.

このとき、結晶成長速度、炉内圧力については原料酸素濃度の増減に対して逆方向の動きで変化させることにより、炉内ガス流量については原料酸素濃度の増減に対して順方向の動きで変化させることにより、FZシリコン単結晶の成長方向の酸素濃度変動を低減し、結晶全体の酸素濃度変化を断面内酸素濃度変化範囲まで抑えることができる。 At this time, the crystal growth rate and the pressure in the furnace are changed in the opposite direction to the increase / decrease in the oxygen concentration of the raw material, and the gas flow rate in the furnace is changed in the forward movement in response to the increase / decrease in the oxygen concentration in the raw material. By doing so, it is possible to reduce the fluctuation of the oxygen concentration in the growth direction of the FZ silicon single crystal and suppress the change in the oxygen concentration of the entire crystal to the range of the change in the oxygen concentration in the cross section.

より具体的には、結晶成長速度については、取得したCZシリコン結晶の軸方向の酸素濃度分布における、CZシリコン結晶の酸素濃度が高い位置における結晶成長速度に比べて、CZシリコン結晶の酸素濃度が低い位置における結晶成長速度が速くなるように製造条件を変更することが好ましい。 More specifically, regarding the crystal growth rate, the oxygen concentration of the CZ silicon crystal is higher than the crystal growth rate at the position where the oxygen concentration of the CZ silicon crystal is high in the acquired oxygen concentration distribution in the axial direction of the CZ silicon crystal. It is preferable to change the production conditions so that the crystal growth rate at a low position becomes high.

また、炉内圧力については、取得したCZシリコン結晶の軸方向の酸素濃度分布における、CZシリコン結晶の酸素濃度が高い位置における炉内圧力に比べて、CZシリコン結晶の酸素濃度が低い位置における炉内圧力が高くなるように製造条件を変更することが好ましい。 Regarding the pressure inside the furnace, the pressure inside the furnace at the position where the oxygen concentration of the CZ silicon crystal is low is higher than the pressure inside the furnace at the position where the oxygen concentration of the CZ silicon crystal is high in the acquired oxygen concentration distribution in the axial direction of the CZ silicon crystal. It is preferable to change the manufacturing conditions so that the internal pressure becomes high.

また、炉内雰囲気ガス流量については、取得したCZシリコン結晶の軸方向の酸素濃度分布における、CZシリコン結晶の酸素濃度が高い位置における炉内雰囲気ガス流量に比べて、CZシリコン結晶の酸素濃度が低い位置における炉内雰囲気ガス流量が少なくなるように製造条件を変更することが好ましい。 Regarding the flow rate of the atmospheric gas in the furnace, the oxygen concentration of the CZ silicon crystal is higher than that of the atmospheric gas flow rate in the furnace at the position where the oxygen concentration of the CZ silicon crystal is high in the acquired oxygen concentration distribution in the axial direction of the CZ silicon crystal. It is preferable to change the manufacturing conditions so that the flow rate of atmospheric gas in the furnace at a low position is reduced.

このように、予め取得した原料の酸素濃度分布の大小に合わせて、それを打ち消すように結晶成長速度、炉内圧力、炉内雰囲気ガス流量のうち一つ以上の製造条件に変化を与えながら結晶製造することにより、FZ法による半導体シリコン単結晶の酸素濃度を成長方向で均一に近づけて、結晶全体で所望の酸素濃度範囲に制御することがより確実にできる。 In this way, crystals are crystallized while changing the production conditions of one or more of the crystal growth rate, the furnace pressure, and the atmosphere gas flow rate in the furnace so as to cancel out the oxygen concentration distribution of the raw material obtained in advance. By manufacturing, the oxygen concentration of the semiconductor silicon single crystal by the FZ method can be made uniform in the growth direction, and the oxygen concentration range of the entire crystal can be controlled more reliably.

以上のような本発明の半導体シリコン単結晶の製造方法であれば、予め取得したCZシリコン結晶の軸方向の酸素濃度分布に応じて製造条件を変更して、FZ法により半導体シリコン単結晶を製造することにより、製造するFZ半導体シリコン単結晶全体で酸素濃度が所望とする範囲に収まるように制御することができる。これにより半導体シリコン単結晶全体においてデバイス製造時に要求される品質を満たすことができるため、当該結晶の生産性が向上、かつ安定し製品の安定供給が可能となる。 According to the method for producing a semiconductor silicon single crystal of the present invention as described above, the semiconductor silicon single crystal is produced by the FZ method by changing the production conditions according to the axial oxygen concentration distribution of the CZ silicon crystal obtained in advance. By doing so, it is possible to control the oxygen concentration in the entire FZ semiconductor silicon single crystal to be produced so as to be within a desired range. As a result, the quality of the entire semiconductor silicon single crystal can be satisfied at the time of device manufacturing, so that the productivity of the crystal can be improved and the product can be stably supplied.

また、CZシリコン結晶を原料として用いたFZ法による半導体シリコン単結晶の製造方法において、製造された半導体シリコン単結晶断面における酸素濃度分布を考慮しても、結晶全体で所定の酸素濃度範囲となる半導体シリコン単結晶を製造することができる。例えば、FZ法で製造する半導体シリコン単結晶の軸方向の全体で、酸素濃度が2.1×1016atoms/cm以上8.0×1016atoms/cm以下、より好ましくは、4.0×1016atoms/cm以上5.0×1016atoms/cm以下の範囲にすることができる。 Further, in the method for producing a semiconductor silicon single crystal by the FZ method using a CZ silicon crystal as a raw material, even if the oxygen concentration distribution in the cross section of the produced semiconductor silicon single crystal is taken into consideration, the entire crystal is within a predetermined oxygen concentration range. A semiconductor silicon single crystal can be produced. For example, the oxygen concentration is 2.1 × 10 16 atoms / cm 3 or more and 8.0 × 10 16 atoms / cm 3 or less in the entire axial direction of the semiconductor silicon single crystal manufactured by the FZ method, more preferably 4. The range can be 0 × 10 16 atoms / cm 3 or more and 5.0 × 10 16 atoms / cm 3 or less.

以下、本発明の実施例及び比較例を示して本発明をより具体的に説明するが、本発明はこれらに限定されるものではない。 Hereinafter, the present invention will be described in more detail with reference to Examples and Comparative Examples of the present invention, but the present invention is not limited thereto.

(実施例)
本発明の半導体シリコン単結晶の製造方法により、FZ法で製造する半導体シリコン単結晶の軸方向の全体で、酸素濃度が4.0×1016atoms/cm〜5.3×1016atoms/cmの範囲に収まるように、結晶直径200mmのFZシリコン単結晶を製造した。
(Example)
According to the method for producing a semiconductor silicon single crystal of the present invention, the oxygen concentration in the entire axial direction of the semiconductor silicon single crystal produced by the FZ method is 4.0 × 10 16 atoms / cm 3 to 5.3 × 10 16 atoms /. An FZ silicon single crystal having a crystal diameter of 200 mm was produced so as to be within the range of cm 3 .

まず、原料としてCZシリコン結晶を準備し、このCZシリコン結晶の軸方向の酸素濃度を予め測定して酸素濃度分布を取得した。このときの、予め測定した長手方向の酸素濃度変化は図4の通りであった。 First, a CZ silicon crystal was prepared as a raw material, and the oxygen concentration in the axial direction of the CZ silicon crystal was measured in advance to obtain an oxygen concentration distribution. The change in oxygen concentration in the longitudinal direction measured in advance at this time was as shown in FIG.

次に、図4に示す原料の酸素濃度変化から、結晶成長方向の酸素濃度変化を抑えるために必要な、原料の供給タイミングに応じた結晶成長速度の変化を計算した。図6は直胴開始時の結晶成長速度を1.0として結晶成長中の成長速度の変化割合を示したものである。結晶直胴部製造時に図6のように、酸素濃度が高い位置の結晶成長速度に比べて、酸素濃度が低い位置の結晶成長速度が速くなるように結晶成長速度を変化させながらFZシリコン単結晶製造を行った。 Next, from the change in the oxygen concentration of the raw material shown in FIG. 4, the change in the crystal growth rate according to the supply timing of the raw material, which is necessary for suppressing the change in the oxygen concentration in the crystal growth direction, was calculated. FIG. 6 shows the rate of change in the growth rate during crystal growth, where the crystal growth rate at the start of the straight cylinder is 1.0. As shown in FIG. 6, during the production of the straight body of the crystal, the FZ silicon single crystal is changed while changing the crystal growth rate so that the crystal growth rate at the low oxygen concentration position is faster than the crystal growth rate at the high oxygen concentration position. Manufactured.

取得した結晶を任意の間隔でサンプリングし各位置で酸素濃度を測定した結果、図7に示すような酸素濃度範囲となった。図7に示すように、FZ法により製造した半導体シリコン単結晶全体での酸素濃度の最大値は5.3×1016atoms/cm、最小値は4.0×1016atoms/cmとなり、全体が所望とする酸素濃度範囲に収まるような結晶が取得できた。 As a result of sampling the acquired crystals at arbitrary intervals and measuring the oxygen concentration at each position, the oxygen concentration range was as shown in FIG. 7. As shown in FIG. 7, the maximum value of oxygen concentration in the entire semiconductor silicon single crystal produced by the FZ method is 5.3 × 10 16 atoms / cm 3 , and the minimum value is 4.0 × 10 16 atoms / cm 3 . , A crystal was obtained so that the whole was within the desired oxygen concentration range.

(比較例)
実施例で使用した原料と長手方向の酸素濃度変化がほぼ同等のCZシリコン結晶を原料として用い、実施例のような製造条件の変更を行わずに、直胴中の製造条件を一定として製造したこと以外は、実施例と同条件で、結晶直径200mmのFZシリコン単結晶の製造を行った。この時の、メルト滞留時間、メルト表面積、炉内圧力から算出したKの値は18.6であった。(この場合、FZシリコン単結晶/原料棒の酸素導入率は2.7%と計算された)
(Comparison example)
A CZ silicon crystal having almost the same change in oxygen concentration in the longitudinal direction as the raw material used in the examples was used as a raw material, and the production conditions in the straight body were kept constant without changing the production conditions as in the example. Except for this, an FZ silicon single crystal having a crystal diameter of 200 mm was produced under the same conditions as in the examples. At this time, the value of K calculated from the melt residence time, the melt surface area, and the pressure inside the furnace was 18.6. (In this case, the oxygen introduction rate of the FZ silicon single crystal / raw material rod was calculated to be 2.7%)

比較例の結晶製造により取得した結晶から任意の間隔でサンプリングし各位置で酸素濃度を測定した結果、図8に示すような酸素濃度範囲となった。結晶全体での酸素濃度の最大値は5.3×1016atoms/cm、最小値は3.5×1016atoms/cmであった。 As a result of sampling at arbitrary intervals from the crystals obtained by crystal production of the comparative example and measuring the oxygen concentration at each position, the oxygen concentration range was as shown in FIG. The maximum value of oxygen concentration in the whole crystal was 5.3 × 10 16 atoms / cm 3 , and the minimum value was 3.5 × 10 16 atoms / cm 3 .

なお、本発明は、上記実施形態に限定されるものではない。上記実施形態は例示であり、本発明の特許請求の範囲に記載された技術的思想と実質的に同一な構成を有し、同様な作用効果を奏するものは、いかなるものであっても本発明の技術的範囲に包含される。 The present invention is not limited to the above embodiment. The above-described embodiment is an example, and any object having substantially the same configuration as the technical idea described in the claims of the present invention and exhibiting the same action and effect is the present invention. Is included in the technical scope of.

10…半導体シリコン単結晶製造装置、 11…チャンバー、 12…上軸、
13…下軸、 14…CZシリコン結晶、 15…種結晶、
16…高周波加熱コイル、 17…絞り、 18…溶融帯域、
19…半導体シリコン単結晶、 20…ドープノズル、 21…直胴部、
22…コーン部。
10 ... Semiconductor silicon single crystal manufacturing equipment, 11 ... Chamber, 12 ... Upper shaft,
13 ... lower axis, 14 ... CZ silicon crystal, 15 ... seed crystal,
16 ... High frequency heating coil, 17 ... Aperture, 18 ... Melting band,
19 ... Semiconductor silicon single crystal, 20 ... Dope nozzle, 21 ... Straight body,
22 ... Cone part.

Claims (5)

CZ法により製造したCZシリコン結晶を原料としたFZ法による半導体シリコン単結晶の製造方法において、
前記CZシリコン結晶の軸方向の酸素濃度を予め測定して酸素濃度分布を取得する工程と、
前記CZシリコン結晶を原料として用い、前記取得したCZシリコン結晶の軸方向の酸素濃度分布に応じて製造条件を変更して、FZ法により前記半導体シリコン単結晶を製造する工程とを有し、
前記製造条件は結晶成長速度、炉内圧力、炉内雰囲気ガス流量のうち一つ以上とし、
変更する前記製造条件が前記結晶成長速度である場合、前記取得したCZシリコン結晶の軸方向の酸素濃度分布における、前記CZシリコン結晶の前記酸素濃度が高い位置における前記結晶成長速度に比べて、前記CZシリコン結晶の前記酸素濃度が低い位置における前記結晶成長速度が速くなるように製造条件を変更し、
変更する前記製造条件が前記炉内圧力である場合、前記取得したCZシリコン結晶の軸方向の酸素濃度分布における、前記CZシリコン結晶の前記酸素濃度が高い位置における前記炉内圧力に比べて、前記CZシリコン結晶の前記酸素濃度が低い位置における前記炉内圧力が高くなるように製造条件を変更し、
変更する前記製造条件が前記炉内雰囲気ガス流量である場合、前記取得したCZシリコン結晶の軸方向の酸素濃度分布における、前記CZシリコン結晶の前記酸素濃度が高い位置における前記炉内雰囲気ガス流量に比べて、前記CZシリコン結晶の前記酸素濃度が低い位置における前記炉内雰囲気ガス流量が少なくなるように製造条件を変更することを特徴とするFZ法による半導体シリコン単結晶の製造方法。
In a method for producing a semiconductor silicon single crystal by the FZ method using a CZ silicon crystal produced by the CZ method as a raw material,
The step of measuring the oxygen concentration in the axial direction of the CZ silicon crystal in advance to obtain the oxygen concentration distribution, and
The use of a CZ silicon crystal as a raw material, by changing the manufacturing conditions according to the oxygen concentration distribution in the axial direction of the acquired CZ silicon crystals, possess a step of manufacturing the semiconductor silicon single crystal by the FZ method,
The production conditions shall be one or more of the crystal growth rate, the pressure inside the furnace, and the atmospheric gas flow rate inside the furnace.
When the production condition to be changed is the crystal growth rate, the crystal growth rate in the acquired axial oxygen concentration distribution of the CZ silicon crystal is compared with the crystal growth rate at the position where the oxygen concentration of the CZ silicon crystal is high. The production conditions were changed so that the crystal growth rate of the CZ silicon crystal at a position where the oxygen concentration was low was increased.
When the manufacturing condition to be changed is the furnace pressure, the pressure in the furnace at the position where the oxygen concentration of the CZ silicon crystal is high in the acquired oxygen concentration distribution in the axial direction of the CZ silicon crystal is compared with the pressure in the furnace. The production conditions were changed so that the pressure inside the furnace was high at the position where the oxygen concentration of the CZ silicon crystal was low.
When the manufacturing condition to be changed is the atmosphere gas flow rate in the furnace, the flow rate of the atmosphere gas in the furnace at the position where the oxygen concentration of the CZ silicon crystal is high in the acquired oxygen concentration distribution in the axial direction of the CZ silicon crystal. A method for producing a semiconductor silicon single crystal by the FZ method, which comprises changing the production conditions so that the flow rate of atmospheric gas in the furnace at a position where the oxygen concentration of the CZ silicon crystal is low is reduced .
前記FZ法で製造する半導体シリコン単結晶の直径を150mm以上とすることを特徴とする請求項1に記載の半導体シリコン単結晶の製造方法。 The method for producing a semiconductor silicon single crystal according to claim 1, wherein the diameter of the semiconductor silicon single crystal produced by the FZ method is 150 mm or more. 所望とする前記FZ法で製造する半導体シリコン単結晶の酸素濃度の50倍以上の酸素濃度を有する前記CZシリコン結晶を原料として用いることを特徴とする請求項1又は請求項2に記載の半導体シリコン単結晶の製造方法。 The semiconductor silicon according to claim 1 or 2, wherein the CZ silicon crystal having an oxygen concentration of 50 times or more the oxygen concentration of the desired semiconductor silicon single crystal produced by the FZ method is used as a raw material. A method for producing a single crystal. 前記FZ法で製造する半導体シリコン単結晶の軸方向の全体で、酸素濃度が2.1×1016atoms/cm以上8.0×1016atoms/cm以下の範囲であることを特徴とする請求項1から請求項のいずれか一項に記載の半導体シリコン単結晶の製造方法。 The feature is that the oxygen concentration is in the range of 2.1 × 10 16 atoms / cm 3 or more and 8.0 × 10 16 atoms / cm 3 or less in the entire axial direction of the semiconductor silicon single crystal manufactured by the FZ method. The method for producing a semiconductor silicon single crystal according to any one of claims 1 to 3 . 前記FZ法で製造する半導体シリコン単結晶の軸方向の全体で、酸素濃度が4.0×1016atoms/cm以上5.0×1016atoms/cm以下の範囲であることを特徴とする請求項に記載の半導体シリコン単結晶の製造方法。 The semiconductor silicon single crystal produced by the FZ method is characterized in that the oxygen concentration is in the range of 4.0 × 10 16 atoms / cm 3 or more and 5.0 × 10 16 atoms / cm 3 or less in the entire axial direction. The method for producing a semiconductor silicon single crystal according to claim 4 .
JP2016223825A 2016-11-17 2016-11-17 Manufacturing method of semiconductor silicon single crystal Active JP6756244B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2016223825A JP6756244B2 (en) 2016-11-17 2016-11-17 Manufacturing method of semiconductor silicon single crystal

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2016223825A JP6756244B2 (en) 2016-11-17 2016-11-17 Manufacturing method of semiconductor silicon single crystal

Publications (2)

Publication Number Publication Date
JP2018080085A JP2018080085A (en) 2018-05-24
JP6756244B2 true JP6756244B2 (en) 2020-09-16

Family

ID=62198555

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2016223825A Active JP6756244B2 (en) 2016-11-17 2016-11-17 Manufacturing method of semiconductor silicon single crystal

Country Status (1)

Country Link
JP (1) JP6756244B2 (en)

Families Citing this family (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP7067267B2 (en) * 2018-05-23 2022-05-16 信越半導体株式会社 Method for measuring resistivity of raw material crystal and method for manufacturing FZ silicon single crystal
DE102018210317A1 (en) * 2018-06-25 2020-01-02 Siltronic Ag Method for producing a single crystal from semiconductor material according to the FZ method, device for carrying out the method and semiconductor wafer made of silicon
JP7240827B2 (en) * 2018-07-02 2023-03-16 信越半導体株式会社 Method for measuring resistivity of raw material crystal and method for producing FZ silicon single crystal

Family Cites Families (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP5345511B2 (en) * 2009-11-30 2013-11-20 Sumco Techxiv株式会社 Silicon single crystal manufacturing apparatus and silicon single crystal manufacturing method
JP5880415B2 (en) * 2012-12-06 2016-03-09 信越半導体株式会社 Single crystal manufacturing method
JP6119642B2 (en) * 2014-02-28 2017-04-26 信越半導体株式会社 Manufacturing method of semiconductor single crystal

Also Published As

Publication number Publication date
JP2018080085A (en) 2018-05-24

Similar Documents

Publication Publication Date Title
JP5070737B2 (en) Method for producing FZ single crystal silicon using silicon crystal rod produced by CZ method as raw material
KR101997565B1 (en) Method for producing monocrystalline silicon
JP4367213B2 (en) Method for producing silicon single crystal
JP4957600B2 (en) Semiconductor crystal manufacturing method and semiconductor crystal manufacturing apparatus by FZ method
JP6756244B2 (en) Manufacturing method of semiconductor silicon single crystal
US20050160966A1 (en) Method for producing silicon single crystal and, silicon single crystal and silicon wafer
JP6119642B2 (en) Manufacturing method of semiconductor single crystal
US20090293804A1 (en) Method of shoulder formation in growing silicon single crystals
KR20160090288A (en) Method for producing silicon single crystal
JP6720841B2 (en) Method for manufacturing semiconductor silicon single crystal
JP2015229612A (en) Manufacturing method of single crystal
JP2017222551A (en) Production method of silicon single crystal
JP2011105537A (en) Method for producing silicon single crystal
JP5201730B2 (en) Manufacturing method of FZ method silicon single crystal
JP7067267B2 (en) Method for measuring resistivity of raw material crystal and method for manufacturing FZ silicon single crystal
JP6152784B2 (en) Manufacturing method of semiconductor crystal
JP6459987B2 (en) Method for producing silicon single crystal
WO2018003264A1 (en) Silicon monocrystal production method
KR102346307B1 (en) Silicon single crystal manufacturing method and silicon single crystal wafer
JP4080657B2 (en) Method for producing silicon single crystal ingot
JP7247949B2 (en) Method for producing silicon single crystal
JP7452314B2 (en) Method for producing silicon raw material crystal for FZ and production system for silicon raw material crystal for FZ
JP4360208B2 (en) Method for producing silicon single crystal
JP7287521B2 (en) Method for measuring resistivity of raw material crystal produced by CZ method and method for producing FZ silicon single crystal
JP5895875B2 (en) Manufacturing method of semiconductor single crystal

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20190815

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20200427

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20200519

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20200630

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20200728

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20200810

R150 Certificate of patent or registration of utility model

Ref document number: 6756244

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250