JP2015101521A - Method of manufacturing semiconductor crystal - Google Patents

Method of manufacturing semiconductor crystal Download PDF

Info

Publication number
JP2015101521A
JP2015101521A JP2013244658A JP2013244658A JP2015101521A JP 2015101521 A JP2015101521 A JP 2015101521A JP 2013244658 A JP2013244658 A JP 2013244658A JP 2013244658 A JP2013244658 A JP 2013244658A JP 2015101521 A JP2015101521 A JP 2015101521A
Authority
JP
Japan
Prior art keywords
crystal
semiconductor crystal
dopant
electrical resistivity
manufacturing
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2013244658A
Other languages
Japanese (ja)
Other versions
JP6152784B2 (en
Inventor
鈴木 聡
Satoshi Suzuki
聡 鈴木
佐藤 賢一
Kenichi Sato
佐藤  賢一
慶一 中澤
Keiichi Nakazawa
慶一 中澤
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Shin Etsu Handotai Co Ltd
Original Assignee
Shin Etsu Handotai Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Shin Etsu Handotai Co Ltd filed Critical Shin Etsu Handotai Co Ltd
Priority to JP2013244658A priority Critical patent/JP6152784B2/en
Publication of JP2015101521A publication Critical patent/JP2015101521A/en
Application granted granted Critical
Publication of JP6152784B2 publication Critical patent/JP6152784B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Landscapes

  • Crystals, And After-Treatments Of Crystals (AREA)

Abstract

PROBLEM TO BE SOLVED: To provide a method of manufacturing a semiconductor crystal by an FZ method capable of acquiring a crystal which has desired electric resistivity and also has the desired electric resistivity entirely in a growth axis direction of one crystal rod.SOLUTION: There is provided a method of manufacturing a semiconductor crystal by an FZ method including a process of forming a straight trunk part of the semiconductor crystal while blowing a dopant gas to a molten zone and controlling electric resistivity. A plurality of parameters which affect the electric resistivity are measured in advance during the process of forming the straight trunk part, and electric resistivity of a manufactured semiconductor crystal is measured; and a multivariate analysis of an influence of the plurality of parameters on the electric resistivity is taken so as to find a dopant supply amount adjustment coefficient based upon the result of the multivariate analysis. Then, when the semiconductor crystal is manufactured by the FZ method, a dopant supply amount is adjusted during the process of forming the straight trunk part according to the found dopant supply amount adjustment coefficient.

Description

本発明は、FZ法(フローティングゾーン法または浮遊帯溶融法)による半導体結晶の製造方法に関する。   The present invention relates to a method for producing a semiconductor crystal by FZ method (floating zone method or floating zone melting method).

FZ法は、例えば、現在半導体素子として最も多く使用されているシリコン単結晶等の半導体単結晶の製造方法の一つとして、使用される。図4はFZ法による半導体結晶の製造方法における各製造工程の一例を説明する図である。図4に示すように、原料となる半導体棒54の下端部を溶融して種結晶55に融着させ(a種付工程)、更にこの種付の際に結晶に生じた転位を抜くための絞り(ネッキング)を行い(bネッキング工程)、その後に晶出側半導体棒59を所望の直径まで拡大させながら成長させる(cコーン部形成工程)。更に、晶出側半導体棒59を所望の直径に制御しつつ成長を行い(d直胴部形成工程)、原料の供給を止め、晶出側半導体棒59の直径を縮小させて該晶出側半導体棒を原料半導体棒54から切り離す(e切り離し工程)。以上のような工程を経て、半導体結晶(FZシリコン単結晶)を製造することができる。   The FZ method is used, for example, as one method for manufacturing a semiconductor single crystal such as a silicon single crystal that is most frequently used as a semiconductor element. FIG. 4 is a diagram for explaining an example of each manufacturing process in the semiconductor crystal manufacturing method by the FZ method. As shown in FIG. 4, a lower end portion of a semiconductor rod 54 as a raw material is melted and fused to a seed crystal 55 (a seeding step), and further, dislocations generated in the crystal during this seeding are removed. Drawing (necking) is performed (b necking step), and thereafter the crystallization side semiconductor rod 59 is grown while being expanded to a desired diameter (c cone portion forming step). Further, growth is performed while controlling the crystallization side semiconductor rod 59 to a desired diameter (d straight body portion forming step), supply of raw materials is stopped, and the diameter of the crystallization side semiconductor rod 59 is reduced to reduce the crystallization side. The semiconductor rod is separated from the raw material semiconductor rod 54 (e separation step). A semiconductor crystal (FZ silicon single crystal) can be manufactured through the above steps.

通常、シリコン単結晶に所望の電気抵抗率を与えるためにはN型或いはP型の不純物ドーピングが必要である。FZ法においては、ドーパントガスを溶融帯域に吹き付けるガスドーピング法が知られている(非特許文献1参照)。   In general, N-type or P-type impurity doping is required to give a desired electrical resistivity to a silicon single crystal. In the FZ method, a gas doping method in which a dopant gas is blown into a melting zone is known (see Non-Patent Document 1).

ドーパントガスとして、例えばN型ドーパントであるP(リン)のドーピングにはPH等が、P型ドーパントであるB(ホウ素)のドーピングにはB等が用いられる。シリコン単結晶の電気抵抗率は、これらN型ドーパントとP型ドーパントの結晶中の濃度差により変化するが、通常の結晶製造においてN型ドーパントのみ、或いはP型ドーパントのみをドーピングする場合には、電気抵抗率はドーパント供給量が増加するにつれて低くなる。 As the dopant gas, for example, PH 3 or the like is used for doping P (phosphorus) which is an N-type dopant, and B 2 H 6 or the like is used for doping B (boron) which is a P-type dopant. The electrical resistivity of the silicon single crystal varies depending on the concentration difference in the crystals of these N-type and P-type dopants, but when doping only the N-type dopant or only the P-type dopant in normal crystal production, The electrical resistivity decreases as the dopant supply increases.

所望の電気抵抗率のシリコン単結晶を得るためには、原料の電気抵抗率と所望の電気抵抗率を元に算出されたドーパント供給量が、適正に保たれる必要がある。供給されるドーパントガスの濃度や流量等を調整することによりドーパント供給量を適正に保ちつつFZ法により単結晶を成長させることで、所望の電気抵抗率を持つFZシリコン単結晶を得ることができる。   In order to obtain a silicon single crystal having a desired electrical resistivity, it is necessary to maintain an appropriate amount of dopant supplied based on the electrical resistivity of the raw material and the desired electrical resistivity. An FZ silicon single crystal having a desired electrical resistivity can be obtained by growing the single crystal by the FZ method while adjusting the concentration and flow rate of the supplied dopant gas to keep the dopant supply amount appropriate. .

所望の電気抵抗率のFZ単結晶を得るためのガスドープ方法の工夫として、1本の半導体結晶棒製造途中でドープガス濃度を変更することにより複数の電気抵抗率部分を1本の単結晶棒中に形成するマルチドープFZ単結晶棒製造方法(特許文献1)、原料棒としてCZシリコン単結晶を用いる場合に、原料棒の成長軸方向の電気抵抗率の変化に応じてドープガス流量も変化させるFZ法(特許文献2)、FZ単結晶直胴部製造中の結晶成長状態に応じてドーパント供給量を変化させる方法(特許文献3)等が提案されている。   As a device of a gas doping method for obtaining an FZ single crystal having a desired electric resistivity, a plurality of electric resistivity portions are integrated into one single crystal rod by changing the doping gas concentration during the production of one semiconductor crystal rod. Method of manufacturing multi-doped FZ single crystal rod to be formed (Patent Document 1), FZ method of changing dope gas flow rate according to change in electrical resistivity in growth axis direction of raw material rod when using CZ silicon single crystal as raw material rod (Patent Document 2), a method (Patent Document 3) and the like of changing a dopant supply amount according to a crystal growth state during manufacture of an FZ single crystal straight body portion have been proposed.

特許第2617263号公報Japanese Patent No. 2617263 特開2008−87984号公報JP 2008-87984 A 特許第4957600号公報Japanese Patent No. 4957600

WOLFGANG KELLER、ALFRED MUHLBAUER著「Floating−Zone Silicon」p.82−92、MARCEL DEKKER, INC.発行“Floating-Zone Silicon” by WOLFGAN KELLER, ALFRED MUHLBAUER, p. 82-92, MARCEL DEKKER, INC. Issue

従来、結晶成長状態がほぼ一定となるような直胴部形成工程においては、直胴部形成工程におけるドーパント供給量を、変化させず一定にすることで、製造するFZシリコン単結晶を所望の電気抵抗率にできると考えられていた。或いは、実際のFZ単結晶製造において、結晶成長中の成長状態は完全に一定ではなく、変動があったとしても、結晶成長状態の変化に応じてドーパント供給量を変化(製造装置等に依存しない同一の調整による変化)させる方法をとれば、1本の結晶棒の成長軸方向全体にわたってほぼ一定の所望の電気抵抗率であるFZシリコン単結晶を取得可能であると考えられていた。   Conventionally, in a straight body forming process in which the crystal growth state is substantially constant, the amount of dopant supplied in the straight body forming process is kept constant without changing, so that the FZ silicon single crystal to be manufactured can have a desired electric power. It was thought that it could be resistivity. Alternatively, in actual FZ single crystal production, the growth state during crystal growth is not completely constant, and even if there is a change, the amount of dopant supplied is changed in accordance with the change in the crystal growth state (independent of the production equipment, etc.) It was considered that an FZ silicon single crystal having a substantially constant desired electrical resistivity can be obtained over the entire growth axis direction of one crystal rod by adopting the same adjustment method.

しかしながら、実際の生産、製造を考えた場合、FZ単結晶製造機・使用部材による結晶製造状態の差、或いは経時変化による結晶製造状態の差が生じるため、ドーパント供給量の調整度合いは一様ではなく、全て同一な調整では実際に結晶製造時に必要な調整度合いとズレが生ずることがある。   However, when considering actual production and production, there is a difference in the crystal production state due to the FZ single crystal production machine and the materials used, or a difference in the crystal production state due to changes over time. However, with all the same adjustments, the degree of adjustment and the deviation required during the crystal production may actually occur.

本発明はこのような事情を鑑みてなされたものであり、所望の電気抵抗率であり、かつ1本の結晶棒の成長軸方向全体にわたって所望の電気抵抗率を有する結晶が取得可能なFZ法による半導体結晶の製造方法を提供することを目的とする。   The present invention has been made in view of such circumstances, and is an FZ method capable of obtaining a crystal having a desired electrical resistivity and a desired electrical resistivity over the entire growth axis direction of one crystal rod. An object of the present invention is to provide a method for producing a semiconductor crystal.

上記課題を解決するため、本発明では、溶融帯域にドーパントガスを吹き付けながら、電気抵抗率を制御しつつ半導体結晶の直胴部を形成する工程を含むFZ法による半導体結晶の製造方法において、
予め、前記直胴部形成工程中に、電気抵抗率に影響する複数のパラメータを測定し、製造した半導体結晶の電気抵抗率を測定し、前記電気抵抗率に対する前記複数のパラメータの影響を多変量解析し、該多変量解析の結果に基づいて、前記ドーパント供給量調整係数を求め、次に、FZ法で半導体結晶を製造する際、前記求めたドーパント供給量調整係数に応じて、前記直胴部形成工程中にドーパント供給量を調整することを特徴とする半導体結晶の製造方法を提供する。
In order to solve the above problems, in the present invention, in the method of manufacturing a semiconductor crystal by the FZ method, including the step of forming the straight body portion of the semiconductor crystal while controlling the electrical resistivity while blowing the dopant gas to the melting zone,
In advance, during the straight body forming step, a plurality of parameters affecting the electrical resistivity are measured, the electrical resistivity of the manufactured semiconductor crystal is measured, and the influence of the plurality of parameters on the electrical resistivity is multivariate Analyzing and determining the dopant supply adjustment factor based on the results of the multivariate analysis, and then manufacturing the semiconductor crystal by the FZ method, depending on the obtained dopant supply adjustment factor, Provided is a method for producing a semiconductor crystal, characterized in that a dopant supply amount is adjusted during a part forming step.

このように、直胴部形成工程中に、予め設定したドーパント供給量をベースとしつつも、複数のパラメータの変化について予め多変量解析にて求めておいた係数に基づいてドーパント供給量を適正に調整するようにすれば、バッチ間であるパラメータが急変していたとしても結晶中ドーパント濃度の変動を抑制し、1本の結晶棒の成長軸方向全体にわたって電気抵抗率がほぼ所望の値で一定となる半導体結晶を製造することが可能となる。   As described above, during the straight body forming process, the dopant supply amount is appropriately set based on the coefficient obtained in advance by the multivariate analysis for the change of a plurality of parameters while being based on the preset dopant supply amount. If adjusted, even if the parameter between batches changes suddenly, the fluctuation of the dopant concentration in the crystal is suppressed, and the electric resistivity is almost constant at a desired value over the entire growth axis direction of one crystal rod. It becomes possible to manufacture a semiconductor crystal.

また、前記複数のパラメータを、ネック直径、メルト直径、ゾーン長、結晶温度、上軸速度のいずれか二つ以上とすることが好ましい。   Preferably, the plurality of parameters are any two or more of a neck diameter, a melt diameter, a zone length, a crystal temperature, and an upper axis speed.

このように、ドーパント供給量調整係数を設定するための複数のパラメータとしては、特に抵抗率への影響が大きい上記のパラメータのいずれか二つ以上を用いることが好ましい。   Thus, as the plurality of parameters for setting the dopant supply amount adjustment coefficient, it is preferable to use any two or more of the above-described parameters that have a large influence on the resistivity.

また、前記ドーパント供給量調整係数を、前記複数のパラメータ及び前記電気抵抗率の複数のバッチで得られたデータを蓄積し、該蓄積データを使用して新たに多変量解析することによって、その都度更新することが好ましい。   In addition, the dopant supply amount adjustment coefficient is accumulated each time the data obtained in a plurality of batches of the plurality of parameters and the electrical resistivity, and newly multivariate analysis is performed using the accumulated data. It is preferable to update.

FZ結晶製造は一般的にはバッチ方式で行われる。ここで一回のバッチのデータではなく、このように、複数のバッチで得られたデータを蓄積し、その都度ドーパント供給量調整係数の再計算を行うことで、認識されるまたは認識されない何らかの経時変化や、部材の交換等で結晶製造状態の変化が生じ、各パラメータと取得結晶の電気抵抗率との関係に変化があったとしても、適宜それに応じたドーパント供給量調整を行うことができ、安定して所望の電気抵抗率を持つ結晶が取得できる。   FZ crystal production is generally performed in a batch mode. In this way, instead of data for a single batch, in this way, data obtained in a plurality of batches are accumulated, and a re-calculation of the dopant supply amount adjustment coefficient is performed every time, so that any time that is recognized or not recognized is recognized. Even if there is a change in the crystal production state due to change, replacement of the member, etc., and there is a change in the relationship between each parameter and the electrical resistivity of the obtained crystal, it is possible to appropriately adjust the dopant supply amount accordingly, A crystal having a desired electrical resistivity can be obtained stably.

前記複数のパラメータのうち、前記電気抵抗率との相関関係の強いパラメータに重みをつけて、前記ドーパント供給量調整係数を決定することが好ましい。   Preferably, the dopant supply amount adjustment coefficient is determined by weighting a parameter having a strong correlation with the electrical resistivity among the plurality of parameters.

このようにすれば、バッチ間で生ずるバラツキを更に小さくすることができる。   In this way, the variation generated between batches can be further reduced.

また、前記半導体結晶をシリコン単結晶とすることが好ましい。   The semiconductor crystal is preferably a silicon single crystal.

本発明の半導体結晶の製造方法によれば、成長軸方向全体にわたってほぼ所望値の電気抵抗率を持つシリコン単結晶を容易に且つ安定して製造することができる。   According to the method for producing a semiconductor crystal of the present invention, a silicon single crystal having an electric resistivity of almost a desired value over the entire growth axis direction can be produced easily and stably.

本発明によれば、FZ法による半導体結晶の製造方法において、少なくとも、直胴部形成工程中に、結晶成長状態の変化に応じて晶出側半導体結晶に供給するドーパントの供給量を制御しながら成長させるようにするので、結晶成長軸方向で電気抵抗率が変動することなく全長にわたってほぼ一定であるか、所望の軸方向プロファイルを有する半導体結晶を容易に取得できる。特に、多変量解析の結果に基づいて、ドーパント供給量を調整することによって、使用する製造装置や、製造条件に合わせて、ドーパント供給量の調整を行うことができる。これにより、例えば半導体結晶において電気抵抗率が所望の範囲を外れてしまい使用できなくなる部分の発生を防止し、製造工程における歩留まり及び生産性が向上するため、結果として半導体単結晶供給安定性の向上も可能となる。   According to the present invention, in the semiconductor crystal manufacturing method using the FZ method, at least during the straight body forming step, the supply amount of the dopant supplied to the crystallization side semiconductor crystal is controlled according to the change in the crystal growth state. Since the growth is performed, it is possible to easily obtain a semiconductor crystal having a desired axial profile that is substantially constant over the entire length without fluctuation in electric resistivity in the crystal growth axis direction. In particular, by adjusting the dopant supply amount based on the results of multivariate analysis, the dopant supply amount can be adjusted in accordance with the manufacturing apparatus to be used and the manufacturing conditions. This prevents, for example, the occurrence of a portion in the semiconductor crystal where the electrical resistivity is outside the desired range and becomes unusable, and improves the yield and productivity in the manufacturing process, resulting in improved semiconductor single crystal supply stability. Is also possible.

本発明の半導体結晶の製造方法に用いる半導体結晶製造装置の一例の概略図である。It is the schematic of an example of the semiconductor crystal manufacturing apparatus used for the manufacturing method of the semiconductor crystal of this invention. 図1における半導体結晶製造装置のチャンバー内のみを示した図である。It is the figure which showed only the inside of the chamber of the semiconductor crystal manufacturing apparatus in FIG. FZ法による半導体結晶の製造方法における溶融帯域付近の拡大図である。It is an enlarged view of the melting zone vicinity in the manufacturing method of the semiconductor crystal by FZ method. FZ法による半導体結晶の製造方法における各製造工程の一例を説明する図である。It is a figure explaining an example of each manufacturing process in the manufacturing method of the semiconductor crystal by FZ method. 実施例と比較例の電気抵抗率の比較を示すグラフである。It is a graph which shows the comparison of the electrical resistivity of an Example and a comparative example.

従来のFZシリコン単結晶製造工程の直胴部形成工程においては、FZシリコン単結晶の直径を所望とする直径に制御しながら結晶成長を行う際、製造する結晶直胴部全体で品質を均一化・安定化させるために、結晶移動速度や結晶回転数等の結晶製造条件はできるだけ変化させず、一定条件を用いている。ここで、直胴部形成工程における単結晶成長状態について、結晶成長中の結晶直径や溶融帯域の長さ等の結晶成長状態が一定に保たれていれば、直胴部形成工程におけるドーパント供給量についても、変化させず一定にすることで、製造するFZシリコン単結晶を所望の電気抵抗率にすることができ、もし仮に結晶成長中の結晶成長状態が一定ではなく、変動が存在するとしても、結晶成長中に結晶成長状態の変化に応じて供給するドーパント供給量を制御(製造装置等に依存しない全て同一の制御)することにより、1本の結晶棒の成長軸方向全体にわたって電気抵抗率がほぼ一定である結晶が取得可能と考えられていた。   In the straight body part formation process of the conventional FZ silicon single crystal manufacturing process, when crystal growth is performed while controlling the diameter of the FZ silicon single crystal to a desired diameter, the quality is uniform throughout the entire crystal straight body part to be manufactured. In order to stabilize, crystal production conditions such as crystal movement speed and crystal rotation speed are not changed as much as possible, and constant conditions are used. Here, with respect to the single crystal growth state in the straight body part forming step, if the crystal growth state such as the crystal diameter and the length of the melting zone during crystal growth is kept constant, the dopant supply amount in the straight body part forming step With respect to the above, by making it constant without changing, the FZ silicon single crystal to be manufactured can have a desired electrical resistivity, and even if the crystal growth state during crystal growth is not constant and fluctuates, By controlling the amount of dopant supplied in accordance with the change of the crystal growth state during crystal growth (all the same control independent of the manufacturing equipment etc.), the electrical resistivity is increased over the entire growth axis direction of one crystal rod. It was thought that crystals with a substantially constant value could be obtained.

しかしながら、本発明者らが、実際のFZ単結晶製造について調査を行ったところ、FZ単結晶製造機・使用部材による結晶製造状態の差、或いは経時変化による結晶製造状態の差が生じるため、ドーパント供給量の調整度合いは一様ではなく、全て同一な調整では実際に結晶製造時に必要な調整度合いとズレが生ずることがあることがわかった。   However, when the present inventors investigated actual FZ single crystal production, a difference in crystal production state due to the FZ single crystal production machine / used member, or a difference in crystal production state due to changes over time, occurs. It has been found that the adjustment amount of the supply amount is not uniform, and if the adjustment is the same for all, the adjustment degree and deviation necessary for the crystal production may actually occur.

本発明者らは、上記のような問題に対処すべく、鋭意・検討を行った結果、FZ法による半導体結晶の製造において、結晶成長中(直胴部形成工程中)に電気抵抗率に影響する複数のパラメータを測定し、その結晶成長により取得したFZ結晶の電気抵抗率を測定し、これらのデータから、抵抗率に対する各パラメータの影響を多変量解析により求め、その結果より結晶成長中に結晶成長状態の変化に応じて供給するドーパント供給量を制御する際のドーパント供給量調整係数を決定することにより、1本の結晶棒の成長軸方向全体にわたって電気抵抗率が所望値となる結晶が取得可能な半導体結晶の製造方法を発明するに至った。   As a result of diligent investigations to address the above problems, the present inventors have an influence on electrical resistivity during crystal growth (during the straight body forming process) in the production of semiconductor crystals by the FZ method. And measuring the electrical resistivity of the FZ crystal obtained by the crystal growth. From these data, the influence of each parameter on the resistivity is obtained by multivariate analysis. By determining the dopant supply amount adjustment coefficient when controlling the dopant supply amount to be supplied according to the change in the crystal growth state, a crystal having a desired electrical resistivity over the entire growth axis direction of one crystal rod can be obtained. It came to invent the manufacturing method of the semiconductor crystal which can be acquired.

以下、本発明について、更に具体的に説明するが、本発明はこれに限定されるものではない。
まず、図1は、本発明の半導体結晶の製造方法に用いる半導体結晶製造装置の一例の概略図である。図1に示されるように、本発明の半導体結晶の製造方法に用いる半導体結晶製造装置1は、混合ドーパントガスドープノズル20(混合ドーパントガス供給手段20)、Arガス供給管22(Arガス供給手段22)と、濃厚ドーパントガス供給管24(濃厚ドーパントガス供給手段24)を備えており、該濃厚ドーパントガス供給手段24から供給された濃厚ドーパントガスを前記Arガス供給手段22から供給されたArガスで希釈した混合ドーパントガスを混合ドーパントガス供給手段20により製造装置のチャンバー11内に供給することができるようになっている。また、それぞれのガス供給手段を制御するガス供給制御手段(混合ドーパントガス供給制御手段21、Arガス供給制御手段23、濃厚ドーパントガス供給制御手段25)を有している。
Hereinafter, the present invention will be described more specifically, but the present invention is not limited thereto.
First, FIG. 1 is a schematic view of an example of a semiconductor crystal manufacturing apparatus used in the semiconductor crystal manufacturing method of the present invention. As shown in FIG. 1, a semiconductor crystal manufacturing apparatus 1 used in a method for manufacturing a semiconductor crystal according to the present invention includes a mixed dopant gas doping nozzle 20 (mixed dopant gas supply means 20), an Ar gas supply pipe 22 (Ar gas supply means). 22) and a concentrated dopant gas supply pipe 24 (a concentrated dopant gas supply means 24), and the Ar gas supplied from the Ar gas supply means 22 is supplied with the concentrated dopant gas supplied from the concentrated dopant gas supply means 24. The mixed dopant gas diluted in (1) can be supplied into the chamber 11 of the manufacturing apparatus by the mixed dopant gas supply means 20. Moreover, it has the gas supply control means (The mixed dopant gas supply control means 21, Ar gas supply control means 23, the rich dopant gas supply control means 25) which controls each gas supply means.

さらに、半導体結晶製造装置1は、結晶製造条件を制御する結晶製造条件制御手段26と、結晶成長状態を検出する検出手段27と、各制御手段に信号を与えるコントローラ28を有している。ここで、結晶製造条件を制御する結晶製造条件制御手段26は、高周波コイル16への供給電力、上軸速度、駆動回路等、制御する結晶製造条件に対して複数設けることもできる。同様に、各制御手段に信号を与えるコントローラ28も伝える信号の種類や、信号を与える制御手段等に応じて複数設けることができる。   Further, the semiconductor crystal manufacturing apparatus 1 includes a crystal manufacturing condition control unit 26 that controls crystal manufacturing conditions, a detection unit 27 that detects a crystal growth state, and a controller 28 that gives a signal to each control unit. Here, a plurality of crystal production condition control means 26 for controlling the crystal production conditions can be provided for the crystal production conditions to be controlled such as the power supplied to the high-frequency coil 16, the upper shaft speed, and the drive circuit. Similarly, a plurality of controllers 28 that provide signals to the respective control means can be provided depending on the type of signal transmitted, the control means that provides the signals, and the like.

次に、図2は、図1に示される半導体結晶製造装置1のチャンバー11内のみを示した図である。チャンバー11内には上軸12及び下軸13が設けられている。上軸12には原料半導体棒14として所定の直径の半導体棒(原料結晶)が、下軸13には種結晶15が取り付けられるようになっている。さらに、原料半導体棒14を溶融する高周波コイル16を備え、溶融帯域18を原料半導体棒14に対して相対的に移動させながら晶出側半導体棒(シリコン単結晶)9を成長させることができる。また、成長中に、混合ドーパントガスドープノズル20(混合ドーパントガス供給手段20)からドーパントガスを供給できるようになっている。   Next, FIG. 2 is a view showing only the inside of the chamber 11 of the semiconductor crystal manufacturing apparatus 1 shown in FIG. An upper shaft 12 and a lower shaft 13 are provided in the chamber 11. A semiconductor rod (raw material crystal) having a predetermined diameter is attached to the upper shaft 12 as a raw material semiconductor rod 14, and a seed crystal 15 is attached to the lower shaft 13. Further, the high-frequency coil 16 for melting the raw material semiconductor rod 14 is provided, and the crystallization side semiconductor rod (silicon single crystal) 9 can be grown while moving the melting zone 18 relative to the raw material semiconductor rod 14. Further, the dopant gas can be supplied from the mixed dopant gas doping nozzle 20 (mixed dopant gas supply means 20) during the growth.

半導体結晶製造装置1は、このような特徴的な構成により、原料半導体棒14が溶融して形成される溶融帯域18から晶出する晶出側半導体棒(シリコン単結晶)9の直胴部19を形成する時に、前記検出手段27により検出された結晶成長状態の変化に応じて、Arガス供給量、濃厚ドーパントガス供給量、混合ドーパントガス供給量のいずれか1つ以上を前記ガス供給制御手段(混合ドーパントガス供給制御手段21、Arガス供給制御手段23、濃厚ドーパントガス供給制御手段25)で制御することにより、前記晶出側半導体棒へのドーパント供給量の制御を行うものである。   With such a characteristic configuration, the semiconductor crystal manufacturing apparatus 1 has a straight body portion 19 of a crystallization side semiconductor rod (silicon single crystal) 9 that crystallizes from a melting zone 18 formed by melting the raw material semiconductor rod 14. In accordance with the change in the crystal growth state detected by the detecting means 27, one or more of an Ar gas supply amount, a concentrated dopant gas supply amount, and a mixed dopant gas supply amount is selected as the gas supply control means. By controlling with (mixed dopant gas supply control means 21, Ar gas supply control means 23, concentrated dopant gas supply control means 25), the amount of dopant supplied to the crystallization side semiconductor rod is controlled.

本発明に係る半導体結晶の製造方法は、例えば、図1、図2に示される半導体結晶製造装置を用いることができる。まず、上軸12には原料半導体棒14として、例えば所定の直径のシリコン多結晶棒を取り付け、また下軸13に種結晶15を取り付ける。原料半導体棒14を高周波コイル16等で溶融した後、種結晶15に融着させる。種結晶から成長させる晶出側半導体棒9を絞り17により無転位化し、両軸を回転させながら相対的に下降させ、溶融帯域18を原料半導体棒14に対して相対的に上へと移動させながら晶出側半導体棒9を成長させる。   For example, the semiconductor crystal manufacturing apparatus shown in FIGS. 1 and 2 can be used in the semiconductor crystal manufacturing method according to the present invention. First, for example, a silicon polycrystalline rod having a predetermined diameter is attached to the upper shaft 12 as a raw material semiconductor rod 14, and a seed crystal 15 is attached to the lower shaft 13. After the raw material semiconductor rod 14 is melted by the high frequency coil 16 or the like, it is fused to the seed crystal 15. The crystallization-side semiconductor rod 9 grown from the seed crystal is made dislocation-free by the restriction 17 and is lowered relatively while rotating both axes, so that the melting zone 18 is moved upward relative to the raw material semiconductor rod 14. While growing, the crystallization side semiconductor rod 9 is grown.

絞り17を形成した後、種結晶から成長させる晶出側半導体棒9を所望の直径まで拡径させながら成長させてコーン部10を形成し、前記原料半導体棒14と前記晶出側半導体棒9との間に溶融帯域18を形成して、前記晶出側半導体棒9を所望の直径に制御しつつ成長させて直胴部19を形成する。   After forming the aperture 17, the crystallization side semiconductor rod 9 grown from the seed crystal is grown while being expanded to a desired diameter to form the cone portion 10, and the raw material semiconductor rod 14 and the crystallization side semiconductor rod 9 are formed. A melt zone 18 is formed between the crystallization side semiconductor rod 9 and the crystallization side semiconductor rod 9 while growing to a desired diameter to form a straight body portion 19.

ここで、直胴部19を形成する工程中に、結晶成長状態の変化に応じて前記晶出側半導体棒へのドーパント供給量を制御する。ドーパントは、成長中に、例えばドープノズル20から溶融帯域にドーパントガスを供給することにより添加され、その結果、所望の電気抵抗率を持つ晶出側半導体棒9とすることができる。このドーパントガスは、濃厚ドーパントガスとArガスの混合ドーパントガスであることが好ましい。   Here, during the step of forming the straight body portion 19, the amount of dopant supplied to the crystallization side semiconductor rod is controlled in accordance with the change in the crystal growth state. The dopant is added during growth, for example, by supplying a dopant gas from the dope nozzle 20 to the melting zone, so that the crystallization-side semiconductor rod 9 having a desired electrical resistivity can be obtained. This dopant gas is preferably a mixed dopant gas of rich dopant gas and Ar gas.

そして、溶融帯域18を原料半導体棒14の上端まで移動させて晶出側半導体棒9の直胴部の成長を終え、晶出側半導体棒9の直径を縮径させて該晶出側半導体棒9を前記原料半導体棒14から切り離して、半導体結晶を製造する。   Then, the melting zone 18 is moved to the upper end of the raw material semiconductor rod 14 to complete the growth of the straight body portion of the crystallization side semiconductor rod 9, and the diameter of the crystallization side semiconductor rod 9 is reduced to reduce the crystallization side semiconductor rod. 9 is separated from the raw material semiconductor rod 14 to manufacture a semiconductor crystal.

結晶成長状態の変化に応じた前記晶出側半導体棒へのドーパント供給量の制御の方法として、例えば検出手段27により検出した結晶成長状態から濃厚ドーパントガス流量、Arガス流量、混合ドーパントガス流量のいずれか1つ以上にフィードバックをかけて、供給されるドーパントガスの流量及び/又は濃度を変化させることにより、ドーパント供給量を制御することができる。   As a method of controlling the amount of dopant supplied to the crystallization side semiconductor rod in accordance with the change of the crystal growth state, for example, from the crystal growth state detected by the detection means 27, the concentrated dopant gas flow rate, Ar gas flow rate, mixed dopant gas flow rate The supply amount of the dopant can be controlled by changing the flow rate and / or concentration of the supplied dopant gas by applying feedback to any one or more.

本発明の半導体結晶の製造方法は、上記のように溶融帯域にドーパントガスを吹き付けながら、電気抵抗率を制御しつつ半導体結晶の直胴部を形成する工程を含むFZ法による半導体結晶の製造方法において、予め、求めておいたドーパント供給量調整係数に応じて、直胴部形成工程中にドーパント供給量を調整し、半導体結晶を製造する方法である。   The method for producing a semiconductor crystal according to the present invention includes a step of forming a straight body portion of a semiconductor crystal while controlling the electrical resistivity while spraying a dopant gas to the melting zone as described above, and a method for producing a semiconductor crystal by the FZ method. In this method, a semiconductor crystal is manufactured by adjusting the dopant supply amount during the straight body forming step in accordance with the dopant supply amount adjustment coefficient obtained in advance.

ドーパント供給量調整係数の決定方法を以下に示す。
まず、予め直胴部形成工程中に、電気抵抗率に影響する複数のパラメータを測定した半導体結晶を製造し、この半導体結晶の電気抵抗率を測定する。次に、測定した電気抵抗率に対する複数のパラメータの影響を多変量解析する。この多変量解析の結果に基づいて、ドーパント供給量調整係数を決定する。
A method for determining the dopant supply amount adjustment coefficient is shown below.
First, a semiconductor crystal in which a plurality of parameters affecting the electrical resistivity are measured in advance during the straight body forming step, and the electrical resistivity of the semiconductor crystal is measured. Next, multivariate analysis of the influence of a plurality of parameters on the measured electrical resistivity is performed. Based on the result of this multivariate analysis, a dopant supply amount adjustment coefficient is determined.

このような製造方法であれば、バッチ間であるパラメータが急変していたとしても結晶中ドーパント濃度の変動を抑制し、1本の結晶棒の成長軸方向全体にわたって電気抵抗率がほぼ所望値となる半導体結晶を製造することが可能となる。また、多変量解析の結果に基づいて、ドーパント供給量を調整することによって、使用する製造装置や、製造条件に合わせて、ドーパント供給量の調整を行うことができる。   With such a manufacturing method, even if the parameter between batches changes suddenly, the fluctuation of the dopant concentration in the crystal is suppressed, and the electrical resistivity is almost the desired value over the entire growth axis direction of one crystal rod. It becomes possible to manufacture a semiconductor crystal. Further, by adjusting the dopant supply amount based on the result of multivariate analysis, the dopant supply amount can be adjusted in accordance with the manufacturing apparatus to be used and the manufacturing conditions.

図3は、FZ法による半導体結晶の製造方法における溶融帯域付近の拡大図である。電気抵抗率に影響する複数のパラメータとしては、例えば、図3における溶融帯域の晶出側融液ネック部の直径(ネック直径)Dn、晶出側融液ネック部と晶出界面110との間の晶出側融液肩部の直径(メルト直径)Dm、高周波コイル16の下面111から晶出界面110までの溶融帯域の長さ(ゾーン長)Lを挙げることができる。また、溶融帯域の温度(結晶温度)、上軸速度(原料供給速度)もパラメータとして使用できる。これらのパラメータは、ドーパント供給量調整係数を設定するための複数のパラメータとして、特に好適に用いることができる。上記のネック直径、メルト直径、ゾーン長、結晶温度等の定義は、必ずしも上記図3の場合に限定されない。これらのパラメータと相関関係があるなら、定義は測定の都合等により適宜変更使用することができる。   FIG. 3 is an enlarged view of the vicinity of the melting zone in the semiconductor crystal manufacturing method by the FZ method. The plurality of parameters affecting the electrical resistivity include, for example, the diameter (neck diameter) Dn of the crystallization side melt neck in the melting zone in FIG. 3, and the distance between the crystallization side melt neck and the crystallization interface 110. The diameter (melt diameter) Dm of the crystallization-side melt shoulder portion, and the length (zone length) L of the melting zone from the lower surface 111 of the high-frequency coil 16 to the crystallization interface 110 can be exemplified. Also, the temperature of the melting zone (crystal temperature) and the upper shaft speed (raw material supply speed) can be used as parameters. These parameters can be used particularly suitably as a plurality of parameters for setting the dopant supply amount adjustment coefficient. The definitions of the neck diameter, melt diameter, zone length, crystal temperature and the like are not necessarily limited to the case of FIG. If there is a correlation with these parameters, the definition can be changed and used as appropriate for the convenience of measurement.

また、本発明の半導体結晶の製造方法で製造する半導体結晶は、シリコン単結晶とすることが好ましい。   Moreover, it is preferable that the semiconductor crystal manufactured with the manufacturing method of the semiconductor crystal of this invention is a silicon single crystal.

ここで、本発明においての、ドーパント供給量制御に用いる係数の決定方法の詳細について説明する。所望の電気抵抗率の結晶を得るためには、所望の電気抵抗率に相当するドーパント量と、原料半導体棒から供給されるドーパント量の差分を、ドーパントガスにより供給する必要がある。このとき、ドープノズルから噴射されるドーパントガスにより供給されるドーパントは、その全量が晶出側半導体棒に導入されるわけではなく、ある程度のロスが見込まれる。このときの(導入されたドーパント量/ノズルから噴射して供給された全ドーパント量)の比率を移行率とする。   Here, the detail of the determination method of the coefficient used for dopant supply amount control in this invention is demonstrated. In order to obtain a crystal having a desired electrical resistivity, it is necessary to supply a difference between the amount of dopant corresponding to the desired electrical resistivity and the amount of dopant supplied from the raw material semiconductor rod using a dopant gas. At this time, the dopant supplied by the dopant gas injected from the dope nozzle is not entirely introduced into the crystallization side semiconductor rod, and a certain amount of loss is expected. At this time, the ratio of (the amount of introduced dopant / the total amount of dopant injected and supplied from the nozzle) is defined as the transfer rate.

すなわち、ドープノズルから供給されるドーパント量は、(所望の電気抵抗率を得るために必要な追加ドーパント量/予め設定された移行率)となる。設定移行率は結晶製造実績によるフィードバックで定められ、同一製造条件であればほとんど変わらない値となる。   That is, the amount of dopant supplied from the dope nozzle is (amount of additional dopant necessary to obtain a desired electrical resistivity / a preset transition rate). The set transition rate is determined by feedback based on the crystal production results, and is a value that is almost unchanged under the same production conditions.

FZ結晶成長中の状態の変化により結晶成長軸方向の電気抵抗率の変動が生じているということは、結晶成長状態の変化で移行率が変化していると見なすことができる。このため、FZ結晶成長中の移行率を変数とし、設定移行率に結晶成長状態の変化に対応した係数(ドーパント供給量調整係数)kをかけた数値を用いるようにして結晶成長中随時再計算しながら濃厚ドーパントガス流量、Arガス流量、混合ドーパントガス流量のいずれか1つ以上にフィードバックをかけて、供給されるドーパントガスの流量及び/又は濃度を変化させることにより、ドーパント供給量を制御する。このようにすれば、その時々の結晶成長状態に応じたドーパント量を供給することができ、取得結晶の電気抵抗率は結晶成長軸方向でほぼ一定となる。   The fact that the electrical resistivity varies in the crystal growth axis direction due to the change in the state during the FZ crystal growth can be regarded as the transition rate changing due to the change in the crystal growth state. For this reason, recalculation as needed during crystal growth by using a numerical value obtained by multiplying the set transfer rate by a coefficient (dopant supply adjustment coefficient) k corresponding to the change in the crystal growth state, using the transfer rate during FZ crystal growth as a variable. While supplying a feedback to any one or more of the rich dopant gas flow rate, Ar gas flow rate, and mixed dopant gas flow rate, the dopant supply amount is controlled by changing the flow rate and / or concentration of the supplied dopant gas. . In this way, it is possible to supply a dopant amount according to the crystal growth state at that time, and the electrical resistivity of the obtained crystal becomes substantially constant in the crystal growth axis direction.

この時のkは、結晶成長中のパラメータA,B,C,・・・・・・に関する関数f(A,B,C,・・・・・・)と定義される。ここで、本来の関数fは普遍的なものに統一できるものと思われるが、実際の結晶成長では、製造設備、部材などの違い(個体差)により各パラメータの数値は変わるものであり、他の製造設備で実績のある関数fを適用したとしても必ずしも最適なものが得られない。   K at this time is defined as a function f (A, B, C,...) Related to parameters A, B, C,. Here, it seems that the original function f can be unified into a universal one, but in actual crystal growth, the numerical value of each parameter varies depending on differences (individual differences) in manufacturing equipment and materials. Even if the function f which has a proven record in the manufacturing facility is applied, an optimal one cannot always be obtained.

そこで、例えば製造設備毎の、FZ結晶成長中の複数のパラメータを連続的にデータ採取する。また、これと対応する結晶成長により取得したFZ結晶の電気抵抗率の実績データを、結晶成長軸方向の移行率に換算する。結晶成長軸方向の電気抵抗率の変化に基づく移行率の変化に対する、各パラメータの変動の影響を多変量解析により求め、関数fを導出する。このようにそれぞれ求めた関数fを用いると、それぞれの製造設備に適した調整係数kを得ることができる。   Therefore, for example, data is collected continuously for a plurality of parameters during the FZ crystal growth for each manufacturing facility. Moreover, the actual data of the electrical resistivity of the FZ crystal acquired by the corresponding crystal growth is converted into the transition rate in the crystal growth axis direction. The effect of the variation of each parameter on the change of the transition rate based on the change of the electrical resistivity in the crystal growth axis direction is obtained by multivariate analysis, and the function f is derived. When the functions f thus obtained are used, an adjustment coefficient k suitable for each manufacturing facility can be obtained.

更に、同一製造設備においても経時変化により必要な調整度合いも変化してしまう場合がある。このため、直近の適度な範囲(複数のバッチ)でFZ結晶製造データ(複数のパラメータ及び電気抵抗率のデータ)を蓄積し、その蓄積データを使用して新たに多変量解析を行いドーパント供給量調整係数kをその都度更新することが有効である。この場合のデータ蓄積範囲が小さければその時々の状態に応じた調整が可能となるが、小さすぎると調整バラツキが大きくなる。またデータ蓄積範囲が大きい場合は調整バラツキは安定するが、大きすぎればその時の状態に適さない調整となる可能性がある。製造状態により適宜決めればよい。   Furthermore, even in the same manufacturing facility, the necessary degree of adjustment may change due to changes over time. For this reason, FZ crystal production data (multiple parameters and electrical resistivity data) are accumulated in the most recent appropriate range (multiple batches), and a new multivariate analysis is performed using the accumulated data. It is effective to update the adjustment coefficient k each time. If the data storage range in this case is small, adjustment according to the state at that time is possible, but if it is too small, the variation in adjustment increases. If the data storage range is large, the adjustment variation is stable, but if it is too large, the adjustment may not be suitable for the state at that time. What is necessary is just to determine suitably with a manufacture state.

また、複数のパラメータの中でも、特に、電気抵抗率との相関関係の強いパラメータに重みをつけることにより、すなわち、移行率偏差と相関の大きいもののウエイトを上げることにより、ドーパント供給量調整係数を決定することが好ましい。このようにすれば、調整が更に適したものとなる。   In addition, among the multiple parameters, the dopant supply adjustment coefficient is determined by weighting parameters that have a strong correlation with the electrical resistivity, that is, by increasing the weight of those that have a large correlation with the transition rate deviation. It is preferable to do. In this way, the adjustment becomes more suitable.

以下、実施例及び比較例を示して本発明をより具体的に説明するが、本発明はこれらの実施例に限定されるものではない。   EXAMPLES Hereinafter, although an Example and a comparative example are shown and this invention is demonstrated more concretely, this invention is not limited to these Examples.

結晶直径200mm、導電型N型、狙い電気抵抗率50Ωcmのシリコン単結晶製造において、本発明のドーパント供給量調整方法を使用した場合(実施例)と、使用せずネック直径の変動に応じたドーパント供給量調整方法とした場合(比較例)とで、FZ単結晶を製造して各10本の結晶を取得した。製造したシリコン単結晶の結晶成長軸方向での電気抵抗率を測定し、その変化の度合いを比較した。   In the production of a silicon single crystal having a crystal diameter of 200 mm, a conductivity type N type, and a target electric resistivity of 50 Ωcm, a dopant according to the method of adjusting the amount of supplied dopant according to the present invention (Example) and not depending on the variation of the neck diameter In the case of the supply amount adjustment method (comparative example), FZ single crystals were manufactured and 10 crystals were obtained each. The electrical resistivity in the direction of the crystal growth axis of the manufactured silicon single crystal was measured, and the degree of change was compared.

(実施例)
FZ結晶成長5バッチ分のデータから、ネック直径、ゾーン長、メルト直径の各パラメータの結晶成長中各時点のデータを取得した。またそれぞれのバッチの取得結晶の軸方向電気抵抗率から換算した成長軸方向の移行率も取得し、前記3つのパラメータデータを用いて多変量解析を行い、ドーパント供給量調整係数kに用いる関数fを次のように求めた。
f[移行率偏差=A×ネック直径偏差+B/ゾーン長偏差+C×メルト直径偏差+D(定数)]
ここで式内の各係数は以下の通りである。
A:−0.003
B:2.65
C:−13.42
D:−2.65
以上のように求めたドーパント供給量調整係数kを乗じた混合ドーパントガス流量で直胴部を形成した。
(Example)
From the data for 5 batches of FZ crystal growth, data at each time point during crystal growth of the parameters of neck diameter, zone length, and melt diameter were obtained. Also, the transition rate in the growth axis direction converted from the axial electrical resistivity of the acquired crystal of each batch is acquired, and multivariate analysis is performed using the three parameter data, and the function f used for the dopant supply amount adjustment coefficient k. Was determined as follows.
f [migration rate deviation = A × neck diameter deviation + B / zone length deviation + C × melt diameter deviation + D (constant)]
Here, each coefficient in the equation is as follows.
A: -0.003
B: 2.65
C: -13.42
D: -2.65
The straight body portion was formed at a mixed dopant gas flow rate multiplied by the dopant supply amount adjustment coefficient k determined as described above.

(比較例)
FZ結晶成長5バッチ分のデータから、ネック直径の結晶成長中各時点のデータと、それぞれのバッチの取得結晶の軸方向電気抵抗率から換算した成長軸方向の移行率を取得し、ドーパント供給量調整係数kに用いる関数fを次のように求めた。
f[移行率偏差=0.053×ネック直径偏差]
以上のように求めたドーパント供給量調整係数kを乗じた混合ドーパントガス流量で直胴部を形成した。
(Comparative example)
From the data for 5 batches of FZ crystal growth, acquire the data at each point during the crystal growth of the neck diameter and the transfer rate in the growth axis direction converted from the axial electrical resistivity of the acquired crystal of each batch, and supply the dopant amount A function f used for the adjustment coefficient k was determined as follows.
f [Transition rate deviation = 0.053 x neck diameter deviation]
The straight body portion was formed at a mixed dopant gas flow rate multiplied by the dopant supply amount adjustment coefficient k determined as described above.

表1と図5に(実施例)と(比較例)の電気抵抗率の比較を示す。尚、表1中の軸方向抵抗率偏差は標準偏差σを示す。図5は、実施例と比較例の電気抵抗率の比較を示すグラフである。   Table 1 and FIG. 5 show a comparison of electrical resistivity between (Example) and (Comparative Example). The axial resistivity deviation in Table 1 represents the standard deviation σ. FIG. 5 is a graph showing a comparison of electrical resistivity between the example and the comparative example.

Figure 2015101521
Figure 2015101521

表1および図5に示される通り、本発明の半導体結晶の製造方法におけるガスドーピング制御方法を使用した場合(実施例)、使用しなかった場合(比較例)に比べて結晶成長軸方向での電気抵抗率の均一性が改善された。   As shown in Table 1 and FIG. 5, when the gas doping control method in the semiconductor crystal manufacturing method of the present invention is used (Example), compared with the case where it is not used (Comparative Example), the crystal growth axis direction is higher. The uniformity of electrical resistivity was improved.

なお、本発明は、上記実施形態に限定されるものではない。上記実施形態は例示であり、本発明の特許請求の範囲に記載された技術的思想と実質的に同一な構成を有し、同様な作用効果を奏するものは、いかなるものであっても本発明の技術的範囲に包含される。
例えば、上記では、多変量解析に用いるパラメータに融液帯域の長さ(ゾーン長)及びメルト直径、ネック直径の変化を採用したが、結晶温度変化や上軸速度変化、もしくはこれらの変化の他の組み合わせに応じてドーパント供給量を制御するようにしてもよい。
The present invention is not limited to the above embodiment. The above-described embodiment is an exemplification, and the present invention has any configuration that has substantially the same configuration as the technical idea described in the claims of the present invention and that exhibits the same effects. Are included in the technical scope.
For example, in the above, changes in the melt zone length (zone length), melt diameter, and neck diameter have been adopted as parameters used for multivariate analysis. The amount of dopant supply may be controlled according to the combination.

1…半導体結晶製造装置、 9、59…晶出側半導体棒(シリコン単結晶)、
10…コーン部、 11…チャンバー、 12…上軸、 13…下軸、
14、54…原料半導体棒、 15、55…種結晶、 16…高周波コイル、
17…絞り、 18…溶融帯域、 19…直胴部、
20…混合ドーパントガスドープノズル(混合ドーパントガス供給手段)、
21…混合ドーパントガス供給制御手段、
22…Arガス供給管(Arガス供給手段)、 23…Arガス供給制御手段、
24…濃厚ドーパントガス供給管(濃厚ドーパントガス供給手段)、
25…濃厚ドーパントガス供給制御手段、 26…結晶製造条件制御手段、
27…検出手段、 28…コントローラ、 110…晶出界面、
111…高周波コイルの下面、 Dm…メルト直径、
Dn…ネック直径、 L…ゾーン長。
DESCRIPTION OF SYMBOLS 1 ... Semiconductor crystal manufacturing apparatus, 9, 59 ... Crystallization side semiconductor rod (silicon single crystal),
10 ... cone section, 11 ... chamber, 12 ... upper shaft, 13 ... lower shaft,
14, 54 ... Raw material semiconductor rod, 15, 55 ... Seed crystal, 16 ... High frequency coil,
17 ... Drawing, 18 ... Melting zone, 19 ... Straight body,
20 ... Mixed dopant gas dope nozzle (mixed dopant gas supply means),
21 ... Mixed dopant gas supply control means,
22 ... Ar gas supply pipe (Ar gas supply means), 23 ... Ar gas supply control means,
24 ... Rich dopant gas supply pipe (rich dopant gas supply means),
25 ... Concentrated dopant gas supply control means, 26 ... Crystal production condition control means,
27 ... detection means, 28 ... controller, 110 ... crystallization interface,
111 ... lower surface of the high frequency coil, Dm ... melt diameter,
Dn ... neck diameter, L ... zone length.

Claims (5)

溶融帯域にドーパントガスを吹き付けながら、電気抵抗率を制御しつつ半導体結晶の直胴部を形成する工程を含むFZ法による半導体結晶の製造方法において、
予め、前記直胴部形成工程中に、電気抵抗率に影響する複数のパラメータを測定し、製造した半導体結晶の電気抵抗率を測定し、前記電気抵抗率に対する前記複数のパラメータの影響を多変量解析し、該多変量解析の結果に基づいて、前記ドーパント供給量調整係数を求め、次に、FZ法で半導体結晶を製造する際、前記求めたドーパント供給量調整係数に応じて、前記直胴部形成工程中にドーパント供給量を調整することを特徴とする半導体結晶の製造方法。
In the method of manufacturing a semiconductor crystal by the FZ method, including the step of forming a straight body portion of the semiconductor crystal while controlling the electric resistivity while blowing the dopant gas to the melting zone,
In advance, during the straight body forming step, a plurality of parameters affecting the electrical resistivity are measured, the electrical resistivity of the manufactured semiconductor crystal is measured, and the influence of the plurality of parameters on the electrical resistivity is multivariate Analyzing and determining the dopant supply adjustment factor based on the results of the multivariate analysis, and then manufacturing the semiconductor crystal by the FZ method, depending on the obtained dopant supply adjustment factor, A method for producing a semiconductor crystal, comprising adjusting a dopant supply amount during a part forming step.
前記複数のパラメータを、ネック直径、メルト直径、ゾーン長、結晶温度、上軸速度のいずれか二つ以上とすることを特徴とする請求項1に記載の半導体結晶の製造方法。   2. The method of manufacturing a semiconductor crystal according to claim 1, wherein the plurality of parameters are any two or more of a neck diameter, a melt diameter, a zone length, a crystal temperature, and an upper axis speed. 前記ドーパント供給量調整係数を、前記複数のパラメータ及び前記電気抵抗率の複数のバッチで得られたデータを蓄積し、該蓄積データを使用して新たに多変量解析することによって、その都度更新することを特徴とする請求項1又は請求項2に記載の半導体結晶の製造方法。   The dopant supply adjustment factor is updated each time by accumulating data obtained from a plurality of batches of the plurality of parameters and the electric resistivity, and newly performing multivariate analysis using the accumulated data. The method for producing a semiconductor crystal according to claim 1, wherein the semiconductor crystal is produced. 前記複数のパラメータのうち、前記電気抵抗率との相関関係の強いパラメータに重みをつけて、前記ドーパント供給量調整係数を決定することを特徴とする請求項1から請求項3のいずれか1項に記載の半導体結晶の製造方法。   4. The dopant supply amount adjustment coefficient is determined by weighting a parameter having a strong correlation with the electrical resistivity among the plurality of parameters. The manufacturing method of the semiconductor crystal of description. 前記半導体結晶をシリコン単結晶とすることを特徴とする請求項1から請求項4のいずれか1項に記載の半導体結晶の製造方法。   The method for producing a semiconductor crystal according to any one of claims 1 to 4, wherein the semiconductor crystal is a silicon single crystal.
JP2013244658A 2013-11-27 2013-11-27 Manufacturing method of semiconductor crystal Active JP6152784B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2013244658A JP6152784B2 (en) 2013-11-27 2013-11-27 Manufacturing method of semiconductor crystal

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2013244658A JP6152784B2 (en) 2013-11-27 2013-11-27 Manufacturing method of semiconductor crystal

Publications (2)

Publication Number Publication Date
JP2015101521A true JP2015101521A (en) 2015-06-04
JP6152784B2 JP6152784B2 (en) 2017-06-28

Family

ID=53377533

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2013244658A Active JP6152784B2 (en) 2013-11-27 2013-11-27 Manufacturing method of semiconductor crystal

Country Status (1)

Country Link
JP (1) JP6152784B2 (en)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2019108248A (en) * 2017-12-19 2019-07-04 株式会社Sumco Method for manufacturing silicon single crystal
JP2019202913A (en) * 2018-05-23 2019-11-28 信越半導体株式会社 Method of measuring resistivity of raw material crystal and method of manufacturing fz silicon single crystal
JP2020007163A (en) * 2018-07-02 2020-01-16 信越半導体株式会社 Method of measuring resistivities of raw material crystal and method of manufacturing fz silicon single crystal

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2005162558A (en) * 2003-12-04 2005-06-23 Shin Etsu Handotai Co Ltd Manufacturing system for silicon single crystal, method for manufacturing silicon single crystal, and silicon single crystal
WO2008038689A1 (en) * 2006-09-29 2008-04-03 Sumco Techxiv Corporation Silicon single crystal manufacturing method, silicon single crystal, silicon wafer, apparatus for controlling manufacture of silicon single crystal, and program
JP2009221079A (en) * 2008-03-18 2009-10-01 Shin Etsu Handotai Co Ltd Method and apparatus for manufacturing semiconductor crystal by fz method

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2005162558A (en) * 2003-12-04 2005-06-23 Shin Etsu Handotai Co Ltd Manufacturing system for silicon single crystal, method for manufacturing silicon single crystal, and silicon single crystal
WO2008038689A1 (en) * 2006-09-29 2008-04-03 Sumco Techxiv Corporation Silicon single crystal manufacturing method, silicon single crystal, silicon wafer, apparatus for controlling manufacture of silicon single crystal, and program
JP2009221079A (en) * 2008-03-18 2009-10-01 Shin Etsu Handotai Co Ltd Method and apparatus for manufacturing semiconductor crystal by fz method

Cited By (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2019108248A (en) * 2017-12-19 2019-07-04 株式会社Sumco Method for manufacturing silicon single crystal
CN110004491A (en) * 2017-12-19 2019-07-12 胜高股份有限公司 The manufacturing method of silicon single crystal
CN110004491B (en) * 2017-12-19 2022-02-11 胜高股份有限公司 Method for producing silicon single crystal
JP2019202913A (en) * 2018-05-23 2019-11-28 信越半導体株式会社 Method of measuring resistivity of raw material crystal and method of manufacturing fz silicon single crystal
JP7067267B2 (en) 2018-05-23 2022-05-16 信越半導体株式会社 Method for measuring resistivity of raw material crystal and method for manufacturing FZ silicon single crystal
JP2020007163A (en) * 2018-07-02 2020-01-16 信越半導体株式会社 Method of measuring resistivities of raw material crystal and method of manufacturing fz silicon single crystal

Also Published As

Publication number Publication date
JP6152784B2 (en) 2017-06-28

Similar Documents

Publication Publication Date Title
JP4957600B2 (en) Semiconductor crystal manufacturing method and semiconductor crystal manufacturing apparatus by FZ method
CN110004491B (en) Method for producing silicon single crystal
JP5029637B2 (en) Manufacturing method of semiconductor single crystal
JP6152784B2 (en) Manufacturing method of semiconductor crystal
US9809901B2 (en) Method for manufacturing silicon single crystal
CN110536980A (en) The manufacturing method and monocrystal silicon of monocrystal silicon
JP6248816B2 (en) Single crystal manufacturing method
JP6119642B2 (en) Manufacturing method of semiconductor single crystal
JP6756244B2 (en) Manufacturing method of semiconductor silicon single crystal
JP7067267B2 (en) Method for measuring resistivity of raw material crystal and method for manufacturing FZ silicon single crystal
JP2011093770A (en) Resistivity calculation program and method for producing single crystal
JP5768764B2 (en) Manufacturing method of semiconductor single crystal rod
JP7240827B2 (en) Method for measuring resistivity of raw material crystal and method for producing FZ silicon single crystal
CN109415843A (en) The manufacturing method of monocrystalline silicon
JP5716689B2 (en) Silicon single crystal manufacturing method and silicon single crystal manufacturing apparatus
JP2001316199A (en) Manufacturing method and manufacturing device for silicon single crystal
JP6720841B2 (en) Method for manufacturing semiconductor silicon single crystal
JP5201730B2 (en) Manufacturing method of FZ method silicon single crystal
JP5880415B2 (en) Single crystal manufacturing method
JPH11189486A (en) Production of semiconductor single crystal by fz method
KR101540235B1 (en) Apparutus and Method for Manufacturing Single Crystal Ingot
JP2017190261A (en) Method and apparatus for producing monocrystal
JP2022084731A (en) Measurement method for resistivity of raw material crystal manufactured by cz method, and manufacturing method for fz silicon single crystal
JP2017141130A (en) Semiconductor single crystal manufacturing method, and semiconductor single crystal manufacturing apparatus
JP7452314B2 (en) Method for producing silicon raw material crystal for FZ and production system for silicon raw material crystal for FZ

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20151118

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20160725

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20160802

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20160927

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20170228

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20170417

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20170502

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20170515

R150 Certificate of patent or registration of utility model

Ref document number: 6152784

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250