JP2003095788A - Silicon single crystal pulling method - Google Patents

Silicon single crystal pulling method

Info

Publication number
JP2003095788A
JP2003095788A JP2001282592A JP2001282592A JP2003095788A JP 2003095788 A JP2003095788 A JP 2003095788A JP 2001282592 A JP2001282592 A JP 2001282592A JP 2001282592 A JP2001282592 A JP 2001282592A JP 2003095788 A JP2003095788 A JP 2003095788A
Authority
JP
Japan
Prior art keywords
ingot
coil
pulling
single crystal
rotation speed
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2001282592A
Other languages
Japanese (ja)
Inventor
Shinrin Fu
森林 符
Yoji Suzuki
洋二 鈴木
Kazuhiro Harada
和浩 原田
Hisashi Furuya
久 降屋
Akira Higuchi
朗 樋口
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Sumco Corp
Original Assignee
Sumitomo Mitsubishi Silicon Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Sumitomo Mitsubishi Silicon Corp filed Critical Sumitomo Mitsubishi Silicon Corp
Priority to JP2001282592A priority Critical patent/JP2003095788A/en
Publication of JP2003095788A publication Critical patent/JP2003095788A/en
Pending legal-status Critical Current

Links

Landscapes

  • Crystals, And After-Treatments Of Crystals (AREA)

Abstract

PROBLEM TO BE SOLVED: To provide a method by which the production of an ingot by means of high speed pulling can be realized. SOLUTION: A quartz crucible 12 rotates at a predetermined rotation speed R1 , and a silicon single crystal ingot 13 being pulled from a silicon melt 11 is rotated at a predetermined rotation speed R2 . An upper coil 14 and a lower coil 16 are arranged at a predetermined interval in the vertical direction in such a manner that the center of each coil coincides with the rotation axis of the crucible 12. Then, cusp magnetic fields 17 passing through a neutral plane 17a between the coils from the center of each coil are generated by passing electric currents through those coils in such a manner that the directions of the currents flowing through the coils are reverse to each other. The ingot is pulled with a speed such that the ingot is formed, and the rotation speed R1 is controlled so as to satisfy following relation: |R1 |>=0.3 rpm, wherein |R1 | means an absolute figure of R1 and the rotation speed R2 of the ingot is controlled so as to satisfy the following relation: R1 =-(0.01 to 100)R2 so that the form of the solid-liquid interface 22 between the melt and the ingot becomes convex downward.

Description

【発明の詳細な説明】Detailed Description of the Invention

【0001】[0001]

【発明の属する技術分野】本発明は、シリコン融液にカ
スプ(CUSP)磁場を印加しながら、シリコン単結晶
のインゴットをシリコン融液から引上げる方法に関す
る。更に詳しくは、エピタキシャル成長の基板として用
いられるインゴットを高速で引上げる方法に関するもの
である。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a method for pulling an ingot of a silicon single crystal from a silicon melt while applying a cusp (CUSP) magnetic field to the silicon melt. More specifically, it relates to a method for pulling an ingot used as a substrate for epitaxial growth at high speed.

【0002】[0002]

【従来の技術】半導体の基板材料となるシリコン単結晶
の製造方法として、シリコン単結晶のインゴットをチョ
クラルスキー法(以下、CZ法という)により引上げる
方法が知られている。図3に示すように、このCZ法
は、石英るつぼ1に貯留されたシリコン融液2に特定結
晶面を有する種結晶3を接触させ、石英るつぼ1及び種
結晶3を回転させながら種結晶3を凝固成長する結晶の
成長速度に応じて徐々に引上げることにより、円柱状の
シリコン単結晶のインゴット4を製造する方法である。
図3における符号5はシリコン融液2とインゴットの固
液界面を、符号6はヒータを示す。通常、種結晶3から
成長させた単結晶は、まずシード絞りと称して、結晶を
無転位化するための細長いネック部7を形成させる。次
いで目的とする単結晶直径まで増径させる肩部8を育成
し、肩変えして直径が一定状態の胴部9育成工程へと移
行する。胴長を所定長さまで育成後、無転位の状態で融
液から切り離すため、径を細くするテイルしぼりをおこ
なう。そして結晶を融液から離した後、製造装置から取
り出して所定条件で冷却する。このようにして得られた
シリコン単結晶は、成長方向に垂直な面での切断片であ
るウェーハとし、種々のデバイスの基板材料として用い
る。このようなインゴットの製造方法では育成結晶の径
が大きくなればなるほど、最大結晶成長速度は小さくな
ることが知られている。それは結晶成長の速度が、成長
中の結晶の熱収支によって決定されるためである。即
ち、結晶径の増大により、成長結晶インゴットの表面積
は直線的に増大するので放熱量は結晶径に直線的に比例
するが、加熱量は、径の2乗に比例する結晶化体積に比
例することに起因する。
2. Description of the Related Art As a method for producing a silicon single crystal as a semiconductor substrate material, a method is known in which a silicon single crystal ingot is pulled by the Czochralski method (hereinafter referred to as the CZ method). As shown in FIG. 3, in this CZ method, a seed crystal 3 having a specific crystal plane is brought into contact with a silicon melt 2 stored in a quartz crucible 1, and the seed crystal 3 is rotated while rotating the quartz crucible 1 and the seed crystal 3. Is a method for producing a cylindrical silicon single crystal ingot 4 by gradually pulling up the silicon in accordance with the growth rate of the solidified crystal.
Reference numeral 5 in FIG. 3 indicates a solid-liquid interface between the silicon melt 2 and the ingot, and reference numeral 6 indicates a heater. Usually, a single crystal grown from the seed crystal 3 is first called a seed diaphragm, and an elongated neck portion 7 for forming a dislocation-free crystal is formed. Next, the shoulder portion 8 for increasing the diameter to the target single crystal diameter is grown, and the shoulder is changed to shift to the body portion 9 growing step in which the diameter is constant. After growing the body length to a predetermined length, in order to separate it from the melt in a dislocation-free state, a tail squeezing is performed to reduce the diameter. After the crystals are separated from the melt, they are taken out of the manufacturing apparatus and cooled under predetermined conditions. The silicon single crystal thus obtained is used as a wafer, which is a cut piece in a plane perpendicular to the growth direction, and is used as a substrate material for various devices. In such an ingot manufacturing method, it is known that the maximum crystal growth rate decreases as the diameter of the grown crystal increases. This is because the rate of crystal growth is determined by the heat balance of the growing crystal. That is, since the surface area of the grown crystal ingot increases linearly with the increase of the crystal diameter, the heat radiation amount is linearly proportional to the crystal diameter, but the heating amount is proportional to the crystallization volume proportional to the square of the diameter. Due to that.

【0003】一方、半導体デバイス製造において、ある
方位を持った単結晶基板上にその基板と同じ方位を持っ
た結晶を成長させるエピタキシャル成長技術が頻繁に用
いられている。そのため、このエピタキシャル成長技術
に用いられる単結晶基板をより早く大量に製造すること
が求められている。その方策の1つとして単結晶インゴ
ットの引上げを行うにあたり、引上げ速度をより高速に
してインゴットを成長させる方法が考えられる。
On the other hand, in semiconductor device manufacturing, an epitaxial growth technique for growing a crystal having the same orientation as that of a single crystal substrate having a certain orientation is frequently used. Therefore, it is required to mass-produce the single crystal substrate used for this epitaxial growth technique faster and in large quantities. As one of the measures, when pulling a single crystal ingot, a method of growing the ingot at a higher pulling speed can be considered.

【0004】[0004]

【発明が解決しようとする課題】しかし、図4(a)に
示すように、上記従来の引上げ方法では、従来と同程度
の低速での引上げ速度で引上げを行う場合は品質の良い
単結晶インゴットが得られるが、図4(b)及び図4
(c)に示すように、中速や高速での引上げ速度でイン
ゴット4の引上げを行うと、成長結晶インゴットの内部
が十分に冷却されず、インゴット内部の結晶成長速度が
遅くなる。その結果、固液界面5の形状が極端に上側に
凸となり、引上げられる単結晶インゴットが結晶変形を
起こしてしまうため、直胴部が形成されなくなる問題が
あった。また、固液界面形状が極端に上側に凸となる場
合、成長結晶インゴットの内部が外側より遅く固化され
るため、インゴット外側が固化した後に、内側が固化す
ることになる。シリコンは、液体の密度に比べて固体の
密度が小さいため固化する際には体積が増える。そのた
め、内部の融液が固化する過程でシリコンは液体と固体
の密度の差によって膨張し、先に固化したインゴットの
外側が破損してしまうおそれもあった。
However, as shown in FIG. 4 (a), in the conventional pulling method described above, when pulling at a pulling speed as low as the conventional one, a single crystal ingot of good quality is obtained. 4B and FIG. 4 are obtained.
As shown in (c), when the ingot 4 is pulled at a pulling speed of medium speed or high speed, the inside of the grown crystal ingot is not sufficiently cooled, and the crystal growth rate inside the ingot becomes slow. As a result, the shape of the solid-liquid interface 5 becomes extremely convex upward, and the pulled single crystal ingot undergoes crystal deformation, which causes a problem that the straight body portion is not formed. Further, when the solid-liquid interface shape is extremely convex upward, the inside of the grown crystal ingot is solidified later than the outside, so that the inside of the ingot is solidified after the outside of the ingot is solidified. Since the density of silicon is lower than the density of liquid, the volume of silicon increases when it is solidified. Therefore, in the process of solidification of the melt inside, the silicon expands due to the difference in density between the liquid and the solid, and the outside of the previously solidified ingot may be damaged.

【0005】本発明の目的は、高速引上げによるインゴ
ット製造が実現可能となるシリコン単結晶の引上げ方法
を提供することにある。
It is an object of the present invention to provide a method for pulling a silicon single crystal which enables the production of an ingot by high speed pulling.

【0006】[0006]

【課題を解決するための手段】請求項1に係る発明は、
図1に示すように、シリコン融液11を貯留する石英る
つぼ12を所定の回転速度で回転させ、シリコン融液1
1から引上げられるシリコン単結晶のインゴット13を
所定の回転速度で回転させ、石英るつぼ12の外径より
それぞれ大きなコイル直径を有する上コイル14及び下
コイル16を石英るつぼ12の回転軸をそれぞれコイル
中心としかつ鉛直方向に所定の間隔をあけて配設し、上
コイル14及び下コイル16に互いに逆向きの電流を流
すことにより上コイル及び下コイルの各コイル中心から
上コイル及び下コイル間の中立面17aを通るカスプ磁
場17を発生させながらインゴット13を引上げるシリ
コン単結晶の引上げ方法の改良である。その特徴ある構
成は、石英るつぼ12の回転速度をR1、インゴット1
3の回転速度をR2とするとき、シリコン融液11とイ
ンゴット13との固液界面22形状が下側に凸となるよ
うに、回転速度R1を|R1|≧0.3rpmの範囲に規定
し、R1=−(0.01〜100)R2を満たすように、イ
ンゴット13の回転速度R2を制御するところにある。
但し、|R1|はR 1の絶対値を示す。
The invention according to claim 1 is
As shown in FIG. 1, quartz that stores the silicon melt 11 is used.
The crucible 12 is rotated at a predetermined rotation speed, and the silicon melt 1
Silicon single crystal ingot 13 pulled up from 1
Rotate at a predetermined rotation speed, and from the outer diameter of the quartz crucible 12
Upper coil 14 and lower, each having a large coil diameter
The coils 16 are respectively attached to the rotating shafts of the quartz crucible 12.
Place it at the center and at a predetermined interval in the vertical direction.
Currents flowing in opposite directions to the coil 14 and the lower coil 16
From the center of each coil of the upper coil and the lower coil
A cusp magnet passing through the neutral surface 17a between the upper coil and the lower coil.
Siri pulling up ingot 13 while generating field 17
This is an improvement in the pulling method for single crystal Cong. Its characteristic structure
The rotation speed of the quartz crucible 12 is R1, Ingot 1
The rotation speed of 3 is R2And the silicon melt 11 and a
The shape of the solid-liquid interface 22 with the ngot 13 is convex downward.
Sea urchin rotation speed R1To | R1Specified within the range of ≧ 0.3 rpm
And R1=-(0.01-100) R2To meet
Rotation speed R of ngot 132Is in control.
However, | R1| Is R 1Indicates the absolute value of.

【0007】この請求項1に記載されたシリコン単結晶
の引上げ方法では、石英るつぼ12及びインゴット13
の回転速度を上記範囲のいずれかを満たすようにそれぞ
れ制御しながら、インゴットを引上げると、シリコン融
液11に所定の対流11a、11bが発生し、これらの
対流11a、11bにより固液界面22形状が大幅に下
側に凸となる。この結果、引上げ速度を従来の引上げ速
度に比べて高速にして引上げを行った場合、引上げによ
り発生する強制対流により固液界面が押上げられて固液
界面が大きく上昇したとしても、その形状は上側に凸と
はならない。従って、引上げたシリコン単結晶インゴッ
トは結晶変形を起こすことがないため、高速引上げによ
るインゴット製造が可能となる。
In the method for pulling a silicon single crystal according to the first aspect, the quartz crucible 12 and the ingot 13 are used.
When the ingot is pulled up while controlling the rotation speed of each of them so as to satisfy any of the above-mentioned ranges, predetermined convections 11a and 11b are generated in the silicon melt 11, and these convections 11a and 11b cause a solid-liquid interface 22. The shape is significantly convex downward. As a result, when pulling is performed at a higher pulling speed than the conventional pulling speed, even if the solid-liquid interface is pushed up by the forced convection generated by pulling and the solid-liquid interface rises significantly, its shape is It does not project upward. Therefore, since the pulled silicon single crystal ingot does not cause crystal deformation, it is possible to manufacture the ingot by high-speed pulling.

【0008】ここで、カスプ磁場17の中立面17aと
シリコン融液11の表面との距離をHとするとき、−3
00mm≦H≦300mmを満たすように、中立面17
aをシリコン融液11の表面の上方又は下方に制御する
ことが好ましい。また、石英るつぼ12の直径が大きく
なるに従ってカスプ磁場17の強度が強くなるように、
上コイル14及び下コイル16に流す電流を制御するこ
とができる。
Here, when the distance between the neutral surface 17a of the cusp magnetic field 17 and the surface of the silicon melt 11 is H, -3
Neutral surface 17 so as to satisfy 00 mm ≦ H ≦ 300 mm
It is preferable to control a above or below the surface of the silicon melt 11. In addition, the strength of the cusp magnetic field 17 increases as the diameter of the quartz crucible 12 increases.
The current flowing through the upper coil 14 and the lower coil 16 can be controlled.

【0009】また、上コイル14及び下コイル16に流
す電流値がI1及びI2であって、電流値I1及びI2の大
きさがそれぞれ異なるとき、I1=−(0.5〜2.0)
2を満たすように下コイル16に流す電流値I2を制御
することができる。更に上記制御によりインゴットの引
上げ速度Vは、0.5mm/分≦V≦5.0mm/分の
範囲を満たす速度で引上げることができる。
Further, when the current values to be passed through the upper coil 14 and the lower coil 16 are I 1 and I 2 , and the magnitudes of the current values I 1 and I 2 are different from each other, I 1 =-(0.5 to 2.0)
The current value I 2 flowing through the lower coil 16 can be controlled so as to satisfy I 2 . Further, by the above control, the pulling speed V of the ingot can be raised at a speed satisfying the range of 0.5 mm / min ≦ V ≦ 5.0 mm / min.

【0010】[0010]

【発明の実施の形態】次に本発明の実施の形態を図面に
基づいて説明する。図1に示すように、本発明のシリコ
ン単結晶の引上げ方法は、シリコン融液11を貯留する
石英るつぼ12を所定の回転速度R1で回転させ、シリ
コン融液11から引上げられるシリコン単結晶のインゴ
ット13を所定の回転速度R2で回転させ、かつシリコ
ン融液11に上コイル14及び下コイル16を用いてカ
スプ磁場17を印加しながら、上記シリコン融液11か
ら上記インゴット13を引上げる方法である。上記上コ
イル14及び下コイル16は、石英るつぼ12の外径よ
り大きなコイル直径を有し、石英るつぼ12の回転軸を
それぞれコイル中心としかつ鉛直方向に所定の間隔をあ
けて配設される。また上コイル14及び下コイル16に
は互いに逆向きの電流が流され、これにより上コイル1
4及び下コイル16の各コイル中心から上コイル及び下
コイル間の中立面17aを通るカスプ磁場17が発生す
るようになっている。石英るつぼ12はグラファイトサ
セプタ18により外周面及び外底面を包囲されて支持さ
れる。サセプタ18は支軸19の上端に固定され、この
支軸19の下部は図示しないるつぼ駆動手段に接続され
る。なお、上記中立面17aは、上コイル14及び下コ
イル16間における、鉛直方向の磁場強度がゼロとなる
水平面である。また上コイル及び下コイルの各直径、巻
線数等は互いに同一でも良いし、異なっていてもよい。
図1の符号21は石英るつぼ12の外周面を包囲するヒ
ータである。
DESCRIPTION OF THE PREFERRED EMBODIMENTS Next, embodiments of the present invention will be described with reference to the drawings. As shown in FIG. 1, the method for pulling a silicon single crystal according to the present invention is a method for pulling a silicon single crystal from a silicon melt 11 by rotating a quartz crucible 12 storing a silicon melt 11 at a predetermined rotation speed R 1 . A method of pulling up the ingot 13 from the silicon melt 11 while rotating the ingot 13 at a predetermined rotation speed R 2 and applying a cusp magnetic field 17 to the silicon melt 11 using the upper coil 14 and the lower coil 16. Is. The upper coil 14 and the lower coil 16 have a coil diameter larger than the outer diameter of the quartz crucible 12, and are arranged with the rotation axis of the quartz crucible 12 as the coil center and at a predetermined interval in the vertical direction. Further, currents in opposite directions are applied to the upper coil 14 and the lower coil 16, whereby the upper coil 1
A cusp magnetic field 17 is generated from each coil center of the lower coil 4 and the lower coil 16 and passes through a neutral surface 17a between the upper coil and the lower coil. The quartz crucible 12 is surrounded and supported by the graphite susceptor 18 on the outer peripheral surface and the outer bottom surface. The susceptor 18 is fixed to the upper end of a support shaft 19, and the lower part of the support shaft 19 is connected to a crucible driving means (not shown). The neutral plane 17a is a horizontal plane between the upper coil 14 and the lower coil 16 in which the magnetic field strength in the vertical direction is zero. The diameters of the upper coil and the lower coil, the number of windings, and the like may be the same or different.
Reference numeral 21 in FIG. 1 is a heater that surrounds the outer peripheral surface of the quartz crucible 12.

【0011】本発明の特徴ある構成は、石英るつぼ12
の回転速度をR1、インゴット13の回転速度をR2とす
るとき、シリコン融液11とインゴット13との固液界
面22形状が下側に凸となるように、回転速度R1を|R
1|≧0.3rpmの範囲に規定し、R1=−(0.01〜
100)R2を満たすように、インゴット13の回転速度
2を制御する。ここで回転速度R1又はR2がプラスの
ときは、回転方向が上方から見て反時計回りを示し、回
転速度R1又はR2がマイナスのときは、回転方向が上方
から見て時計回りを示す。また回転速度R1及び回転速
度R2を上記範囲に限定したのは、これらの範囲を外れ
る数値を設定すると、インゴット13下方のシリコン融
液11に発生する対流が下向きになって、固液界面22
が上側に凸となる不具合があるからである。石英るつぼ
12の回転速度R1は|R1|≧0.1rpmが好ましく、
1=−(0.01〜100)R2、好ましくはR1=−
(0.1〜10)R2を満たすように、インゴット13の
回転速度R2を制御することが好ましい。
A feature of the present invention is that the quartz crucible 12
Let R 1 be the rotation speed of the ingot 13 and R 2 be the rotation speed of the ingot 13, let the rotation speed R 1 be | R so that the shape of the solid-liquid interface 22 between the silicon melt 11 and the ingot 13 is convex downward.
1 | ≧ 0.3 rpm, R 1 =-(0.01 ~
100) so as to satisfy R 2, controls the rotation speed R 2 of the ingot 13. Here, when the rotation speed R 1 or R 2 is positive, the rotation direction is counterclockwise when viewed from above, and when the rotation speed R 1 or R 2 is negative, the rotation direction is clockwise when viewed from above. Indicates. Further, the rotation speeds R 1 and R 2 are limited to the above-mentioned ranges. When the numerical values outside these ranges are set, the convection generated in the silicon melt 11 below the ingot 13 becomes downward and the solid-liquid interface 22
This is because there is a problem that is convex to the upper side. The rotation speed R 1 of the quartz crucible 12 is preferably | R 1 | ≧ 0.1 rpm,
R 1 = - (0.01~100) R 2, preferably R 1 = -
It is preferable to control the rotation speed R 2 of the ingot 13 so as to satisfy (0.1 to 10) R 2 .

【0012】具体的には、カスプ磁場17の中立面17
aとシリコン融液11の表面との距離をHとするとき、
−300mm≦H≦300mm、好ましくは−100m
m≦H≦100mmを満たすように、上記中立面17a
をシリコン融液11の表面の上方又は下方に制御する。
ここで距離Hを上記範囲内に限定したのは、距離Hが下
限値未満或いは上限値を越える範囲では、インゴット1
3下方のシリコン融液11に発生する対流が上向きにな
って、固液界面22が上側に凸となる、或いは磁場強度
が弱すぎて固液界面22が下側に凸となるようにシリコ
ン融液11に発生する対流11a及び11bを制御でき
ない等の不具合が発生するからである。
Specifically, the neutral surface 17 of the cusp magnetic field 17
When the distance between a and the surface of the silicon melt 11 is H,
−300 mm ≦ H ≦ 300 mm, preferably −100 m
The neutral surface 17a so as to satisfy m ≦ H ≦ 100 mm
Is controlled above or below the surface of the silicon melt 11.
Here, the distance H is limited to the above range because the ingot 1 is in the range where the distance H is less than the lower limit value or more than the upper limit value.
3 The convection generated in the lower silicon melt 11 is directed upward, and the solid-liquid interface 22 becomes convex upward, or the magnetic field strength is too weak so that the solid-liquid interface 22 becomes convex downward. This is because a problem occurs such that the convection currents 11a and 11b generated in the liquid 11 cannot be controlled.

【0013】また石英るつぼ12の直径が大きくなるに
従ってカスプ磁場17の強度が強くなるように、上コイ
ル14及び下コイル16に流す電流を制御する。このよ
うに上コイル及び下コイルの電流を制御するのは、固液
界面22が下側に凸となるようにシリコン融液11に対
流を発生させるローレンツ力を、石英るつぼ12の直径
が大きくなるに従って大きくする必要があるためであ
る。例えば、直径が200mmのインゴット13を高速
で引上げるために、内径が550〜650mmの石英る
つぼ12を用いた場合には、カスプ磁場17の強度を1
00〜2000ガウスの範囲内の一定値に制御し、直径
が300mmのインゴット13を引上げるために、内径
が650〜800mmの石英るつぼ12を用いた場合に
は、カスプ磁場17の強度を300〜5000ガウスの
範囲内の一定値に制御する。
Further, the currents flowing through the upper coil 14 and the lower coil 16 are controlled so that the strength of the cusp magnetic field 17 becomes stronger as the diameter of the quartz crucible 12 becomes larger. In this way, the currents of the upper coil and the lower coil are controlled by increasing the Lorentz force for generating convection in the silicon melt 11 so that the solid-liquid interface 22 is convex downward, and increasing the diameter of the quartz crucible 12. It is necessary to increase the size according to. For example, when the quartz crucible 12 having an inner diameter of 550 to 650 mm is used to pull up the ingot 13 having a diameter of 200 mm at a high speed, the strength of the cusp magnetic field 17 is set to 1
When the quartz crucible 12 having the inner diameter of 650 to 800 mm is used to pull up the ingot 13 having the diameter of 300 mm, the strength of the cusp magnetic field 17 is controlled to 300 to 300. Control to a constant value within the range of 5000 Gauss.

【0014】また上コイル14と下コイル16に流れる
電流値I1及びI2が異なるときは、I1=−(0.5〜
2.0)I2を満たすように下コイル16に流す電流値I
2を制御する。電流値I1が下限値未満及び上限値を越え
る範囲であると、前述した中立面17aとシリコン融液
11の表面との距離Hが範囲外となり、固液界面形状2
2が下側に凸となるような対流を制御できる磁場分布と
ならない。好ましくはI1=−(0.7〜1.5)I2を満
たすように下コイル16に流す電流値I2を制御する。
When the current values I 1 and I 2 flowing through the upper coil 14 and the lower coil 16 are different, I 1 =-(0.5 to
2.0) Current value I flowing through the lower coil 16 so as to satisfy I 2
Control 2 When the current value I 1 is below the lower limit and above the upper limit, the distance H between the neutral surface 17a and the surface of the silicon melt 11 is out of the range, and the solid-liquid interface shape 2
2 does not have a magnetic field distribution that can control convection so that it is convex downward. Preferably, the current value I 2 flowing through the lower coil 16 is controlled so as to satisfy I 1 = − (0.7 to 1.5) I 2 .

【0015】更に上記制御によりインゴットの引上げ速
度Vは、0.5mm/分≦V≦5.0mm/分の範囲を
満たす速度で引上げることができる。引上げ速度Vは、
例えば引上げるシリコン単結晶インゴットの直径が20
0mmの場合だと、1.0mm/分≦V≦5.0mm/
分、直径が300mmの場合だと、0.5mm/分≦V
≦3.0mm/分がそれぞれ好ましい。
Further, by the above control, the pulling speed V of the ingot can be raised at a speed satisfying the range of 0.5 mm / min.ltoreq.V.ltoreq.5.0 mm / min. The pulling speed V is
For example, the diameter of the pulled silicon single crystal ingot is 20
In case of 0 mm, 1.0 mm / min ≦ V ≦ 5.0 mm /
Min, diameter is 300 mm, 0.5 mm / min ≤ V
≦ 3.0 mm / min is preferable.

【0016】上述のように、石英るつぼ12及びインゴ
ット13の回転速度を上記範囲のいずれかを満たすよう
にそれぞれ制御しながら、インゴットを引上げることに
より、シリコン融液11に所定の対流11a、11bを
発生させ、これらの対流11a、11bによって、図2
(a)に示すように、固液界面22形状は大幅に下側に
凸となる。その結果、図2(b)及び図2(c)に示す
ように、単結晶インゴットの引上げ速度を従来の引上げ
速度に比べて中速や高速の引上げ速度でインゴットを引
上げた場合でも、固液界面形状が大幅に下側に凸となる
ように制御しているため、結晶内部の冷却が十分に行わ
れずに固液界面が上昇しても上側に凸とはならない。ま
た、同様に極端に上側に凸とはならない。従って、結晶
変形を起こすことがなく、成長結晶が割れることなく、
高速引上げによるインゴット製造を可能にすることがで
きる。
As described above, by pulling up the ingot while controlling the rotational speeds of the quartz crucible 12 and the ingot 13 so as to satisfy any of the above ranges, the predetermined convection currents 11a and 11b flow into the silicon melt 11. 2 are generated by these convections 11a and 11b.
As shown in (a), the shape of the solid-liquid interface 22 is largely convex downward. As a result, as shown in FIGS. 2 (b) and 2 (c), even if the pulling speed of the single crystal ingot is raised at a medium or high pulling speed as compared with the conventional pulling speed, solid-liquid Since the interface shape is controlled so as to be largely convex downward, even if the solid-liquid interface rises due to insufficient cooling of the inside of the crystal, it does not become convex upward. Similarly, it is not extremely convex upward. Therefore, crystal deformation does not occur, the grown crystal does not break,
It is possible to enable ingot production by high-speed pulling.

【0017】[0017]

【発明の効果】以上述べたように、本発明によれば、石
英るつぼ12及びインゴット13の回転速度を上記範囲
のいずれかを満たすようにそれぞれ制御しながら、イン
ゴットを引上げることにより、シリコン融液11に所定
の対流を発生させ、これらの対流により固液界面22形
状が大幅に下側に凸となる。その結果、単結晶インゴッ
トの引上げ速度を従来の引上げ速度に比べて高速の0.
5mm/分≦V≦5.0mm/分の範囲での引上げ速度
でインゴットを引上げても、固液界面形状が大幅に下側
に凸となるように制御しているため、引上げにより発生
する強制対流により固液界面が押上げられて大きく固液
界面が上昇しても上側に凸とはならない。従って、結晶
変形を起こすことがなく、高速引上げによるインゴット
製造を可能にすることができる。
As described above, according to the present invention, by pulling the ingot while controlling the rotational speeds of the quartz crucible 12 and the ingot 13 so as to satisfy any of the above ranges, the silicon melting point is increased. Predetermined convection is generated in the liquid 11, and the shape of the solid-liquid interface 22 is largely projected downward due to these convections. As a result, the pulling speed of the single crystal ingot is higher than that of the conventional pulling speed of 0.
Even if the ingot is pulled at a pulling speed in the range of 5 mm / min ≤ V ≤ 5.0 mm / min, the solid-liquid interface shape is controlled so as to be significantly convex downward, so the force generated by pulling The solid-liquid interface is pushed up by convection, and even if the solid-liquid interface rises significantly, it does not project upward. Therefore, it is possible to manufacture an ingot by pulling at high speed without causing crystal deformation.

【図面の簡単な説明】[Brief description of drawings]

【図1】本発明の実施形態のシリコン単結晶のインゴッ
トを引上げている状態を示す断面構成図。
FIG. 1 is a sectional configuration view showing a state where a silicon single crystal ingot according to an embodiment of the present invention is pulled up.

【図2】(a) 図1の低速の引上げ速度で引上げていると
きの固液界面形状を示す断面構成図。 (b) 図1の中速の引上げ速度で引上げているときの固液
界面形状を示す断面構成図。 (c) 図1の高速の引上げ速度で引上げているときの固液
界面形状を示す断面構成図。
FIG. 2 (a) is a cross-sectional configuration diagram showing a solid-liquid interface shape when pulling at a low pulling speed in FIG. (b) FIG. 1 is a cross-sectional configuration diagram showing a solid-liquid interface shape when pulling at a medium pulling speed. (c) FIG. 1 is a cross-sectional configuration diagram showing a solid-liquid interface shape when pulling at a high pulling speed in FIG. 1.

【図3】従来の磁場を印加せずにシリコン単結晶のイン
ゴットを引上げている状態を示す断面構成図。
FIG. 3 is a cross-sectional configuration diagram showing a state in which a silicon single crystal ingot is pulled up without applying a conventional magnetic field.

【図4】(a) 図3の低速の引上げ速度で引上げていると
きの固液界面形状を示す断面構成図。 (b) 図3の中速の引上げ速度で引上げているときの固液
界面形状を示す断面構成図。 (c) 図3の高速の引上げ速度で引上げているときの固液
界面形状を示す断面構成図。
4 (a) is a cross-sectional configuration diagram showing a solid-liquid interface shape when pulling at a low pulling speed in FIG. (b) FIG. 3 is a cross-sectional configuration diagram showing a solid-liquid interface shape when pulling at a medium pulling speed. (c) A cross-sectional configuration diagram showing the solid-liquid interface shape when pulling at a high pulling speed in FIG. 3.

【符号の説明】[Explanation of symbols]

11 シリコン融液 12 石英るつぼ 13 シリコン単結晶のインゴット 14 上コイル 16 下コイル 17 カスプ磁場 17a カスプ磁場の中立面 22 固液界面 11 Silicon melt 12 Quartz crucible 13 Silicon single crystal ingot 14 Upper coil 16 Lower coil 17 Cusp magnetic field 17a Neutral plane of cusp magnetic field 22 Solid-liquid interface

───────────────────────────────────────────────────── フロントページの続き (72)発明者 原田 和浩 東京都千代田区大手町1丁目5番1号 三 菱マテリアルシリコン株式会社内 (72)発明者 降屋 久 東京都千代田区大手町1丁目5番1号 三 菱マテリアルシリコン株式会社内 (72)発明者 樋口 朗 東京都千代田区大手町1丁目5番1号 三 菱マテリアルシリコン株式会社内 Fターム(参考) 4G077 AA02 BA04 CF10 EH08 EJ02 HA12 PG01 PG03    ─────────────────────────────────────────────────── ─── Continued front page    (72) Inventor Kazuhiro Harada             3-5-1 Otemachi, Chiyoda-ku, Tokyo             Ryo Material Silicon Co., Ltd. (72) Inventor Hisashi Furuya             3-5-1 Otemachi, Chiyoda-ku, Tokyo             Ryo Material Silicon Co., Ltd. (72) Inventor Akira Higuchi             3-5-1 Otemachi, Chiyoda-ku, Tokyo             Ryo Material Silicon Co., Ltd. F-term (reference) 4G077 AA02 BA04 CF10 EH08 EJ02                       HA12 PG01 PG03

Claims (5)

【特許請求の範囲】[Claims] 【請求項1】 シリコン融液(11)を貯留する石英るつぼ
(12)を所定の回転速度で回転させ、前記シリコン融液(1
1)から引上げられるシリコン単結晶のインゴット(13)を
所定の回転速度で回転させ、前記石英るつぼ(12)の外径
よりそれぞれ大きなコイル直径を有する上コイル(14)及
び下コイル(16)を前記石英るつぼ(12)の回転軸をそれぞ
れコイル中心としかつ鉛直方向に所定の間隔をあけて配
設し、前記上コイル(14)及び下コイル(16)に互いに逆向
きの電流を流すことにより前記上コイル及び下コイルの
各コイル中心から前記上コイル及び下コイル間の中立面
(17a)を通るカスプ磁場(17)を発生させながら前記イン
ゴット(13)を引上げるシリコン単結晶の引上げ方法にお
いて、 前記石英るつぼ(12)の回転速度をR1、前記インゴット
(13)の回転速度をR2とするとき、 前記シリコン融液(11)と前記インゴット(13)との固液界
面(22)形状が下側に凸となるように、前記回転速度R1
を|R1|≧0.3rpmの範囲に規定し、R1=−(0.
01〜100)R2を満たすように、前記インゴット(13)
の回転速度を制御することを特徴とするシリコン単結晶
の引上げ方法。但し、|R1|はR1の絶対値を示す。
1. A quartz crucible for storing a silicon melt (11).
(12) is rotated at a predetermined rotation speed, the silicon melt (1
A silicon single crystal ingot (13) pulled up from 1) is rotated at a predetermined rotation speed to form an upper coil (14) and a lower coil (16) each having a coil diameter larger than the outer diameter of the quartz crucible (12). By arranging the quartz crucible (12) with the rotation axis of each as the center of the coil and at predetermined intervals in the vertical direction, by applying currents in opposite directions to the upper coil (14) and the lower coil (16). A neutral plane between the upper coil and the lower coil from the center of each coil of the upper coil and the lower coil
In the method of pulling a silicon single crystal that pulls up the ingot (13) while generating a cusp magnetic field (17) passing through (17a), the rotational speed of the quartz crucible (12) is R 1 , and the ingot is
When the rotation speed of (13) is R 2 , the rotation speed R 1 is set so that the shape of the solid-liquid interface (22) between the silicon melt (11) and the ingot (13) is convex downward.
Is defined as a range of | R 1 | ≧ 0.3 rpm, and R 1 = − (0.
01 to 100) R 2 to satisfy the above ingot (13)
A method for pulling a silicon single crystal, which comprises controlling the rotation speed of a silicon single crystal. However, | R 1 | indicates the absolute value of R 1 .
【請求項2】 カスプ磁場(17)の中立面(17a)とシリコ
ン融液(11)の表面との距離をHとするとき、−300m
m≦H≦300mmを満たすように、前記中立面(17a)
を前記シリコン融液(11)の表面の上方又は下方に制御す
る請求項1記載のシリコン単結晶の引上げ方法。
2. When the distance between the neutral surface (17a) of the cusp magnetic field (17) and the surface of the silicon melt (11) is H, it is -300 m.
The neutral surface (17a) so as to satisfy m ≦ H ≦ 300 mm
The method for pulling a silicon single crystal according to claim 1, wherein the temperature is controlled above or below the surface of the silicon melt (11).
【請求項3】 石英るつぼ(12)の直径が大きくなるに従
ってカスプ磁場(17)の強度が強くなるように、上コイル
(14)及び下コイル(16)に流す電流を制御する請求項1又
は2記載のシリコン単結晶の引上げ方法。
3. The upper coil for increasing the strength of the cusp magnetic field (17) as the diameter of the quartz crucible (12) increases.
The method for pulling a silicon single crystal according to claim 1 or 2, wherein the current flowing through (14) and the lower coil (16) is controlled.
【請求項4】 上コイル(14)及び下コイル(16)に流す電
流値がI1及びI2であって、 前記電流値I1及びI2の大きさがそれぞれ異なるとき、
1=−(0.5〜2.0)I2を満たすように下コイル(1
6)に流す電流値I2を制御する請求項1ないし3いずれ
か記載のシリコン単結晶の引上げ方法。
4. The current values to be passed through the upper coil (14) and the lower coil (16) are I 1 and I 2 , and when the current values I 1 and I 2 have different magnitudes,
I 1 = - (0.5~2.0) lower coil so as to satisfy I 2 (1
The method for pulling a silicon single crystal according to any one of claims 1 to 3, wherein the current value I 2 flowing in 6) is controlled.
【請求項5】 インゴットの引上げ速度をVとすると
き、0.5mm/分≦V≦5.0mm/分を満たす速度
で引上げる請求項1ないし4いずれか記載のシリコン単
結晶の引上げ方法。
5. The method for pulling a silicon single crystal according to claim 1, wherein when the pulling speed of the ingot is V, the pulling speed is such that 0.5 mm / min ≦ V ≦ 5.0 mm / min.
JP2001282592A 2001-09-18 2001-09-18 Silicon single crystal pulling method Pending JP2003095788A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2001282592A JP2003095788A (en) 2001-09-18 2001-09-18 Silicon single crystal pulling method

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2001282592A JP2003095788A (en) 2001-09-18 2001-09-18 Silicon single crystal pulling method

Publications (1)

Publication Number Publication Date
JP2003095788A true JP2003095788A (en) 2003-04-03

Family

ID=19106225

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2001282592A Pending JP2003095788A (en) 2001-09-18 2001-09-18 Silicon single crystal pulling method

Country Status (1)

Country Link
JP (1) JP2003095788A (en)

Cited By (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR100680242B1 (en) 2004-12-29 2007-02-07 주식회사 실트론 Growing method of silicon single crystal
KR100793950B1 (en) 2005-07-27 2008-01-16 주식회사 실트론 Silicon single crystal ingot and manufacturing method thereof
JP2010285342A (en) * 2009-06-10 2010-12-24 Siltronic Ag Method for pulling silicon single crystal
JP2017043515A (en) * 2015-08-26 2017-03-02 株式会社Sumco N-type silicon single crystal ingot manufacturing method, n-type silicon wafer manufacturing method, and n-type silicon wafer
JP2018503591A (en) * 2015-04-06 2018-02-08 エスケー シルトロン カンパニー リミテッド Silicon single crystal ingot growth equipment
JP2019178066A (en) * 2019-06-26 2019-10-17 株式会社Sumco METHOD OF MANUFACTURING n-TYPE SILICON SINGLE CRYSTAL INGOT, METHOD OF MANUFACTURING n-TYPE SILICON WAFER, AND n-TYPE SILICON WAFER

Cited By (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR100680242B1 (en) 2004-12-29 2007-02-07 주식회사 실트론 Growing method of silicon single crystal
KR100793950B1 (en) 2005-07-27 2008-01-16 주식회사 실트론 Silicon single crystal ingot and manufacturing method thereof
JP2010285342A (en) * 2009-06-10 2010-12-24 Siltronic Ag Method for pulling silicon single crystal
JP2018503591A (en) * 2015-04-06 2018-02-08 エスケー シルトロン カンパニー リミテッド Silicon single crystal ingot growth equipment
JP2017043515A (en) * 2015-08-26 2017-03-02 株式会社Sumco N-type silicon single crystal ingot manufacturing method, n-type silicon wafer manufacturing method, and n-type silicon wafer
JP2019178066A (en) * 2019-06-26 2019-10-17 株式会社Sumco METHOD OF MANUFACTURING n-TYPE SILICON SINGLE CRYSTAL INGOT, METHOD OF MANUFACTURING n-TYPE SILICON WAFER, AND n-TYPE SILICON WAFER

Similar Documents

Publication Publication Date Title
JP5344822B2 (en) Control of melt-solid interface shape of growing silicon crystal using variable magnetic field
JP5269384B2 (en) Semiconductor single crystal manufacturing method using Czochralski method
JP2010100474A (en) Method for optimizing horizontal magnetic field in pulling-up silicon single crystal, and method for manufacturing silicon single crystal
US8597756B2 (en) Resistance heated sapphire single crystal ingot grower, method of manufacturing resistance heated sapphire single crystal ingot, sapphire single crystal ingot, and sapphire wafer
JPH076972A (en) Growth method and device of silicon single crystal
KR19990078057A (en) Silicon single crystal and method for producing the same
JP2003095788A (en) Silicon single crystal pulling method
JPS61222984A (en) Unit for single crystal production
JP2001039792A (en) Polyfunctional heater for growing single crystal and device for pulling up the single crystal
JP4883020B2 (en) Single crystal manufacturing apparatus and manufacturing method
JPH0212920B2 (en)
JP2004315289A (en) Method for manufacturing single crystal
JP5034247B2 (en) Method for producing silicon single crystal
JP2567539B2 (en) FZ method silicon single crystal ingot growth method and apparatus
JP2000086392A (en) Production of silicon single crystal
JP2000247787A (en) Method and apparatus for producing single crystal
JP2002104896A (en) Method of growing single crystal and growing device
US5873938A (en) Single crystal pulling apparatus
KR100788018B1 (en) Silicon single crystal ingot and silicon wafer manufactured therefrom
JP2007145666A (en) Method for manufacturing silicon single crystal
JP2000239096A (en) Production of silicon single crystal
JPH04305091A (en) Method and device for pulling up single crystal
TWI822373B (en) Magnet for single crystal manufacturing apparatus, single crystal manufacturing apparatus and single crystal manufacturing method
TWI701363B (en) Method of growing silicon single crystal
JP2005306669A (en) Apparatus for pulling up silicon single cryststal and method therefor

Legal Events

Date Code Title Description
A625 Written request for application examination (by other person)

Effective date: 20050408

Free format text: JAPANESE INTERMEDIATE CODE: A625

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20071217

A131 Notification of reasons for refusal

Effective date: 20071225

Free format text: JAPANESE INTERMEDIATE CODE: A131

A02 Decision of refusal

Free format text: JAPANESE INTERMEDIATE CODE: A02

Effective date: 20080430