JP2020007163A - Method of measuring resistivities of raw material crystal and method of manufacturing fz silicon single crystal - Google Patents

Method of measuring resistivities of raw material crystal and method of manufacturing fz silicon single crystal Download PDF

Info

Publication number
JP2020007163A
JP2020007163A JP2018126262A JP2018126262A JP2020007163A JP 2020007163 A JP2020007163 A JP 2020007163A JP 2018126262 A JP2018126262 A JP 2018126262A JP 2018126262 A JP2018126262 A JP 2018126262A JP 2020007163 A JP2020007163 A JP 2020007163A
Authority
JP
Japan
Prior art keywords
resistivity
measured
raw material
crystal
silicon single
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2018126262A
Other languages
Japanese (ja)
Other versions
JP7240827B2 (en
Inventor
鈴木 聡
Satoshi Suzuki
聡 鈴木
義博 児玉
Yoshihiro Kodama
義博 児玉
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Shin Etsu Handotai Co Ltd
Original Assignee
Shin Etsu Handotai Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Shin Etsu Handotai Co Ltd filed Critical Shin Etsu Handotai Co Ltd
Priority to JP2018126262A priority Critical patent/JP7240827B2/en
Publication of JP2020007163A publication Critical patent/JP2020007163A/en
Application granted granted Critical
Publication of JP7240827B2 publication Critical patent/JP7240827B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Abstract

To provide a measurement method capable of appropriately measuring resistivities and conductivity types of a raw material crystal and a method of manufacturing an FZ silicon single crystal using a raw material resistivity determined by the measurement method.SOLUTION: Provided is a measurement method of measuring resistivities of an oxygen-containing raw material crystal for use in manufacturing a silicon single crystal by an FZ method, the measurement method comprising: measuring a resistivity and a conductivity type at a plurality of circumferential locations of a sample wafer taken from a raw material crystal; determining whether the measured resistivities as appropriate or non-appropriate on the basis of deviation rates between the maximum and minimum values of the measured resistivities; determining whether the measured conductivity types as appropriate or non-appropriate on the basis of the measured conductivity types; when the measured resistivities are determined as appropriate and the measured conductivity types are determined as appropriate, adopting an average value of the measured resistivities as a raw material resistivity and the measured conductivity types as a raw material conductivity type, and when the measured resistivities are determined as non-appropriate and/or the measured conductivity types are determined as non-appropriate, failing the measurement and performing measurement again.SELECTED DRAWING: Figure 4

Description

本発明は、FZ法(フローティングゾーン法または浮遊帯溶融法)によるシリコン結晶製造に使用される原料結晶、特に、チョクラルスキー(Czochralski、以下CZと略称する)法で製造された原料結晶の抵抗率の測定方法に関する。   The present invention relates to a resistance of a raw material crystal used for manufacturing a silicon crystal by the FZ method (floating zone method or floating zone melting method), particularly, a raw material crystal manufactured by a Czochralski (CZ) method. It relates to a method for measuring the rate.

FZ法は、例えば、現在半導体デバイスとして最も多く使用されているシリコン単結晶等の半導体単結晶の製造方法の一つとして使用されている。   The FZ method is used, for example, as one of the methods for manufacturing a semiconductor single crystal such as a silicon single crystal most frequently used as a semiconductor device.

従来、シリコン単結晶に所望の抵抗率を与えるためにはn型或いはp型の不純物ドーピングが必要である。FZ法においては、ドーパントガスを溶融帯域に吹き付けるガスドーピング法が知られている(非特許文献1参照)。   Conventionally, n-type or p-type impurity doping is required to give a desired resistivity to a silicon single crystal. In the FZ method, a gas doping method in which a dopant gas is blown into a melting zone is known (see Non-Patent Document 1).

このドーパントガスとして、例えばn型ドーパントであるP(リン)のドーピングにはPH等が、p型ドーパントであるB(ホウ素)のドーピングにはB等が用いられる。シリコン単結晶の抵抗率は、これらn型ドーパントとp型ドーパントの結晶中の濃度差により変化するが、通常の結晶製造においてn型ドーパントのみ、或いはp型ドーパントのみをドーピングする場合には、抵抗率はドーパント添加量が増加するにつれて低くなる。 As the dopant gas, for example, PH 3 or the like is used for doping P (phosphorus) as an n-type dopant, and B 2 H 6 or the like is used for doping B (boron) as a p-type dopant. The resistivity of a silicon single crystal varies depending on the concentration difference between these n-type dopants and p-type dopants in the crystal. However, when doping only n-type dopants or only p-type dopants in normal crystal production, The rate decreases as the dopant loading increases.

所望の抵抗率のシリコン単結晶を得るためには、原料結晶の抵抗率と目標の抵抗率を基に算出されたドーパント供給量が、適正に保たれる必要がある。供給されるドーパントガスの濃度や流量等を調整してドーパント添加量を適正に保ちつつFZ法により単結晶を成長させることで、目標の抵抗率を持つFZシリコン単結晶を製造することができる。   In order to obtain a silicon single crystal having a desired resistivity, it is necessary to appropriately maintain the dopant supply amount calculated based on the resistivity of the raw material crystal and the target resistivity. By growing the single crystal by the FZ method while adjusting the concentration and the flow rate of the supplied dopant gas and maintaining the proper amount of the dopant, an FZ silicon single crystal having a target resistivity can be manufactured.

上記のように、目標の抵抗率のFZシリコン単結晶を製造するためには、算出・設定された濃度や流量のドーパントガスを確実に供給することはもちろんであるが、ドーパント供給量の計算自体が適正であることが必要である。この適正なドープ条件設定のためには、原料結晶の抵抗率は非常に重要な因子である。原料結晶の抵抗率値及び/或いは導電型が真値と異なっていれば、製造、取得したFZシリコン単結晶の抵抗率は目標の値からかけ離れたものになり、必要な特性が得られずロスに繋がる。   As described above, in order to manufacture an FZ silicon single crystal having a target resistivity, it is of course necessary to supply a dopant gas having a calculated and set concentration and a flow rate. Must be appropriate. For setting the proper doping conditions, the resistivity of the raw material crystal is a very important factor. If the resistivity value and / or conductivity type of the raw material crystal is different from the true value, the resistivity of the manufactured and obtained FZ silicon single crystal will be far from the target value, and the required characteristics will not be obtained and the loss will be lost. Leads to.

上記FZシリコン単結晶製造の原料結晶としては高純度シリコン多結晶を用いるが、FZシリコン単結晶に所定量の酸素を含有させるなどの目的で、FZシリコン単結晶製造の原料結晶としてCZ法により製造したCZシリコン結晶を用いる場合がある(例えば特許文献1、2)。いずれの場合でも原料結晶の抵抗率、及び導電型を適正に測定、設定し、ドープ計算に用いることで、目標の抵抗率をもつFZシリコン単結晶を製造することができる。   A high-purity silicon polycrystal is used as a raw material crystal for producing the FZ silicon single crystal, but is produced by a CZ method as a raw material crystal for producing the FZ silicon single crystal for the purpose of including a predetermined amount of oxygen in the FZ silicon single crystal. In some cases, a CZ silicon crystal is used (for example, Patent Documents 1 and 2). In any case, the FZ silicon single crystal having the target resistivity can be manufactured by appropriately measuring and setting the resistivity and the conductivity type of the raw material crystal and using the same for the doping calculation.

このように、FZシリコン単結晶製造の原料結晶にCZシリコン結晶を用いる場合、様々な抵抗率帯のFZシリコン単結晶を製造するためには、原料結晶ができるだけ高抵抗率であることが望ましい。   As described above, when a CZ silicon crystal is used as a raw material crystal for producing an FZ silicon single crystal, it is desirable that the raw material crystal has as high a resistivity as possible in order to produce an FZ silicon single crystal having various resistivity bands.

また従来はジーメンス法などにより製造された高純度シリコン多結晶棒を原料結晶として使用しており、製造されるFZシリコン単結晶の酸素濃度は極めて低かった。一方、近年は半導体デバイスの製造方法や求められる特性等もより多様化し、ある程度の酸素濃度を持つFZシリコン単結晶の需要も存在する。この対応としては、FZシリコン単結晶製造においての様々な方法による酸素ドープ法よりも、高酸素濃度の原料を使用する方法がより簡便であるため、原料結晶にCZシリコン結晶が使用されている。   Conventionally, a high-purity silicon polycrystalline rod manufactured by the Siemens method or the like is used as a raw material crystal, and the oxygen concentration of the manufactured FZ silicon single crystal is extremely low. On the other hand, in recent years, semiconductor device manufacturing methods and required characteristics have become more diversified, and there is a demand for FZ silicon single crystals having a certain oxygen concentration. As a countermeasure, a CZ silicon crystal is used as a raw material crystal because a method using a material having a high oxygen concentration is simpler than an oxygen doping method using various methods in the production of FZ silicon single crystals.

原料結晶のCZシリコン結晶は、あらかじめ、その抵抗率及び導電型の測定を行い、その測定値を以て原料結晶の抵抗率、導電型とするが、通常の測定サンプルは、そのままの状態ではCZシリコン結晶製造時に導入される酸素がサーマルドナー化しているため、適正な抵抗率測定値が得られない。特に、上記のように、FZシリコン単結晶製造に用いる場合は前記のように高抵抗率であるため、その傾向は顕著である。   The resistivity and conductivity type of the CZ silicon crystal of the raw material crystal are measured in advance, and the measured value is used as the resistivity and conductivity type of the raw material crystal. Since oxygen introduced at the time of production is turned into a thermal donor, an appropriate resistivity measurement value cannot be obtained. In particular, as described above, when used in the production of FZ silicon single crystal, the tendency is remarkable because of the high resistivity as described above.

従来は熱処理(酸素ドナーキラー熱処理)を施して酸素ドナーを消去した後に、抵抗率及び導電型の測定を行っており、CZシリコン結晶の結晶断面内の抵抗率変動は比較的小さいため、例えば、サンプル面内中心を測定して、抵抗率の代表値としていた。   Conventionally, after the heat treatment (oxygen donor killer heat treatment) is performed to eliminate the oxygen donor, the resistivity and the conductivity type are measured. Since the variation in resistivity in the crystal cross section of the CZ silicon crystal is relatively small, for example, The center in the sample plane was measured and used as a representative value of the resistivity.

しかしながら、原料のCZシリコン結晶が高酸素濃度の場合、上記のような酸素ドナーキラー熱処理を施したとしても酸素ドナーは完全に除去しきれず、原料結晶のCZシリコン結晶は高抵抗率であるため、抵抗率及び導電型の測定結果へ影響を及ぼすことになる。これは、原料結晶の抵抗率及び導電型が適正に測定されないということであり、FZシリコン単結晶の製造時に、これらの値に基づいてドーパント供給量を決定し、実際に供給したとしても、取得したFZシリコン単結晶の抵抗率は目標とする値にならず、このFZシリコン単結晶は製造しようとする半導体デバイスに必要な特性が得られないため無駄になってしまうという問題があった。   However, when the raw material CZ silicon crystal has a high oxygen concentration, even if the oxygen donor killer heat treatment as described above is performed, the oxygen donor cannot be completely removed, and the raw material CZ silicon crystal has a high resistivity. This will affect the resistivity and conductivity type measurements. This means that the resistivity and the conductivity type of the raw material crystal are not measured properly, and when the FZ silicon single crystal is manufactured, the dopant supply amount is determined based on these values, and even if the dopant is actually supplied, The resistivity of the FZ silicon single crystal thus obtained does not reach a target value, and the FZ silicon single crystal has a problem that it is wasted because characteristics required for a semiconductor device to be manufactured cannot be obtained.

特開2005−306653号公報JP 2005306653 A 特開2015−160800号公報JP-A-2015-160800

WOLFGANG KELLER、ALFRED MUHLBAUER著「Floating−Zone Silicon」p.15−、MARCEL DEKKER, INC.発行"Floating-Zone Silicon" by WOLFGANG KELLER, ALFRED MUHLBAUER, p. 15-, MARCEL DEKKER, INC. Issue

本発明は、上記問題を解決するためになされたものであり、FZ法によるシリコン単結晶の製造に用いる原料結晶の抵抗率及び導電型を適正に測定することが可能となる原料結晶の抵抗率の測定方法、及び前記測定方法によって求めた原料結晶の原料抵抗率を用いるFZシリコン単結晶の製造方法を提供することを目的とする。   The present invention has been made in order to solve the above-mentioned problem, and it has been made possible to appropriately measure the resistivity and conductivity of a raw material crystal used for manufacturing a silicon single crystal by the FZ method. It is an object of the present invention to provide a method for measuring FZ, and a method for producing an FZ silicon single crystal using the raw material resistivity of the raw crystal obtained by the measuring method.

上記目的を達成するために、本発明は、
FZ法によりシリコン単結晶を製造する際に用いる酸素を含有する原料結晶の抵抗率の測定方法であって、
(a)原料結晶からサンプルウェーハを採取する工程、
(b)前記サンプルウェーハの周方向の複数箇所の測定抵抗率と測定導電型を測定する工程、
(c)前記(b)工程で得られた前記複数箇所の測定抵抗率のうち、最大値と最小値の乖離率を計算し、該乖離率が定められた閾値を超えていなければ測定抵抗率適正、閾値を超えていれば測定抵抗率不適正と判定する工程、
(d)前記(b)工程で得られた前記複数箇所の測定導電型が全て同一であれば測定導電型適正、全て同一でなければ測定導電型不適正と判定する工程、
(e)前記(c)工程及び前記(d)工程において測定抵抗率適正と判定され、かつ測定導電型適正と判定された場合、前記(b)工程で得られた前記複数箇所の測定抵抗率から算出される平均値を前記原料結晶の原料抵抗率として、前記測定導電型を前記原料結晶の原料導電型として採用し、また、前記(c)工程及び前記(d)工程で測定抵抗率不適正及び/又は測定導電型不適正と判定された場合、前記(b)工程で得られた前記複数箇所の測定抵抗率及び/又は前記複数箇所の測定導電型は不採用として、再度、複数箇所の測定抵抗率及び/又は測定導電型を測定し、前記(c)工程及び/又は前記(d)工程からやりなおす工程、
とを有することを特徴とする原料結晶の抵抗率の測定方法を提供する。
In order to achieve the above object, the present invention provides
A method for measuring the resistivity of an oxygen-containing raw material crystal used for producing a silicon single crystal by the FZ method,
(A) collecting a sample wafer from a raw material crystal,
(B) measuring the measured resistivity and the measured conductivity at a plurality of locations in the circumferential direction of the sample wafer;
(C) calculating the divergence rate between the maximum value and the minimum value among the measured resistivity values at the plurality of locations obtained in the step (b), and if the divergence rate does not exceed a predetermined threshold, the measured resistivity Appropriate, if it exceeds the threshold value, the process of determining that the measured resistivity is inappropriate,
(D) determining that the measured conductivity type is appropriate if the measured conductivity types at the plurality of locations obtained in the step (b) are all the same, and that the measured conductivity type is inappropriate if not all the same.
(E) When it is determined in the steps (c) and (d) that the measured resistivity is appropriate and that the measured conductivity type is appropriate, the measured resistivity at the plurality of locations obtained in the step (b) Is used as the raw material resistivity of the raw material crystal, the measured conductivity type is adopted as the raw material conductivity type of the raw material crystal, and the measured resistivity is not measured in the steps (c) and (d). If it is determined that the measurement and / or measurement conductivity type is inappropriate, the measurement resistivity at the plurality of locations and / or the measurement conductivity type at the plurality of locations obtained in the step (b) are rejected, and the measurement is repeated again at the plurality of locations. Measuring the measured resistivity and / or the measured conductivity of step (c) and / or starting over from step (d);
And a method for measuring the resistivity of the raw material crystal.

このような本発明の測定方法であれば、原料結晶の抵抗率及び導電型を適正に測定することができるため、目標の抵抗率を有するFZシリコン単結晶の製造が容易になり、得られたFZシリコン単結晶は、目的とする半導体デバイス製造のための適切な品質を有する材料として用いることができる。   According to such a measurement method of the present invention, since the resistivity and conductivity type of the raw material crystal can be properly measured, the production of the FZ silicon single crystal having the target resistivity is facilitated, and the obtained The FZ silicon single crystal can be used as a material having appropriate quality for manufacturing a target semiconductor device.

また、このとき、前記(c)工程における前記乖離率を、[乖離率]=([測定抵抗率の最大値]−[測定抵抗率の最小値])÷[測定抵抗率の最小値]により計算し、前記乖離率の閾値を20%とすることが好ましい。   Also, at this time, the divergence rate in the step (c) is calculated by [deviation rate] = ([maximum value of measured resistivity] − [minimum value of measured resistivity]) ÷ [minimum value of measured resistivity]. It is preferable to calculate and set the threshold value of the deviation rate to 20%.

乖離率をこのように計算すれば、測定抵抗率の測定結果が測定抵抗率不適正である場合を精度よく検出することができる。   By calculating the deviation rate in this way, it is possible to accurately detect a case where the measurement result of the measured resistivity is inappropriate for the measured resistivity.

また、前記(b)工程における前記測定抵抗率の測定は四探針法により行い、前記(b)工程における前記測定導電型の測定は熱起電力法により行うことが好ましい。   Preferably, the measurement of the measured resistivity in the step (b) is performed by a four-probe method, and the measurement of the measured conductivity type in the step (b) is performed by a thermoelectromotive force method.

測定抵抗率及び測定導電型をこのような方法により測定すれば、精度の高い測定抵抗率の測定を比較的容易に行うことができ、測定導電型測定を簡単に行うことができる。   If the measurement resistivity and the measurement conductivity type are measured by such a method, the measurement of the measurement resistivity with high accuracy can be performed relatively easily, and the measurement conductivity type measurement can be easily performed.

また、前記原料結晶がCZ法により製造された結晶であることが好ましい。   Further, it is preferable that the raw material crystal is a crystal produced by a CZ method.

このようにCZ法により製造された原料結晶であれば、比較的簡便に高酸素濃度の原料結晶を得ることができるとともに、本発明により正確に原料の抵抗率と導電型を測定することができる。   With the raw material crystal manufactured by the CZ method, a raw material crystal having a high oxygen concentration can be obtained relatively easily, and the resistivity and conductivity type of the raw material can be accurately measured by the present invention. .

また、前記原料結晶の酸素濃度が6.5×1017atoms/cm以上であることが好ましい。 Further, it is preferable that the oxygen concentration of the raw material crystal is 6.5 × 10 17 atoms / cm 3 or more.

本発明であれば、原料結晶の酸素濃度が6.5×1017atoms/cm以上であっても真値に近い抵抗率を測定することができる。 According to the present invention, a resistivity close to a true value can be measured even when the oxygen concentration of the raw material crystal is 6.5 × 10 17 atoms / cm 3 or more.

また、前記原料結晶の抵抗率が1,000Ωcm以上であることが好ましい。   Further, it is preferable that the resistivity of the raw material crystal is 1,000 Ωcm or more.

本発明では、抵抗率が1,000Ωcm以上といった高抵抗率の原料結晶であっても、原料結晶の抵抗率を適正に測定することができる。   According to the present invention, the resistivity of the raw material crystal can be properly measured even when the raw material crystal has a high resistivity of 1,000 Ωcm or more.

また、前記(b)工程における前記複数箇所の測定抵抗率と測定導電型を測定する位置を前記サンプルウェーハの中心からr/2以上離れた位置にあって、中心からの距離を同一とすることが好ましい。   In addition, the positions where the measured resistivity and the measured conductivity are measured at the plurality of locations in the step (b) are located at least r / 2 or more away from the center of the sample wafer, and the distance from the center is the same. Is preferred.

このように複数の測定点がサンプルウェーハの中心からr/2以上離れた位置にあって、中心からの距離を同一とすれば、複数の測定点の測定抵抗率と測定導電型が比較的安定した値となる。   As described above, when the plurality of measurement points are located at positions r / 2 or more from the center of the sample wafer and the distance from the center is the same, the measurement resistivity and the measurement conductivity type of the plurality of measurement points are relatively stable. Value.

また、上記の測定方法によって求めた原料結晶の原料抵抗率と製造されるFZシリコン単結晶の目標とする目標抵抗率を基に、FZシリコン単結晶製造時に導入するドーパント添加量を算出し、該算出したドーパント量を添加しながらFZ法によりシリコン単結晶を製造することを特徴とするFZシリコン単結晶の製造方法も提供する。   Further, based on the raw material resistivity of the raw material crystal obtained by the above-described measuring method and the target target resistivity of the manufactured FZ silicon single crystal, the amount of dopant to be introduced at the time of manufacturing the FZ silicon single crystal is calculated. A method for producing an FZ silicon single crystal, which comprises producing a silicon single crystal by the FZ method while adding the calculated dopant amount, is also provided.

このようなFZシリコン単結晶の製造方法であれば、目標抵抗率に近いFZシリコン単結晶を容易に製造することができる。   With such an FZ silicon single crystal manufacturing method, an FZ silicon single crystal close to the target resistivity can be easily manufactured.

以上のように、本発明の原料結晶の抵抗率の測定方法であれば、FZ法を使用して行うシリコン単結晶製造の際に、酸素を含有する原料結晶の抵抗率及び導電型を適正に測定することができ、本発明のFZシリコン単結晶の製造方法に適用した場合に、目標の抵抗率値となるFZシリコン単結晶の製造が容易となり、得られたFZシリコン単結晶を目的の半導体デバイス製造のための適切な品質を有する材料とすることができる。   As described above, according to the method for measuring the resistivity of a raw material crystal of the present invention, when manufacturing a silicon single crystal using the FZ method, the resistivity and conductivity of the oxygen-containing raw material crystal are properly adjusted. It can be measured, and when applied to the method of manufacturing an FZ silicon single crystal of the present invention, the manufacture of an FZ silicon single crystal having a target resistivity value becomes easy, and the obtained FZ silicon single crystal is used as a target semiconductor. It can be a material of suitable quality for device manufacture.

これは製造した結晶のロスとなる割合が下がるということであり、特に商業生産においては、製品の安定供給に繋がるため大きなメリットがある。   This means that the loss rate of the produced crystals is reduced, and there is a great advantage in commercial production, particularly, because it leads to a stable supply of products.

本発明のFZシリコン単結晶の製造工程の一例を示す概略図である。It is a schematic diagram showing an example of a manufacturing process of FZ silicon single crystal of the present invention. 本発明で用いることができるFZシリコン単結晶の製造装置の一例を示す概略図である。It is a schematic diagram showing an example of a manufacturing device of FZ silicon single crystal which can be used in the present invention. サンプルA及びBの抵抗率と導電率の比較結果を示す図である。It is a figure showing the comparison result of resistivity and electric conductivity of sample A and B. 本発明の原料結晶の抵抗率の測定方法の各工程を示すフロー図である。It is a flowchart which shows each process of the measuring method of the resistivity of the raw material crystal of this invention.

以下、本発明について、実施態様の一例として、図を参照しながら詳細に説明するが、本発明はこれに限定されるものではない。   Hereinafter, the present invention will be described in detail with reference to the drawings as an example of an embodiment, but the present invention is not limited to this.

上述のように、CZシリコン結晶を原料結晶としてFZシリコン単結晶製造を行う際に、事前に設定した通りのドーパント供給量であるにもかかわらず、製造したシリコン単結晶の抵抗率が結晶間で大きく異なり安定しないケースが見られた。このように製造したシリコン単結晶の抵抗率が目標の値から乖離し、規定範囲から逸脱してしまうと、当該単結晶は目的の半導体デバイス向けに使用することができずロスとなるため問題である。そこで、原料のシリコン結晶が高酸素濃度の場合であっても抵抗率及び導電型の測定結果への影響が少なく、原料結晶の抵抗率及び導電型を適正に測定することができる原料結晶の抵抗率の測定方法の開発が求められていた。   As described above, when the FZ silicon single crystal is manufactured using the CZ silicon crystal as the raw material crystal, the resistivity of the manufactured silicon single crystal varies between the crystals regardless of the dopant supply amount set in advance. In some cases, the situation was significantly different and was not stable. If the resistivity of the silicon single crystal manufactured in this way deviates from a target value and deviates from a specified range, the single crystal cannot be used for a target semiconductor device, resulting in a loss. is there. Therefore, even when the silicon crystal of the raw material has a high oxygen concentration, the resistance and the conductivity type have little influence on the measurement result, and the resistance and the conductivity of the raw material crystal can be properly measured. Development of a method for measuring the rate was required.

本発明者らは、このような問題について鋭意検討を重ねたところ、原料結晶の抵抗率が真値から乖離していることが原因の主たる要因であることを見出し、原料結晶のサンプルウェーハの周方向の複数箇所で測定した測定抵抗率のバラツキが一定値以下であり、同じく、測定した測定導電型が全て一致していれば、測定抵抗率及び測定導電型の測定結果の信頼度が高いと判断され、より真値に近い原料結晶の抵抗率が得られることに想到し、本発明を完成させた。   The present inventors have conducted intensive studies on such a problem, and found that the main factor is that the resistivity of the raw material crystal deviates from the true value, and found that the peripheral factor of the sample wafer of the raw material crystal was large. If the variation of the measured resistivity measured at a plurality of points in the direction is equal to or less than a certain value, and if the measured conductivity types are all the same, the reliability of the measurement result of the measured resistivity and the measured conductivity type is high. It has been determined that the resistivity of the raw material crystal closer to the true value can be obtained, and the present invention has been completed.

即ち、本発明は、FZ法によりシリコン単結晶を製造する際に用いる酸素を含有する原料結晶の抵抗率の測定方法であって、
(a)原料結晶からサンプルウェーハを採取する工程、
(b)前記サンプルウェーハの周方向の複数箇所の測定抵抗率と測定導電型を測定する工程、
(c)前記(b)工程で得られた前記複数箇所の測定抵抗率のうち、最大値と最小値の乖離率を計算し、該乖離率が定められた閾値を超えていなければ測定抵抗率適正、閾値を超えていれば測定抵抗率不適正と判定する工程、
(d)前記(b)工程で得られた前記複数箇所の測定導電型が全て同一であれば測定導電型適正、全て同一でなければ測定導電型不適正と判定する工程、
(e)前記(c)工程及び前記(d)工程において測定抵抗率適正と判定され、かつ測定導電型適正と判定された場合、前記(b)工程で得られた前記複数箇所の測定抵抗率から算出される平均値を前記原料結晶の原料抵抗率として、前記測定導電型を前記原料結晶の原料導電型として採用し、また、前記(c)工程及び前記(d)工程で測定抵抗率不適正及び/又は測定導電型不適正と判定された場合、前記(b)工程で得られた前記複数箇所の測定抵抗率及び/又は前記複数箇所の測定導電型は不採用として、再度、複数箇所の測定抵抗率及び/又は測定導電型を測定し、前記(c)工程及び/又は前記(d)工程からやりなおす工程、
とを有することを特徴とする原料結晶の抵抗率の測定方法である。
That is, the present invention is a method for measuring the resistivity of a material crystal containing oxygen used when producing a silicon single crystal by the FZ method,
(A) collecting a sample wafer from a raw material crystal,
(B) measuring the measured resistivity and the measured conductivity at a plurality of locations in the circumferential direction of the sample wafer;
(C) calculating the divergence rate between the maximum value and the minimum value among the measured resistivity values at the plurality of locations obtained in the step (b), and if the divergence rate does not exceed a predetermined threshold, the measured resistivity Appropriate, if it exceeds the threshold value, the process of determining that the measured resistivity is inappropriate,
(D) determining that the measured conductivity type is appropriate if the measured conductivity types at the plurality of locations obtained in the step (b) are all the same, and that the measured conductivity type is inappropriate if not all the same.
(E) When it is determined in the steps (c) and (d) that the measured resistivity is appropriate and that the measured conductivity type is appropriate, the measured resistivity at the plurality of locations obtained in the step (b) Is used as the raw material resistivity of the raw material crystal, the measured conductivity type is adopted as the raw material conductivity type of the raw material crystal, and the measured resistivity is not measured in the steps (c) and (d). If it is determined that the measurement and / or measurement conductivity type is inappropriate, the measurement resistivity at the plurality of locations and / or the measurement conductivity type at the plurality of locations obtained in the step (b) are rejected, and the measurement is repeated again at the plurality of locations. Measuring the measured resistivity and / or the measured conductivity of step (c) and / or starting over from step (d);
And a method for measuring the resistivity of the raw material crystal.

本発明は、FZ法によりシリコン単結晶を製造する際に用いる酸素を含有する原料結晶の抵抗率の測定方法であって、以下の(a)から(e)工程を有することを特徴とする。
以下、図4を参照して説明する。
The present invention is a method for measuring the resistivity of an oxygen-containing raw material crystal used when producing a silicon single crystal by the FZ method, and comprises the following steps (a) to (e).
Hereinafter, description will be made with reference to FIG.

[(a)工程]
(a)工程は、原料結晶からサンプルウェーハを採取する工程である(図4(a))。サンプルウェーハの採取は従来の方法で行うことができ、例えば、簡便で実用的な方法として、原料結晶から円盤形状のサンプルを採取することができる。酸素ドナーの影響を除去するための熱処理(酸素ドナーキラー熱処理)をさらに施すこともできる。
[Step (a)]
The step (a) is a step of collecting a sample wafer from a raw material crystal (FIG. 4A). The sample wafer can be collected by a conventional method. For example, as a simple and practical method, a disk-shaped sample can be collected from a raw material crystal. A heat treatment for removing the influence of the oxygen donor (oxygen donor killer heat treatment) can be further performed.

また、原料結晶はCZ法により製造された結晶であることが好ましい。このようにCZ法により製造された原料結晶であれば、比較的簡便に高酸素濃度の原料結晶を得ることができる。   Further, the raw material crystal is preferably a crystal manufactured by the CZ method. As described above, a raw material crystal manufactured by the CZ method can relatively easily obtain a raw material crystal having a high oxygen concentration.

また、FZシリコン単結晶製造の原料としてはできるだけ長尺であることが好ましいため、サンプリングはCZシリコン結晶の端部付近から行うのが好ましい。   Further, since it is preferable that the raw material for producing the FZ silicon single crystal is as long as possible, the sampling is preferably performed near the end of the CZ silicon crystal.

また、原料結晶の酸素濃度が6.5×1017atoms/cm以上であることが好ましい。本発明であれば、原料結晶の酸素濃度が6.5×1017atoms/cm以上であっても真値に近い抵抗率を測定することができる。 Further, it is preferable that the oxygen concentration of the source crystal be 6.5 × 10 17 atoms / cm 3 or more. According to the present invention, a resistivity close to a true value can be measured even when the oxygen concentration of the raw material crystal is 6.5 × 10 17 atoms / cm 3 or more.

また、原料結晶の抵抗率が1,000Ωcm以上であることが好ましい。本発明であれば、抵抗率が1,000Ωcm以上といった高抵抗率の原料結晶であっても、原料結晶の抵抗率を適正に測定することができる。高抵抗率品は、わずかなドーパント濃度の違いでも大幅に抵抗率が変動してしまうので、本発明を適用するのが有効である。   Further, the resistivity of the raw material crystal is preferably 1,000 Ωcm or more. According to the present invention, the resistivity of a raw material crystal can be properly measured even with a raw material crystal having a high resistivity of 1,000 Ωcm or more. Since the resistivity of a high-resistivity product varies greatly even with a slight difference in dopant concentration, it is effective to apply the present invention.

[(b)工程]
(b)工程は、サンプルウェーハの周方向の複数箇所の測定抵抗率と測定導電型を測定する工程である(図4(b))。サンプルウェーハの周方向の複数箇所の抵抗率(測定抵抗率)と導電型(測定導電型)を測定する位置については、サンプル円盤面内の中心から等距離と見なせる同心円状の範囲内であることが望ましく、サンプル円盤面内の中心から外周までの半径内での中央地点(r/2)以上離れた位置であることが好ましいが、サンプルウェーハの周方向の複数箇所であれば特に限定されない。例えば、サンプルウェーハ中心に軸対称の2点に設定したり、それよりも近接してサンプルウェーハの半円内に全て収まる位置としたりすることもできる。複数の測定点がサンプルウェーハの中心からr/2以上離れた位置にあって、中心からの距離を同一とすれば、複数の測定点の測定抵抗率と測定導電型が比較的安定した値となる。
[Step (b)]
The step (b) is a step of measuring the measured resistivity and the measured conductivity at a plurality of locations in the circumferential direction of the sample wafer (FIG. 4B). The locations where the resistivity (measurement resistivity) and conductivity type (measurement conductivity type) are measured at multiple locations in the circumferential direction of the sample wafer must be within a concentric range that can be regarded as equidistant from the center of the sample disk surface It is preferable that the distance be at least a central point (r / 2) or more within a radius from the center to the outer periphery in the plane of the sample disk, but the position is not particularly limited as long as it is a plurality of points in the circumferential direction of the sample wafer. For example, it may be set to two points that are axisymmetric with respect to the center of the sample wafer, or may be set to a position that is closer to the center and that is entirely within the semicircle of the sample wafer. If a plurality of measurement points are located at a distance of r / 2 or more from the center of the sample wafer and the distance from the center is the same, the measurement resistivity and the measurement conductivity type of the plurality of measurement points are relatively stable. Become.

測定抵抗率の測定は、四探針法とすれば精度の高い測定を比較的容易に行うことができ、測定導電型の測定は、熱起電力法により簡単に行うことができる。測定サンプルによっては、そのままの状態ではCZシリコン結晶製造時に導入される酸素がサーマルドナー化しているため、適正な抵抗率測定値が得られない場合がある。この酸素ドナーは、例えば、650℃で20分程度の軽微な熱処理で消去されることが知られており、このような熱処理を必要に応じて行い、酸素ドナーを消去した後に抵抗率及び導電型の測定を行うこともできる。   The measurement of the measured resistivity can be relatively easily performed by the four probe method, and the measurement of the measurement conductivity type can be easily performed by the thermoelectromotive force method. Depending on the measurement sample, an appropriate resistivity measurement value may not be obtained because oxygen introduced at the time of manufacturing the CZ silicon crystal is converted into a thermal donor in this state. It is known that this oxygen donor is erased by, for example, a slight heat treatment at 650 ° C. for about 20 minutes. Such a heat treatment is performed as needed, and after the oxygen donor is erased, the resistivity and conductivity are erased. Can also be measured.

[(c)工程]
(c)工程は、前記(b)工程で測定した各測定抵抗率のうち最大値と最小値を特定し、この最大値と最小値の乖離率を求め、さらにこの乖離率が予め定めた閾値に対し小さければ測定は測定抵抗率適正、大きければ測定値は測定抵抗率不適正と判定する工程である。
[Step (c)]
In the step (c), the maximum value and the minimum value of the measured resistivity measured in the step (b) are specified, the divergence rate between the maximum value and the minimum value is determined, and the divergence rate is set to a predetermined threshold value. If it is smaller, the measurement is appropriate, and if it is larger, the measured value is inappropriate.

測定抵抗率の最大値と最小値の乖離率は、[乖離率]=([測定抵抗率の最大値]−[測定抵抗率の最小値])÷[測定抵抗率の最小値]により計算することができる。乖離率の閾値は20%以下、好ましくは10%以下とすることができる。乖離率をこのように計算すれば、測定抵抗率の測定結果が測定抵抗率不適正である場合を精度よく検出することができる。   The deviation rate between the maximum value and the minimum value of the measured resistivity is calculated by [deviation rate] = ([maximum value of the measured resistivity] − [minimum value of the measured resistivity]) ÷ [minimum value of the measured resistivity]. be able to. The threshold value of the deviation rate can be set to 20% or less, preferably 10% or less. By calculating the deviation rate in this way, it is possible to accurately detect a case where the measurement result of the measured resistivity is inappropriate for the measured resistivity.

このようにして測定抵抗率が適正に測定されたものかどうかを判定する。   In this way, it is determined whether the measured resistivity is properly measured.

[(d)工程]
(d)工程は、前記(b)工程で測定した各測定導電型を確認し、全ての測定結果が同一であれば測定は測定導電型適正、異なるものが含まれていれば測定は測定導電型不適正と判定する工程である。
[Step (d)]
In the step (d), the respective measurement conductivity types measured in the step (b) are checked. If all the measurement results are the same, the measurement is appropriate for the measurement conductivity type. This is a step of determining that the mold is inappropriate.

[(e)工程]
(e)工程は、前記(c)工程及び(d)工程の結果に基づいて、測定抵抗率適正と判定され、かつ測定導電型適正と判定された場合には、(b)工程で測定した各測定抵抗率の平均値を算出し、算出した平均値を原料結晶の原料抵抗率とし、同じく測定した測定導電型を原料結晶の原料導電型とする。また、前記(c)工程及び前記(d)工程で測定抵抗率不適正及び/又は測定導電型不適正と判定された場合には、前記(b)工程で測定した抵抗率及び/または導電型は不適切と判断して原料結晶の特性値として採用せず、再度、複数箇所の測定抵抗率及び/又は測定導電型を測定し、前記(c)工程及び/又は前記(d)工程からやりなおす工程である。このとき、(c)工程、(d)工程のいずれか一方が不適正と判定された場合にやりなおす工程は、不適正と判定された工程に加え、適正と判定された工程を含めても良い。
[Step (e)]
In the step (e), based on the results of the steps (c) and (d), if it is determined that the measured resistivity is appropriate, and if it is determined that the measured conductivity type is appropriate, the measurement is performed in the step (b). The average value of each measured resistivity is calculated, the calculated average value is defined as the raw material resistivity of the raw material crystal, and the measured conductivity type similarly measured is defined as the raw material conductivity type of the raw material crystal. If it is determined in the steps (c) and (d) that the measured resistivity is inappropriate and / or the measured conductivity is inappropriate, the resistivity and / or conductivity measured in the step (b) are determined. Is determined to be inappropriate and is not adopted as the characteristic value of the raw material crystal. The measured resistivity and / or measured conductivity type are measured again at a plurality of locations, and the process is repeated from the step (c) and / or the step (d). It is a process. At this time, the step to be repeated when one of the steps (c) and (d) is determined to be inappropriate may include a step determined to be appropriate in addition to the step determined to be inappropriate. .

上記(c)から(e)工程を行うことにより、原料結晶のサンプルウェーハを測定して得られた測定抵抗率及び測定導電型が適正なものであることが精度良く判断される。すなわち、真値に近い抵抗率が得られる。   By performing the above steps (c) to (e), it is accurately determined that the measured resistivity and the measured conductivity obtained by measuring the sample wafer of the raw material crystal are appropriate. That is, a resistivity close to the true value is obtained.

このような本発明の測定方法であれば、原料結晶の抵抗率及び導電型を適正に測定することができるため、目標の抵抗率を有するFZシリコン単結晶の製造が容易になり、得られたFZシリコン単結晶は目的とする半導体デバイス製造のための適切な品質を有する材料として用いることができる。   According to such a measurement method of the present invention, since the resistivity and conductivity type of the raw material crystal can be properly measured, the production of the FZ silicon single crystal having the target resistivity is facilitated, and the obtained The FZ silicon single crystal can be used as a material having appropriate quality for manufacturing a target semiconductor device.

[FZシリコン単結晶の製造方法]
本発明は、さらに、本発明の原料結晶の抵抗率の測定方法によって求めた原料結晶の原料抵抗率と製造されるFZシリコン単結晶の目標とする目標抵抗率を基に、FZシリコン単結晶製造時に導入するドーパント供給量を算出し、該算出したドーパント量を添加しながらFZ法によりシリコン単結晶を製造することを特徴とするFZシリコン単結晶の製造方法を提供する。このようなFZシリコン単結晶の製造方法であれば、目標抵抗率に近いFZシリコン単結晶を容易に製造することができる。
図1に本発明のFZシリコン単結晶の製造工程の一例を示す。
[Method of Manufacturing FZ Silicon Single Crystal]
The present invention further provides a method for producing an FZ silicon single crystal based on the material resistivity of the material crystal obtained by the method for measuring the resistivity of the material crystal of the present invention and the target target resistivity of the FZ silicon single crystal to be produced. The present invention provides a method for producing an FZ silicon single crystal, which comprises calculating a supply amount of a dopant to be introduced sometimes, and producing a silicon single crystal by the FZ method while adding the calculated amount of the dopant. With such an FZ silicon single crystal manufacturing method, an FZ silicon single crystal close to the target resistivity can be easily manufactured.
FIG. 1 shows an example of the manufacturing process of the FZ silicon single crystal of the present invention.

高周波誘導電流を印加する高周波コイル16の上方に本発明の方法により抵抗率が測定された原料となる半導体棒(原料棒)14を、下方に単結晶の種結晶15を配置する。原料棒14の下端部を溶融して種結晶15に融着させ((a)種付工程)、さらにこの種付の際に結晶に生じた転位を抜くための絞り(ネッキング)を行い((b)ネッキング工程)、その後に晶出側半導体棒(半導体単結晶棒)を所望の直径まで拡大させながら成長させる((c)コーン部形成工程)。さらに、晶出側半導体棒19を所望の直径に制御しつつ、かつ目標とする抵抗率となるようにドーパントガスを供給して成長を行い((d)直胴部形成工程)、原料の供給を止め、晶出側半導体棒19の直径を縮小させて該晶出側半導体棒を原料半導体棒から切り離す((e)切り離し工程)。以上のような工程を経て、半導体結晶(FZシリコン単結晶)を製造することができる。   A semiconductor rod (raw material rod) 14 serving as a raw material whose resistivity is measured by the method of the present invention is placed above a high-frequency coil 16 to which a high-frequency induced current is applied, and a single crystal seed crystal 15 is placed below. The lower end of the raw material rod 14 is melted and fused to the seed crystal 15 (seeding step (a)). Further, drawing (necking) for removing dislocations generated in the crystal during this seeding is performed (( b) necking step), and then growing the crystallization-side semiconductor rod (semiconductor single crystal rod) while expanding it to a desired diameter ((c) cone part forming step). Further, while controlling the crystallization-side semiconductor rod 19 to a desired diameter and supplying a dopant gas so as to have a target resistivity, growth is performed ((d) straight body portion forming step), and the supply of the raw material is performed. Is stopped, the diameter of the crystallization-side semiconductor rod 19 is reduced, and the crystallization-side semiconductor rod is separated from the source semiconductor rod ((e) separation step). Through the above steps, a semiconductor crystal (FZ silicon single crystal) can be manufactured.

図2に、本発明で用いることができるFZシリコン単結晶の製造装置の一例を示す。   FIG. 2 shows an example of an apparatus for producing an FZ silicon single crystal that can be used in the present invention.

FZシリコン単結晶の製造装置1のチャンバー11内には、上軸12及び下軸13が設けられている。上軸12には原料半導体棒14として所定の直径の半導体棒が、下軸13には種結晶15が取り付けられるようになっている。さらに、原料半導体棒14を溶融する高周波コイル16を備え、溶融帯域18を原料半導体棒14に対して相対的に移動させながらシリコン単結晶(晶出側半導体棒)19を成長させることができる。また、成長中に、ドーパントガスドープノズル(ドーパントガス供給手段)20からドーパントガスを供給できるようになっている。ドーパントガスは、本発明の測定方法によって求めた原料結晶14の原料抵抗率と製造されるFZシリコン単結晶の目標とする目標抵抗率を基に、FZシリコン単結晶製造時に導入するドーパント添加量を算出し、この結果に基づいて供給される。なお、図中の下向き矢印は結晶移動の方向を示す。   An upper shaft 12 and a lower shaft 13 are provided in a chamber 11 of the FZ silicon single crystal manufacturing apparatus 1. A semiconductor rod having a predetermined diameter is attached to the upper shaft 12 as a raw material semiconductor rod 14, and a seed crystal 15 is attached to the lower shaft 13. Further, a high-frequency coil 16 for melting the raw material semiconductor rod 14 is provided, and a silicon single crystal (crystallization-side semiconductor rod) 19 can be grown while moving the melting zone 18 relatively to the raw material semiconductor rod 14. During the growth, the dopant gas can be supplied from the dopant gas doping nozzle (dopant gas supply means) 20. The dopant gas is determined based on the raw material resistivity of the raw material crystal 14 obtained by the measuring method of the present invention and the target target resistivity of the manufactured FZ silicon single crystal. Calculated and supplied based on this result. The downward arrow in the drawing indicates the direction of the crystal movement.

まず、上軸12には本発明の抵抗率測定方法で抵抗率を測定した原料半導体棒14として、例えば所定の直径のシリコン多結晶棒を取り付け、また下軸13に種結晶15を取り付ける。原料半導体棒14を高周波コイル16で溶融した後、種結晶15に融着させる。種結晶15から成長させる晶出側半導体棒19を絞り17により無転位化し、両軸を回転させながら高周波コイル16に対して相対的に下降させ、溶融帯域18を原料半導体棒14に対して相対的に上へと移動させながら晶出側半導体棒19を成長させる。   First, for example, a silicon polycrystal rod having a predetermined diameter is attached to the upper shaft 12 as the raw material semiconductor rod 14 whose resistivity is measured by the resistivity measuring method of the present invention, and a seed crystal 15 is attached to the lower shaft 13. After the raw semiconductor rod 14 is melted by the high-frequency coil 16, it is fused to the seed crystal 15. The crystallization-side semiconductor rod 19 grown from the seed crystal 15 is dislocation-free by the aperture 17, and is lowered relative to the high-frequency coil 16 while rotating both shafts. The crystallization-side semiconductor rod 19 is grown while moving upward.

絞り17を形成した後、種結晶15から成長させる晶出側半導体棒19を所望の直径まで拡径させながら成長させてコーン部を形成し、前記原料半導体棒14と前記晶出側半導体棒19との間に溶融帯域18を形成して、前記晶出側半導体棒19を所望の直径に制御しつつ成長させて直胴部を形成する。   After forming the aperture 17, the crystallization side semiconductor rod 19 grown from the seed crystal 15 is grown while expanding to a desired diameter to form a cone portion, and the raw material semiconductor rod 14 and the crystallization side semiconductor rod 19 are formed. The crystallization side semiconductor rod 19 is grown while controlling to a desired diameter to form a straight body portion.

そして、溶融帯域18を原料半導体棒14の上端まで移動させてシリコン単結晶19の成長を終え、晶出側半導体棒19の直径を縮径させて該晶出側半導体棒19を前記原料半導体棒14から切り離して、半導体結晶を製造する。   Then, the melting zone 18 is moved to the upper end of the material semiconductor rod 14 to complete the growth of the silicon single crystal 19, the diameter of the crystallization-side semiconductor rod 19 is reduced, and the crystallization-side semiconductor rod 19 is removed from the material semiconductor rod 19. Then, a semiconductor crystal is manufactured by separating the semiconductor crystal from the semiconductor substrate 14.

FZシリコン単結晶に要求される抵抗率は1Ωcm未満から数千〜1万Ωcm以上と幅広い範囲にわたるところ、単結晶製造中のドーパント添加によりFZ単結晶の抵抗率を調整する方法を取るため、その使用原料には汎用性が必要となる。このため、原料結晶の抵抗率はできるだけ高いものが望ましく、さらには原料結晶中の含有ドーパント量もできるだけ少ない方が好ましい。   Since the resistivity required for FZ silicon single crystal ranges from less than 1 Ωcm to several thousands to 10,000 Ωcm or more, the method of adjusting the resistivity of FZ single crystal by adding a dopant during the production of the single crystal is used. The raw materials used must have versatility. For this reason, it is desirable that the resistivity of the raw material crystal be as high as possible, and it is more preferable that the amount of dopant contained in the raw material crystal be as small as possible.

ある程度の酸素濃度を持つFZシリコン単結晶の需要に対応するためには、FZシリコン単結晶製造において酸素ドープ法を採用するよりも、高酸素濃度の原料を初めから使用する方法を採用する方がより簡便である。この場合、原料結晶にCZシリコン結晶を使用することが好ましい。   In order to meet the demand for FZ silicon single crystal having a certain oxygen concentration, it is better to adopt a method using raw materials having a high oxygen concentration from the beginning than to adopt an oxygen doping method in the production of FZ silicon single crystal. It is more convenient. In this case, it is preferable to use a CZ silicon crystal as a raw material crystal.

CZシリコン結晶についても、FZシリコン単結晶製造の原料として望ましい特徴は上記と同様であるため、追加ドーパントは無添加として抵抗率の高いCZシリコン結晶を製造し、原料結晶に用いるのが一般的である。ここで、CZシリコン結晶を原料結晶として用いる理由の一つに、酸素濃度が所定の範囲であるFZシリコン単結晶を取得する目的がある。この場合、原料結晶のCZシリコン結晶の酸素濃度は、所望とするFZシリコン単結晶の酸素濃度の50倍以上であることが望ましいため(例えば特許文献2)、原料のCZシリコン結晶はある程度以上の高酸素濃度、例えば6.5×1017atoms/cm以上とすることができる。 As for the CZ silicon crystal, the desirable characteristics as a raw material for producing an FZ silicon single crystal are the same as those described above. Therefore, it is general to produce a CZ silicon crystal having a high resistivity without adding an additional dopant and use it as a raw material crystal. is there. Here, one of the reasons for using the CZ silicon crystal as a raw material crystal is to obtain an FZ silicon single crystal having an oxygen concentration within a predetermined range. In this case, it is desirable that the oxygen concentration of the CZ silicon crystal of the raw material be 50 times or more the desired oxygen concentration of the FZ silicon single crystal (for example, Patent Document 2). The oxygen concentration can be high, for example, 6.5 × 10 17 atoms / cm 3 or more.

上記の通り、FZシリコン単結晶の抵抗率の調整は、単結晶成長中にドーパントガスによりドーパントを添加することで行う。必要なドーパントの添加量は、目標とするFZシリコン単結晶の抵抗率及び導電型、原料結晶の抵抗率及び導電型、結晶成長条件、などの因子から計算され、さらにこの計算値に基づきドーパントガスの濃度、供給量を決定する。   As described above, the resistivity of the FZ silicon single crystal is adjusted by adding a dopant with a dopant gas during single crystal growth. The necessary amount of the dopant to be added is calculated from factors such as the target resistivity and conductivity type of the FZ silicon single crystal, the resistivity and conductivity type of the source crystal, and the crystal growth conditions. Determine the concentration and supply amount.

上記のように目標の抵抗率のFZシリコン単結晶を製造するためには、算出・設定された濃度、流量のドーパントガスを確実に供給することが重要である。   As described above, in order to manufacture an FZ silicon single crystal having a target resistivity, it is important to reliably supply a dopant gas having a calculated and set concentration and flow rate.

しかしながら、所定のドーパントガス供給量であることが確認されているにもかかわらず、製造された単結晶の抵抗率が設定通りとはならない場合がある。この一要因として、ドーパント添加量の計算自体が不適切、という可能性が挙げられる。ドーパント添加量の計算因子の中で、FZシリコン単結晶の抵抗率や導電型は予め決められている通りであり、また、結晶成長条件等の要素は、仮に実状と異なっていれば検出することができ、抵抗率が設定通りとならない場合にはその原因として特定できるものである。一方、原料結晶の抵抗率や導電型は、真値と異なっていてもFZシリコン単結晶製造の後では確認できないため、この抵抗率、導電型が適正に求められていないことが製造したシリコン単結晶の抵抗率が結晶間で大きく異なり安定しない原因となっていることが判った。   However, even though the supply amount of the dopant gas is confirmed to be a predetermined value, the resistivity of the manufactured single crystal may not be as set. One of the reasons is that the calculation of the dopant addition amount itself is inappropriate. Among the calculation factors of the amount of dopant addition, the resistivity and conductivity type of the FZ silicon single crystal are as predetermined, and if the factors such as the crystal growth conditions are different from the actual condition, it should be detected. If the resistivity is not as set, the cause can be specified. On the other hand, since the resistivity and conductivity type of the raw material crystal cannot be confirmed after the production of the FZ silicon single crystal even if the resistivity and conductivity type are different from the true values, it is determined that the resistivity and the conductivity type are not properly determined. It has been found that the resistivity of the crystal is largely different between the crystals, which is a cause of instability.

FZシリコン単結晶を製造の際の原料結晶としてCZシリコン結晶を使用する時には、当然ながらCZシリコン結晶の抵抗率及び導電型を適正に把握しなければならない。このための方法として、原料結晶のCZシリコン結晶から円盤形状のサンプルを採取し、酸素ドナーの影響を除去するための熱処理を施した後、例えば四探針法で抵抗率を測定し、例えば熱起電力法で導電型を測定し、それぞれ当該CZシリコン結晶の抵抗率、導電型とする方法がある。従来は、その測定位置について、CZシリコン結晶は結晶断面内の抵抗率変動は比較的小さいため、例えばサンプル面内中心一点としていた。   When a CZ silicon crystal is used as a raw material crystal in the production of an FZ silicon single crystal, the resistivity and the conductivity type of the CZ silicon crystal must be properly grasped. As a method for this purpose, a disk-shaped sample is taken from a CZ silicon crystal as a raw material crystal, subjected to a heat treatment for removing the influence of an oxygen donor, and then, for example, a resistivity is measured by, for example, a four-point probe method. There is a method in which the conductivity type is measured by an electromotive force method, and the resistivity and conductivity type of the CZ silicon crystal are determined. Conventionally, at the measurement position, the CZ silicon crystal has a relatively small variation in resistivity in the cross section of the crystal, and thus, for example, is set at one point in the center of the sample plane.

本発明者は、製造したシリコン単結晶の抵抗率が目標の値から乖離し、規定範囲から逸脱してしまう原因が、原料結晶の抵抗率が真値から乖離していることが前記原因の主たる要因であると考え、原料のCZシリコン結晶の抵抗率サンプルが適正に測定できているかを確認することを目的として、サンプル面内の抵抗率及び導電型測定と、サンプルのドーパント濃度測定を行い、ドーパント濃度測定結果から抵抗率と導電型を算出し、測定値と算出値を比較、検討した。以下、この検討について説明する。   The inventor has found that the cause of the deviation of the resistivity of the manufactured silicon single crystal from the target value and deviating from the specified range is mainly that the resistivity of the raw material crystal deviates from the true value. For the purpose of confirming that the resistivity sample of the CZ silicon crystal as the raw material was properly measured, the resistivity and conductivity type in the sample surface were measured, and the dopant concentration of the sample was measured. The resistivity and the conductivity type were calculated from the dopant concentration measurement results, and the measured values and the calculated values were compared and examined. Hereinafter, this examination will be described.

抵抗率測定は四探針法でサンプル直径方向について、導電型測定は熱起電力法でサンプル半径範囲の中心部、r/2部(中心からサンプル半径rの1/2だけ外周側の部分)、外周部(外周から10mmの位置)について、それぞれ実施した。ドーパント濃度測定はフォトルミネッセンス測定にて、サンプル半径範囲の中心部、r/2部、外周部について実施した。
サンプルA及びBの二つの例について、図3に抵抗率の比較結果を、表1に導電型の比較結果を示す。
The resistivity is measured in the sample diameter direction by the four-point probe method, and the conductivity type is measured by the thermoelectromotive force method at the center of the sample radius range, r / 2 portion (a portion on the outer peripheral side by 中心 of the sample radius r from the center). , And the outer peripheral portion (at a position 10 mm from the outer periphery). The dopant concentration was measured at the center, r / 2 part, and outer periphery of the sample radius range by photoluminescence measurement.
FIG. 3 shows the results of comparison of the resistivity of the two examples of samples A and B, and Table 1 shows the results of comparison of the conductivity type.

Figure 2020007163
Figure 2020007163

図3(a)はサンプルAの抵抗率比較結果である。測定値では、抵抗率分布は、外周部が低く中心部が高い形状になっている。表1に示すサンプルAの導電型測定結果は、全面がp型と判定された。一方、算出値では、抵抗率分布は若干の変動は見られるものの面内3点でほぼ同等の値となっている。表1に示す導電型測定結果は、測定値と同じく全面がp型と判定された。   FIG. 3A shows the result of the resistivity comparison of Sample A. According to the measured values, the resistivity distribution has a shape with a lower peripheral portion and a higher central portion. In the conductivity type measurement results of Sample A shown in Table 1, the entire surface was determined to be p-type. On the other hand, in the calculated values, although the resistivity distribution slightly fluctuates, the values are substantially the same at three points in the plane. In the conductivity type measurement results shown in Table 1, the entire surface was determined to be p-type, similarly to the measured values.

図3(b)はサンプルBの抵抗率比較結果である。測定値では、抵抗率分布は、外周部が低くr/2部付近で極大値を持ち、中心部に向かうとまた低くなる形状となっている。表1に示すサンプルBの導電型測定結果は、外周部がp型、中心部がn型と判定され、r/2部付近は明確な判定はできなかった。これは外周部から中心部へ向かう直線をなぞった場合、p型の低い抵抗率で始まりどんどん高抵抗率となっていき、r/2部付近でp型からn型に転換し、さらに抵抗率は高→低へと変化している、ということと読み取れる。一方、算出値では、やはり抵抗率分布は若干の変動は見られるものの面内3点でほぼ同等の値となっている。表1に示す導電型測定結果は、測定値とは異なり、全面がp型と判定された。   FIG. 3B shows the result of the resistivity comparison of Sample B. According to the measured values, the resistivity distribution has a shape in which the outer peripheral portion is low, has a local maximum value near the r / 2 part, and becomes lower toward the central portion. In the conductivity type measurement results of Sample B shown in Table 1, the outer peripheral portion was determined to be p-type and the central portion was determined to be n-type, and a clear determination could not be made in the vicinity of r / 2. This is because, when a straight line from the outer periphery to the center is traced, the resistivity starts from a low resistivity of the p-type and increases steadily, and changes from the p-type to the n-type near the r / 2 portion, and the resistivity further increases. Is changing from high to low. On the other hand, in the calculated values, the resistivity distribution still has a slight variation, but has substantially the same value at three points in the plane. The conductivity type measurement results shown in Table 1 were different from the measured values, and the entire surface was determined to be p-type.

サンプルA、Bのいずれの場合も、サンプル外周部付近では抵抗率の測定値と算出値がほぼ一致し、導電型も測定値と算出値は一致している。これがr/2部、中心部とサンプルの内側位置に移動すると、抵抗率は測定値と算出値の乖離が見られ、導電型では測定値と算出値が異なるケースが見られる。   In both cases of the samples A and B, the measured value and the calculated value of the resistivity substantially coincide with each other in the vicinity of the outer peripheral portion of the sample, and the measured value and the calculated value of the conductivity type also coincide. When this moves to the r / 2 part, the central part, and the position inside the sample, the resistivity shows a difference between the measured value and the calculated value, and the conductivity type shows a case where the measured value differs from the calculated value.

これは上記サンプルの内側位置では、算出値と比較して測定値はn型を示す傾向が強まっている、と言い換えることができる。ここで、算出値はドーパント濃度測定結果、すなわちリンやヒ素などのn型不純物濃度と、ホウ素やアルミニウムなどのp型不純物濃度との差異に基づいた数値であり、本来の抵抗率値に適合するものと考えられる。算出値よりもn型傾向が強まるということは、ドーパント以外の影響でドナー量が増加しているということであり、サーマルドナー、この場合は酸素ドナーの影響が表れていると考えられる。   This can be rephrased that, at the inside position of the sample, the measured value tends to show the n-type compared to the calculated value. Here, the calculated value is a numerical value based on the difference between the dopant concentration measurement result, that is, the difference between the n-type impurity concentration such as phosphorus or arsenic and the p-type impurity concentration such as boron or aluminum, and conforms to the original resistivity value. It is considered something. The fact that the n-type tendency is stronger than the calculated value means that the donor amount is increased due to an effect other than the dopant, and it is considered that the influence of the thermal donor, in this case, the oxygen donor is apparent.

この観点からすれば、従来のようにサンプル中心部位置で抵抗率、導電型の測定を実施しても、適正な値は得られないが、一方でサンプル外周部では適正な抵抗率及び導電型が測定できているため、測定位置は面内r/2よりも外周側にすることが好ましいといえる。   From this viewpoint, even if the resistivity and conductivity are measured at the center of the sample as in the prior art, an appropriate value cannot be obtained. Can be measured, it can be said that the measurement position is preferably on the outer peripheral side of the in-plane r / 2.

ここで、上述のようにFZシリコン単結晶製造に用いる原料結晶は非常に高抵抗率であり、低抵抗率結晶を測定する場合と比較して、抵抗率測定値が変動する頻度は高い。例えば、四探針法の測定ではサンプル表面状態の僅かな差異により探針の接触度合が変わり、抵抗率測定値が大きく変化する。すなわち、測定が適正でない場合が見られる。或いは高抵抗率であるということはp型とn型の変化点に近いということであり、やはり導電型も変化する場合があり得る。   Here, as described above, the raw material crystal used for manufacturing the FZ silicon single crystal has a very high resistivity, and the frequency of the measured resistivity value changes more frequently than in the case where a low resistivity crystal is measured. For example, in the measurement by the four probe method, the degree of contact of the probe changes due to a slight difference in the state of the sample surface, and the measured resistivity value greatly changes. That is, there are cases where the measurement is not appropriate. Alternatively, high resistivity means that it is close to the p-type and n-type change points, and the conductivity type may also change.

従って、不適正な測定値を原料結晶の抵抗率或いは導電型として採用する可能性が考えられ、製造したFZシリコン単結晶が目的の抵抗率を逸脱する要因となるため、これを避けなければならない。しかしながら、従来のように、例えば、サンプル中心の一箇所だけの測定では、測定値が不適正な場合でもそれが不適正かどうかを検出することができない。   Therefore, it is conceivable that an inappropriate measured value may be adopted as the resistivity or conductivity type of the raw material crystal, and the manufactured FZ silicon single crystal may be a factor deviating from the target resistivity. . However, as in the prior art, for example, in the measurement of only one location in the center of the sample, it is not possible to detect whether or not the measured value is incorrect even if the measured value is incorrect.

ここで、CZ法による原料結晶の製造方法の原理から、原料結晶の断面内の抵抗率分布は中心を軸とした対称形状となる。すなわち、原料結晶断面の中心から等距離と見なせる同心円状の範囲内では抵抗率は同等であるため、この範囲内で複数位置の抵抗率測定を行えば、得られた抵抗率値は同等となるはずである。同じく、導電型も、この範囲内では本来同一となるはずである。この現象を利用して、もし測定抵抗率が同等でない、或いは測定導電型が同一でないとすれば、その測定は不適正であると判断することができる。   Here, from the principle of the method of manufacturing the raw material crystal by the CZ method, the resistivity distribution in the cross section of the raw material crystal has a symmetric shape with the center as an axis. That is, since the resistivity is the same within a concentric range that can be regarded as equidistant from the center of the source crystal cross section, if the resistivity measurement is performed at a plurality of positions within this range, the obtained resistivity values will be the same. Should be. Similarly, the conductivity type should be essentially the same within this range. Utilizing this phenomenon, if the measured resistivity is not equal or the measured conductivity type is not the same, it can be determined that the measurement is inappropriate.

そこで、本発明者は1,000Ωcm以上の原料結晶1,000本についてサンプルウェーハを採取し、各々のサンプルについて外周から10mmの位置で2箇所の抵抗率測定を行った。このとき、測定抵抗率の最大値と最小値の乖離率を確認したところ、平均値で3.8%、平均値+3σは21.5%という結果を得た(σは抵抗率のバラツキ。)。サンプルの中で乖離率が20%を超える22枚について、抵抗率再測定を行ったところ、全てが乖離率10%未満となった。さらに乖離率が15%を超え20%未満である9枚のサンプルについても抵抗率再測定を行い、やはり全てが乖離率10%未満となった。一方、乖離率が10%未満であったサンプルを20枚選択し抵抗率再測定を行ったが、乖離率はほとんど変わらなかった。   Therefore, the present inventor collected sample wafers for 1,000 raw material crystals having a size of 1,000 Ωcm or more, and performed resistivity measurement at two locations at a position 10 mm from the outer periphery of each sample. At this time, when the divergence rate between the maximum value and the minimum value of the measured resistivity was confirmed, it was found that the average value was 3.8%, and the average value + 3σ was 21.5% (σ is variation in resistivity). . When the resistivity was re-measured for 22 samples having a divergence rate of more than 20% among the samples, all the divergence rates were less than 10%. Further, the resistivity was re-measured for nine samples having a deviation rate of more than 15% and less than 20%, and all of them also had a deviation rate of less than 10%. On the other hand, 20 samples having a divergence rate of less than 10% were selected and re-measured, and the divergence rate hardly changed.

このことから、上記の様に原料結晶断面の中心から等距離と見なせる同心円状の範囲内で複数位置の抵抗率測定を行い、乖離率を閾値で判定すればその測定は適正であるか否か判断することができ、この時の抵抗率測定の適正/不適正の判定に用いる乖離率の閾値は少なくとも20%、好ましくは10%である。   From this, as described above, the resistivity measurement at a plurality of positions within the concentric range that can be regarded as equidistant from the center of the source crystal cross section, if the deviation rate is determined by a threshold, whether the measurement is appropriate or not The threshold value of the divergence rate used for determining whether the resistivity measurement is appropriate or inappropriate at this time is at least 20%, preferably 10%.

FZシリコン単結晶製造の原料となるCZシリコン結晶の抵抗率の取得には、フォトルミネッセンス測定などによるドーパント濃度測定を行い、その結果から抵抗率を算出する方法がより適正であるが、商業生産の中で前記の方法を全原料棒について行うには、リードタイム、コスト等の面で現実的とは言えず、より簡便な方法が必要である。   In order to obtain the resistivity of the CZ silicon crystal, which is a raw material for producing FZ silicon single crystals, it is more appropriate to measure the dopant concentration by photoluminescence measurement and calculate the resistivity from the results. In order to perform the above method on all the raw material rods, it is not realistic in terms of lead time, cost, and the like, and a simpler method is required.

従って、本発明のように、同等の抵抗率、同一の導電型が得られる複数位置を測定し、その測定が適正か不適正かを判定し、不適正と判定された場合は再測定する方法が、実用的でかつ適正な抵抗率値、導電型を設定するのに極めて有効である。なお、仮に不適正な測定値が含まれているとしても測定点数を極めて多くして平均値を算出することにより、再測定を行わずとも不適正な抵抗率測定値を実質的に無効化して適正な抵抗率値を得る、或いは、多数であった導電型を採用する、という方法も考えられるが、これでは多大な時間がかかる。本発明は測定位置が2点とすることもできるため、リードタイムやコスト等の面ではより有利である。   Therefore, as in the present invention, a method of measuring a plurality of positions at which the same resistivity and the same conductivity type are obtained, determining whether the measurement is appropriate or inappropriate, and re-measuring if the measurement is determined to be inappropriate However, it is extremely effective for setting a practical and appropriate resistivity value and conductivity type. Even if an incorrect measurement value is included, the number of measurement points is extremely increased and an average value is calculated, thereby effectively invalidating the incorrect resistivity measurement value without performing re-measurement. Although a method of obtaining an appropriate resistivity value or adopting a large number of conductive types is also conceivable, this takes a great deal of time. In the present invention, since the measurement position can be set to two points, it is more advantageous in terms of lead time, cost, and the like.

以下に本発明の実施例をあげてさらに具体的に説明するが、本発明はこれらに限定されるものではない。なお、以下の実施例と比較例で用いたCZシリコン原料結晶の酸素濃度はいずれも同程度であった。   Hereinafter, the present invention will be described more specifically with reference to Examples, but the present invention is not limited thereto. The oxygen concentration of the CZ silicon raw material crystals used in the following Examples and Comparative Examples was almost the same.

(実施例1)
FZシリコン単結晶製造の原料に使用するCZシリコン原料結晶(酸素濃度は6.5×1017atoms/cm以上である)からサンプルウェーハを採取し、このサンプルウェーハの外周から10mmの位置にある異なる2点について、四探針法で抵抗率(測定抵抗率)を測定し、熱起電力法で導電型(測定導電型)を測定した。次に、乖離率の閾値を20%とし、得られた2つの測定抵抗率の乖離率を求め、20%を超えなかった場合は両測定値の平均値を原料結晶の抵抗率として採用し、乖離率が20%を超えた場合は同様の抵抗率測定を再度行った。このとき、乖離率は、[乖離率]=([測定抵抗率の最大値]−[測定抵抗率の最小値])÷[測定抵抗率の最小値]により計算した。同じく、2つの測定導電型が一致する場合は原料結晶の導電型として採用し、一致しない場合は同様の導電型測定を再度行った。
(Example 1)
A sample wafer is sampled from a CZ silicon raw material crystal (oxygen concentration is 6.5 × 10 17 atoms / cm 3 or more) used as a raw material for producing FZ silicon single crystal, and is located 10 mm from the outer periphery of the sample wafer. For two different points, the resistivity (measured resistivity) was measured by the four probe method, and the conductivity type (measured conductivity type) was measured by the thermoelectromotive force method. Next, the threshold value of the divergence rate is set to 20%, the divergence rate of the obtained two measured resistivity values is obtained. When the deviation rate exceeded 20%, the same resistivity measurement was performed again. At this time, the divergence rate was calculated as [deviation rate] = ([maximum value of measured resistivity] − [minimum value of measured resistivity]) ÷ [minimum value of measured resistivity]. Similarly, when the two measured conductivity types match, the conductivity type of the raw material crystal was adopted, and when the two conductivity types did not match, the same conductivity type measurement was performed again.

このようにして抵抗率、導電型を決定したCZシリコン原料結晶を必要本数準備した。決定された原料抵抗率はいずれも1,000Ωcm以上であった。   The required number of CZ silicon source crystals whose resistivity and conductivity type were determined in this manner were prepared. The determined raw material resistivity was 1,000 Ωcm or more in each case.

n型50Ωcm(目標抵抗率)のFZシリコン単結晶を製造するため、上記原料抵抗率を用いてドーパント添加量を計算して、その通りにドーパント供給を行いつつ単結晶製造を行い、30本のFZシリコン単結晶を取得した。目標抵抗率に対する得られた各FZシリコン単結晶の抵抗率のバラツキ(σ)は、1.4%以内であった。   In order to produce an n-type 50 Ωcm (target resistivity) FZ silicon single crystal, the amount of dopant added was calculated using the above-mentioned raw material resistivity, and a single crystal was produced while supplying the dopant as it was. An FZ silicon single crystal was obtained. The variation (σ) in the resistivity of each of the obtained FZ silicon single crystals with respect to the target resistivity was within 1.4%.

(実施例2)
p型3,500Ωcm(目標抵抗率)のFZシリコン単結晶を製造するため、乖離率の閾値を10%とした以外は実施例1と同様の手順を用いて、20本のFZシリコン単結晶を取得した。目標抵抗率に対する得られた各FZシリコン単結晶の抵抗率のバラツキ(σ)は、8.4%であった。
(Example 2)
In order to manufacture a p-type FZ silicon single crystal of 3,500 Ωcm (target resistivity), 20 FZ silicon single crystals were formed using the same procedure as in Example 1 except that the threshold value of the deviation rate was set to 10%. I got it. The variation (σ) in the resistivity of each of the obtained FZ silicon single crystals with respect to the target resistivity was 8.4%.

(比較例1)
FZシリコン単結晶製造の原料に使用するCZシリコン結晶から採取したサンプルウェーハの面内中心部について、四探針法で抵抗率を測定し、熱起電力法で導電型を測定した。準備した他のCZシリコン結晶についても同様に測定し、各々の原料抵抗率を決定した。
(Comparative Example 1)
The resistivity of the in-plane central portion of the sample wafer sampled from the CZ silicon crystal used as a raw material for manufacturing the FZ silicon single crystal was measured by the four-point probe method, and the conductivity type was measured by the thermoelectromotive force method. The other prepared CZ silicon crystals were measured in the same manner, and the raw material resistivity was determined.

n型50Ωcm(目標抵抗率)のFZシリコン単結晶を製造するため、上記で測定された原料抵抗率を用いてドーパント添加量を計算して、その通りにドーパント供給を行いつつ単結晶製造を行い、30本のFZシリコン単結晶を取得した。この時の単結晶間の抵抗率バラツキ(σ)は、4.0%であった。   In order to produce an n-type 50 Ωcm (target resistivity) FZ silicon single crystal, the amount of dopant added is calculated using the raw material resistivity measured above, and the single crystal is produced while supplying the dopant as it is. And 30 FZ silicon single crystals were obtained. At this time, the resistivity variation (σ) between the single crystals was 4.0%.

(比較例2)
p型3,500Ωcm(目標抵抗率)のFZシリコン単結晶を製造するため、比較例1と同様の手順により、20本のFZシリコン単結晶を取得した。この時の単結晶間の抵抗率バラツキ(σ)は、18.9%であった。
(Comparative Example 2)
In order to produce a p-type FZ silicon single crystal of 3,500 Ωcm (target resistivity), 20 FZ silicon single crystals were obtained by the same procedure as in Comparative Example 1. At this time, the resistivity variation (σ) between the single crystals was 18.9%.

以上の結果から明らかなように、本発明によれば、FZ法を使用して行うシリコン単結晶製造の際に酸素を含有する原料結晶を用いる場合であっても、その抵抗率及び導電型を適正に測定することができ、本発明のFZシリコン単結晶の製造方法に適用した場合に、目標の抵抗率値となるFZシリコン単結晶の製造が容易になり、得られたFZシリコン単結晶を目的の半導体デバイス製造のための適切な品質を有する材料とすることができる。そして、原料結晶の酸素濃度が6.5×1017atoms/cm以上であるような結晶であっても真値に近い抵抗率を測定することができる。 As is clear from the above results, according to the present invention, even when a raw material crystal containing oxygen is used in the production of a silicon single crystal using the FZ method, the resistivity and the conductivity type are reduced. When the FZ silicon single crystal can be properly measured and is applied to the method for manufacturing an FZ silicon single crystal of the present invention, the production of the FZ silicon single crystal having a target resistivity value becomes easy, and the obtained FZ silicon single crystal is obtained. It can be a material having an appropriate quality for manufacturing a target semiconductor device. Then, even for a crystal in which the oxygen concentration of the raw material crystal is 6.5 × 10 17 atoms / cm 3 or more, the resistivity close to the true value can be measured.

さらに、原料結晶の原料抵抗率と製造されるFZシリコン単結晶の目標抵抗率を基に、FZシリコン単結晶製造時に導入するドーパント添加量を算出し、これに基づいてFZシリコン単結晶を製造するため、製造しようとするFZシリコン単結晶の抵抗率、導電型によらず、得られたFZシリコン単結晶間の抵抗率のバラツキを低くすることができる。   Further, based on the raw material resistivity of the raw crystal and the target resistivity of the FZ silicon single crystal to be manufactured, the amount of dopant to be introduced at the time of manufacturing the FZ silicon single crystal is calculated, and the FZ silicon single crystal is manufactured based on the calculated amount. Therefore, it is possible to reduce the variation in the resistivity between the obtained FZ silicon single crystals regardless of the resistivity and the conductivity type of the FZ silicon single crystal to be manufactured.

なお、本発明は、上記実施形態に限定されるものではない。上記実施形態は例示であり、本発明の特許請求の範囲に記載された技術的思想と実質的に同一な構成を有し、同様な作用効果を奏するものは、いかなるものであっても本発明の技術的範囲に包含される。   Note that the present invention is not limited to the above embodiment. The above embodiment is an exemplification, and the present invention has substantially the same configuration as the technical idea described in the claims of the present invention, and has the same effect. Within the technical scope of

1…単結晶の製造装置、 11…チャンバー、 12…上軸、 13…下軸、
14…原料半導体棒、 15…種結晶、
16…高周波コイル、 17…絞り、 18…溶融帯域、
19…シリコン単結晶(晶出側半導体棒)、
20…ドーパントガスドープノズル(ドーパントガス供給手段)。
DESCRIPTION OF SYMBOLS 1 ... Single crystal manufacturing apparatus, 11 ... Chamber, 12 ... Upper axis, 13 ... Lower axis,
14: raw material semiconductor rod, 15: seed crystal,
16 ... high frequency coil, 17 ... throttle, 18 ... melting zone,
19: silicon single crystal (crystallized semiconductor rod),
20 ... Dopant gas doping nozzle (dopant gas supply means).

Claims (8)

FZ法によりシリコン単結晶を製造する際に用いる酸素を含有する原料結晶の抵抗率の測定方法であって、
(a)原料結晶からサンプルウェーハを採取する工程、
(b)前記サンプルウェーハの周方向の複数箇所の測定抵抗率と測定導電型を測定する工程、
(c)前記(b)工程で得られた前記複数箇所の測定抵抗率のうち、最大値と最小値の乖離率を計算し、該乖離率が定められた閾値を超えていなければ測定抵抗率適正、閾値を超えていれば測定抵抗率不適正と判定する工程、
(d)前記(b)工程で得られた前記複数箇所の測定導電型が全て同一であれば測定導電型適正、全て同一でなければ測定導電型不適正と判定する工程、
(e)前記(c)工程及び前記(d)工程において測定抵抗率適正と判定され、かつ測定導電型適正と判定された場合、前記(b)工程で得られた前記複数箇所の測定抵抗率から算出される平均値を前記原料結晶の原料抵抗率として、前記測定導電型を前記原料結晶の原料導電型として採用し、また、前記(c)工程及び前記(d)工程で測定抵抗率不適正及び/又は測定導電型不適正と判定された場合、前記(b)工程で得られた前記複数箇所の測定抵抗率及び/又は前記複数箇所の測定導電型は不採用として、再度、複数箇所の測定抵抗率及び/又は測定導電型を測定し、前記(c)工程及び/又は前記(d)工程からやりなおす工程、
とを有することを特徴とする原料結晶の抵抗率の測定方法。
A method for measuring the resistivity of an oxygen-containing raw material crystal used for producing a silicon single crystal by the FZ method,
(A) collecting a sample wafer from a raw material crystal,
(B) measuring the measured resistivity and the measured conductivity at a plurality of locations in the circumferential direction of the sample wafer;
(C) calculating the divergence rate between the maximum value and the minimum value among the measured resistivity values at the plurality of locations obtained in the step (b), and if the divergence rate does not exceed a predetermined threshold, the measured resistivity Appropriate, if it exceeds the threshold value, the process of determining that the measured resistivity is inappropriate,
(D) determining that the measured conductivity type is appropriate if the measured conductivity types at the plurality of locations obtained in the step (b) are all the same, and that the measured conductivity type is inappropriate if not all the same.
(E) When it is determined in the steps (c) and (d) that the measured resistivity is appropriate and that the measured conductivity type is appropriate, the measured resistivity at the plurality of locations obtained in the step (b) Is used as the raw material resistivity of the raw material crystal, the measured conductivity type is adopted as the raw material conductivity type of the raw material crystal, and the measured resistivity is not measured in the steps (c) and (d). If it is determined that the measurement and / or measurement conductivity type is inappropriate, the measurement resistivity at the plurality of locations and / or the measurement conductivity type at the plurality of locations obtained in the step (b) are rejected, and the measurement is repeated again at the plurality of locations. Measuring the measured resistivity and / or the measured conductivity of step (c) and / or starting over from step (d);
And a method for measuring the resistivity of a raw material crystal.
前記(c)工程における前記乖離率を、[乖離率]=([測定抵抗率の最大値]−[測定抵抗率の最小値])÷[測定抵抗率の最小値]により計算し、前記乖離率の閾値を20%とすることを特徴とする請求項1に記載の原料結晶の抵抗率の測定方法。   The divergence rate in the step (c) is calculated as [deviation rate] = ([maximum value of measured resistivity] − [minimum value of measured resistivity]) ÷ [minimum value of measured resistivity]. The method for measuring the resistivity of a raw material crystal according to claim 1, wherein a threshold value of the rate is set to 20%. 前記(b)工程における前記測定抵抗率の測定は四探針法により行い、前記(b)工程における前記測定導電型の測定は熱起電力法により行うことを特徴とする請求項1又は請求項2に記載の原料結晶の抵抗率の測定方法。   The measurement of the measured resistivity in the step (b) is performed by a four-probe method, and the measurement of the measured conductivity type in the step (b) is performed by a thermoelectromotive force method. 3. The method for measuring the resistivity of a raw material crystal according to item 2. 前記原料結晶がCZ法により製造された結晶であることを特徴とする請求項1から請求項3のいずれか一項に記載の原料結晶の抵抗率の測定方法。   The method for measuring the resistivity of a raw material crystal according to any one of claims 1 to 3, wherein the raw material crystal is a crystal produced by a CZ method. 前記原料結晶の酸素濃度が6.5×1017atoms/cm以上であることを特徴とする請求項1から請求項4のいずれか一項に記載の原料結晶の抵抗率の測定方法。 The method for measuring the resistivity of a raw material crystal according to any one of claims 1 to 4, wherein the oxygen concentration of the raw material crystal is 6.5 × 10 17 atoms / cm 3 or more. 前記原料結晶の抵抗率が1,000Ωcm以上であることを特徴とする請求項1から請求項5のいずれか一項に記載の原料結晶の抵抗率の測定方法。   The method for measuring the resistivity of a raw material crystal according to any one of claims 1 to 5, wherein the resistivity of the raw material crystal is 1,000 Ωcm or more. 前記(b)工程における前記複数箇所の測定抵抗率と測定導電型を測定する位置を前記サンプルウェーハの中心からr/2以上離れた位置にあって、中心からの距離を同一とすることを特徴とする請求項1から請求項6のいずれか一項に記載の原料結晶の抵抗率の測定方法。   In the step (b), the positions where the measured resistivity and the measured conductivity are measured at the plurality of locations are located at least r / 2 or more away from the center of the sample wafer, and the distance from the center is the same. The method for measuring the resistivity of a raw material crystal according to any one of claims 1 to 6. 請求項1から請求項7のいずれか一項に記載の原料結晶の抵抗率の測定方法によって求めた原料結晶の原料抵抗率と製造されるFZシリコン単結晶の目標とする目標抵抗率を基に、FZシリコン単結晶製造時に導入するドーパント添加量を算出し、該算出したドーパント量を添加しながらFZ法によりシリコン単結晶を製造することを特徴とするFZシリコン単結晶の製造方法。   A method for measuring the resistivity of the raw material crystal according to any one of claims 1 to 7, based on the raw material resistivity of the raw crystal and a target target resistivity of the manufactured FZ silicon single crystal. A method of calculating the amount of dopant to be introduced at the time of manufacturing an FZ silicon single crystal, and manufacturing the silicon single crystal by the FZ method while adding the calculated amount of dopant.
JP2018126262A 2018-07-02 2018-07-02 Method for measuring resistivity of raw material crystal and method for producing FZ silicon single crystal Active JP7240827B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2018126262A JP7240827B2 (en) 2018-07-02 2018-07-02 Method for measuring resistivity of raw material crystal and method for producing FZ silicon single crystal

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2018126262A JP7240827B2 (en) 2018-07-02 2018-07-02 Method for measuring resistivity of raw material crystal and method for producing FZ silicon single crystal

Publications (2)

Publication Number Publication Date
JP2020007163A true JP2020007163A (en) 2020-01-16
JP7240827B2 JP7240827B2 (en) 2023-03-16

Family

ID=69150475

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2018126262A Active JP7240827B2 (en) 2018-07-02 2018-07-02 Method for measuring resistivity of raw material crystal and method for producing FZ silicon single crystal

Country Status (1)

Country Link
JP (1) JP7240827B2 (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2019202913A (en) * 2018-05-23 2019-11-28 信越半導体株式会社 Method of measuring resistivity of raw material crystal and method of manufacturing fz silicon single crystal
CN111477560A (en) * 2020-05-14 2020-07-31 包头美科硅能源有限公司 Rapid detection method for distinguishing gallium-boron-doped single crystal silicon rods for solar cell

Citations (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS569300A (en) * 1979-06-29 1981-01-30 Ibm Method of characterizing silicon rod
JP2005306653A (en) * 2004-04-21 2005-11-04 Shin Etsu Handotai Co Ltd Method for manufacturing silicon single crystal
WO2006003782A1 (en) * 2004-06-30 2006-01-12 Shin-Etsu Handotai Co., Ltd. Silicon single crystal manufacturing method and apparatus
JP2009221079A (en) * 2008-03-18 2009-10-01 Shin Etsu Handotai Co Ltd Method and apparatus for manufacturing semiconductor crystal by fz method
JP2015101521A (en) * 2013-11-27 2015-06-04 信越半導体株式会社 Method of manufacturing semiconductor crystal
JP2015160800A (en) * 2014-02-28 2015-09-07 信越半導体株式会社 Semiconductor single crystal manufacturing method, and silicon single crystal
JP2016117603A (en) * 2014-12-19 2016-06-30 信越半導体株式会社 Production method of silicon single crystal
JP2018080084A (en) * 2016-11-17 2018-05-24 信越半導体株式会社 Production method of semiconductor silicon single crystal
JP2018080085A (en) * 2016-11-17 2018-05-24 信越半導体株式会社 Production method of semiconductor silicon single crystal
JP2019202913A (en) * 2018-05-23 2019-11-28 信越半導体株式会社 Method of measuring resistivity of raw material crystal and method of manufacturing fz silicon single crystal

Patent Citations (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS569300A (en) * 1979-06-29 1981-01-30 Ibm Method of characterizing silicon rod
JP2005306653A (en) * 2004-04-21 2005-11-04 Shin Etsu Handotai Co Ltd Method for manufacturing silicon single crystal
WO2006003782A1 (en) * 2004-06-30 2006-01-12 Shin-Etsu Handotai Co., Ltd. Silicon single crystal manufacturing method and apparatus
JP2009221079A (en) * 2008-03-18 2009-10-01 Shin Etsu Handotai Co Ltd Method and apparatus for manufacturing semiconductor crystal by fz method
JP2015101521A (en) * 2013-11-27 2015-06-04 信越半導体株式会社 Method of manufacturing semiconductor crystal
JP2015160800A (en) * 2014-02-28 2015-09-07 信越半導体株式会社 Semiconductor single crystal manufacturing method, and silicon single crystal
JP2016117603A (en) * 2014-12-19 2016-06-30 信越半導体株式会社 Production method of silicon single crystal
JP2018080084A (en) * 2016-11-17 2018-05-24 信越半導体株式会社 Production method of semiconductor silicon single crystal
JP2018080085A (en) * 2016-11-17 2018-05-24 信越半導体株式会社 Production method of semiconductor silicon single crystal
JP2019202913A (en) * 2018-05-23 2019-11-28 信越半導体株式会社 Method of measuring resistivity of raw material crystal and method of manufacturing fz silicon single crystal

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2019202913A (en) * 2018-05-23 2019-11-28 信越半導体株式会社 Method of measuring resistivity of raw material crystal and method of manufacturing fz silicon single crystal
JP7067267B2 (en) 2018-05-23 2022-05-16 信越半導体株式会社 Method for measuring resistivity of raw material crystal and method for manufacturing FZ silicon single crystal
CN111477560A (en) * 2020-05-14 2020-07-31 包头美科硅能源有限公司 Rapid detection method for distinguishing gallium-boron-doped single crystal silicon rods for solar cell
CN111477560B (en) * 2020-05-14 2023-03-03 包头美科硅能源有限公司 Rapid detection method for distinguishing gallium-boron-doped single crystal silicon rods for solar cell

Also Published As

Publication number Publication date
JP7240827B2 (en) 2023-03-16

Similar Documents

Publication Publication Date Title
JP5070737B2 (en) Method for producing FZ single crystal silicon using silicon crystal rod produced by CZ method as raw material
JP5767461B2 (en) Manufacturing method of semiconductor wafer
JP2020007163A (en) Method of measuring resistivities of raw material crystal and method of manufacturing fz silicon single crystal
CN110536980B (en) Method for manufacturing silicon single crystal ingot and silicon single crystal ingot
JP2002226295A (en) Control method for manufacturing process of silicon single crystal by czochralski method, manufacturing method for high resistance-silicon single crystal by czochralski method, and silicon single crystal
JP7067267B2 (en) Method for measuring resistivity of raw material crystal and method for manufacturing FZ silicon single crystal
KR101117477B1 (en) Method for Producing Single Crystal and Single Crystal
US10490398B2 (en) Manufacturing method of monocrystalline silicon and monocrystalline silicon
KR20060093645A (en) Process for producing single crystal and single crystal
KR101862157B1 (en) Method and apparatus for manufacturing silicon monocrystalline ingot
JP7467362B2 (en) Sample rod growth and resistivity measurement during single crystal silicon ingot production
JP6152784B2 (en) Manufacturing method of semiconductor crystal
JP7287521B2 (en) Method for measuring resistivity of raw material crystal produced by CZ method and method for producing FZ silicon single crystal
JP5477188B2 (en) Silicon wafer PN determination method
CN112469851B (en) Multiple sample rod growth to determine impurity accumulation during production of single crystal silicon ingots
JP5880415B2 (en) Single crystal manufacturing method
JP4962406B2 (en) Method for growing silicon single crystal
JP2005015290A (en) Method for manufacturing single crystal, and single crystal
US20200199773A1 (en) Center Slab Lapping and Resistivity Measurement During Single Crystal Silicon Ingot Production
JP2014058414A (en) Method for producing silicon single crystal for evaluation
JP5928363B2 (en) Evaluation method of silicon single crystal wafer
KR20190100653A (en) Method for correcting shape of silicon single crystal ingot
WO2023119696A1 (en) Method for measuring thickness of high-resistance silicon wafer, and method for measuring flatness of high-resistance silicon wafer
JP6737232B2 (en) Method for evaluating silicon single crystal and method for manufacturing silicon single crystal
TWI671440B (en) 矽Single crystal manufacturing method, 矽 single crystal and 矽 wafer

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20210119

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20210924

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20210928

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20211108

A02 Decision of refusal

Free format text: JAPANESE INTERMEDIATE CODE: A02

Effective date: 20211130

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20220126

C60 Trial request (containing other claim documents, opposition documents)

Free format text: JAPANESE INTERMEDIATE CODE: C60

Effective date: 20220126

A911 Transfer to examiner for re-examination before appeal (zenchi)

Free format text: JAPANESE INTERMEDIATE CODE: A911

Effective date: 20220204

C21 Notice of transfer of a case for reconsideration by examiners before appeal proceedings

Free format text: JAPANESE INTERMEDIATE CODE: C21

Effective date: 20220208

A912 Re-examination (zenchi) completed and case transferred to appeal board

Free format text: JAPANESE INTERMEDIATE CODE: A912

Effective date: 20220225

C211 Notice of termination of reconsideration by examiners before appeal proceedings

Free format text: JAPANESE INTERMEDIATE CODE: C211

Effective date: 20220301

C22 Notice of designation (change) of administrative judge

Free format text: JAPANESE INTERMEDIATE CODE: C22

Effective date: 20220621

C22 Notice of designation (change) of administrative judge

Free format text: JAPANESE INTERMEDIATE CODE: C22

Effective date: 20221011

C23 Notice of termination of proceedings

Free format text: JAPANESE INTERMEDIATE CODE: C23

Effective date: 20230124

C03 Trial/appeal decision taken

Free format text: JAPANESE INTERMEDIATE CODE: C03

Effective date: 20230221

C30A Notification sent

Free format text: JAPANESE INTERMEDIATE CODE: C3012

Effective date: 20230221

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20230306

R150 Certificate of patent or registration of utility model

Ref document number: 7240827

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150