JP2021046342A - Apparatus and method for pulling single crystal - Google Patents

Apparatus and method for pulling single crystal Download PDF

Info

Publication number
JP2021046342A
JP2021046342A JP2019170878A JP2019170878A JP2021046342A JP 2021046342 A JP2021046342 A JP 2021046342A JP 2019170878 A JP2019170878 A JP 2019170878A JP 2019170878 A JP2019170878 A JP 2019170878A JP 2021046342 A JP2021046342 A JP 2021046342A
Authority
JP
Japan
Prior art keywords
magnetic field
single crystal
magnetic
pulling
axis
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2019170878A
Other languages
Japanese (ja)
Other versions
JP7160006B2 (en
Inventor
清隆 高野
Kiyotaka Takano
清隆 高野
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Shin Etsu Handotai Co Ltd
Original Assignee
Shin Etsu Handotai Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Shin Etsu Handotai Co Ltd filed Critical Shin Etsu Handotai Co Ltd
Priority to JP2019170878A priority Critical patent/JP7160006B2/en
Publication of JP2021046342A publication Critical patent/JP2021046342A/en
Application granted granted Critical
Publication of JP7160006B2 publication Critical patent/JP7160006B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Landscapes

  • Crystals, And After-Treatments Of Crystals (AREA)

Abstract

To provide an apparatus and method for pulling a single crystal, capable of suppressing a growth stripe in a single crystal to be grown to reduce oxygen concentration and obtaining even a single crystal having a high oxygen concentration.SOLUTION: The apparatus for pulling a single crystal comprising a pulling furnace including a crucible storing a semiconductor raw material and heating means for heating and melting the semiconductor raw material and a magnetic field generator including a superconducting coil arranged around the pulling furnace can apply a magnetic field so as to penetrate magnetic field lines into the molten semiconductor raw material in the crucible by energization to the superconducting coil to suppress the convection of the molten semiconductor raw material in the crucible. A magnetic shield can be selectively installed between the pulling furnace and the magnetic field generator, and the magnetic field generator can change a magnetic field line direction and a magnetic field distribution in a horizontal plane including the coil axis of the superconducting coil at the central axis of the pulling furnace by the magnetic shield.SELECTED DRAWING: Figure 1

Description

本発明は、単結晶引上げ装置および単結晶引上げ方法に関する。 The present invention relates to a single crystal pulling device and a single crystal pulling method.

シリコンやガリウム砒素などの半導体は、高純度に生成された単結晶のインゴッドをウェーハ状にスライスし、このウェーハ上に高度に集積された回路が形成されたものを、小型から大型までのコンピュータのメモリ等に用いられている。かかるメモリは、その集積度を高めることでメモリの、大容量化、低コスト化、高性能化が図られている。 For semiconductors such as silicon and gallium arsenide, a single crystal ingod produced with high purity is sliced into a wafer shape, and a highly integrated circuit is formed on this wafer, which is used for computers from small to large size. It is used for memory and the like. By increasing the degree of integration of such a memory, the capacity of the memory is increased, the cost is reduced, and the performance is improved.

従来、これら半導体の要求を満たす単結晶を製造するための単結晶引上げ方法の1つとして知られている、チョクラルスキー(CZ)法について、図3を用いて説明する。
図3の単結晶引上げ装置100は、上面が開閉可能な引上げ炉101を備え、この引上げ炉101内に坩堝102を内蔵した構成となっている。そして、引上げ炉101の内側には坩堝102内の半導体原料を加熱溶融するためのヒータ103が坩堝102の周囲に設けられ、引上げ炉101の外側には、図4に示すように1対の超電導コイル104(104a,104b)を円筒型容器としての冷媒容器(以下、円筒型冷媒容器)105に内蔵した超電導磁石130が配置されている 。
かかる超電導磁石130により、引上げ炉101及び真空容器119の中心線110に対して軸対称の磁力線107を発生している(この中心線110の位置を磁場中心と称している)。
The Czochralski (CZ) method, which is conventionally known as one of the single crystal pulling methods for producing a single crystal satisfying the requirements of these semiconductors, will be described with reference to FIG.
The single crystal pulling device 100 of FIG. 3 is provided with a pulling furnace 101 whose upper surface can be opened and closed, and has a configuration in which a crucible 102 is built in the pulling furnace 101. A heater 103 for heating and melting the semiconductor raw material in the pit 102 is provided around the pit 102 inside the pulling furnace 101, and a pair of superconducting magnets is provided outside the pulling furnace 101 as shown in FIG. A superconducting magnet 130 having a coil 104 (104a, 104b) built in a refrigerant container (hereinafter, cylindrical refrigerant container) 105 as a cylindrical container is arranged.
The superconducting magnet 130 generates a magnetic field line 107 that is axisymmetric with respect to the center line 110 of the pulling furnace 101 and the vacuum vessel 119 (the position of the center line 110 is referred to as the magnetic field center).

単結晶の製造に際しては、坩堝102内に半導体原料106を入れてヒータ103により加熱し、半導体原料106を溶融させる。この溶融液中に図示しない種結晶を例えば坩堝102の中央部上方から下降して着液させ、図示しない引上げ機構により種結晶を所定の速度で引き上げ方向108の方向に引上げていく。これにより、固体・液体境界層に結晶が成長し、単結晶が生成される。
この際、ヒータ103の加熱によって誘起される溶融液の流体運動、即ち熱対流が生じると、引上げられる溶融液が乱され、単結晶生成の歩留りが低下する。
In the production of a single crystal, the semiconductor raw material 106 is placed in the crucible 102 and heated by the heater 103 to melt the semiconductor raw material 106. A seed crystal (not shown) is lowered into the melt from above the central portion of the crucible 102 to land the liquid, and the seed crystal is pulled up in the pulling direction 108 at a predetermined speed by a pulling mechanism (not shown). As a result, crystals grow in the solid-liquid boundary layer, and single crystals are produced.
At this time, when the fluid motion of the molten liquid induced by the heating of the heater 103, that is, thermal convection occurs, the pulled-up molten liquid is disturbed and the yield of single crystal formation decreases.

そこで、この対策として、超電導磁石130の超電導コイル104を使用する。すなわち、溶融液の半導体原料106は、超電導コイル104への通電によって発生する磁力線107により動作抑止力を受け、坩堝102内で対流することなく、種結晶の引上げに伴って成長単結晶がゆっくりと上方に向って引上げられ、固体の単結晶109として製造されるようになる。なお、引上げ炉101の上方には 、図示しないが、単結晶109を坩堝中心線110に沿って引上げるための引上げ機構が設けられている。 Therefore, as a countermeasure, the superconducting coil 104 of the superconducting magnet 130 is used. That is, the semiconductor raw material 106 of the molten liquid receives an operation suppressing force by the magnetic field lines 107 generated by energizing the superconducting coil 104, and the growing single crystal slowly grows as the seed crystal is pulled up without convection in the crucible 102. It is pulled upward and is manufactured as a solid single crystal 109. Although not shown, a pulling mechanism for pulling the single crystal 109 along the crucible center line 110 is provided above the pulling furnace 101.

次に、図4により、図3に示した単結晶引上げ装置100に用いられる超電導磁石130の一例について説明する。この超電導磁石130は、円筒型真空容器119に超電導コイル104(104a、104b)を円筒型冷媒容器を介して収納した構成とされている。この超電導磁石130においては、真空容器119内の中心部を介して互いに向き合う1対の超電導コイル104a、104bが収納されている。これら1対の超電導コイル104a、104bは横向きの同一方向に沿う磁場を発生しているヘルムホルツ型磁場コイルであり、図3に示すように、引上げ炉101及び真空容器119の中心線110に対して軸対称の磁力線107を発生している(この中心線110の位置を磁場中心と称している)。 Next, an example of the superconducting magnet 130 used in the single crystal pulling device 100 shown in FIG. 3 will be described with reference to FIG. The superconducting magnet 130 has a configuration in which superconducting coils 104 (104a, 104b) are housed in a cylindrical vacuum container 119 via a cylindrical refrigerant container. In the superconducting magnet 130, a pair of superconducting coils 104a and 104b facing each other via a central portion in the vacuum vessel 119 are housed. These pairs of superconducting coils 104a and 104b are Helmholtz-type magnetic field coils that generate magnetic fields along the same lateral direction, and as shown in FIG. 3, with respect to the center line 110 of the pulling furnace 101 and the vacuum vessel 119. The axially symmetric magnetic field lines 107 are generated (the position of the center line 110 is referred to as the magnetic field center).

なお、この超電導磁石130は、図3、4に示すように2つの超電導コイル104a、104bに電流を導入する電流リード111 、円筒型冷媒容器105の内部に納められた第1の輻射シールド117および第2の輻射シールド118を冷却するための小型ヘリウム冷凍機112、円筒型冷媒容器105内のヘリウムガスを放出するガス放出管113及び液体ヘリウムを補給する補給口を有するサービスポート114等を備えている。このような超電導磁石130のボア115内に、図3に示した引上げ炉101が配設される。 As shown in FIGS. 3 and 4, the superconducting magnet 130 includes a current lead 111 that introduces a current into the two superconducting coils 104a and 104b, a first radiation shield 117 housed inside the cylindrical refrigerant container 105, and the like. A small helium refrigerator 112 for cooling the second radiation shield 118, a gas discharge pipe 113 for discharging helium gas in the cylindrical refrigerant container 105, a service port 114 having a supply port for replenishing liquid helium, and the like are provided. There is. The pulling furnace 101 shown in FIG. 3 is arranged in the bore 115 of such a superconducting magnet 130.

図5は、上述した従来の超電導磁石130の磁場分布を示している。図4に示すように、従来の超電導磁石130においては、互いに向き合った1対の超電導コイル104a、104bが配置されていることから、各コイル配置方向(図5のX方向)では両側に向って磁場が次第に大きくなり、これと直交する方向(図5のY方向)では上下方向に向って次第に磁場が小さくなる。このような従来の構成では図4に示すようにボア115内の範囲の磁場勾配が大きすぎるため、溶融した半導体原料に発生する熱対流抑制が不均衡になっており、かつ磁場効率が悪い。即ち、図5に同じ磁束密度の領域を斜線で示したように、中心磁場近傍の領域では、磁場均一性がよくない(すなわち、図5において、上下、左右に細長いクロス状になっている)ため、熱対流の抑制効果が低く、高品質の単結晶を引上げることができないという問題点があった。 FIG. 5 shows the magnetic field distribution of the conventional superconducting magnet 130 described above. As shown in FIG. 4, in the conventional superconducting magnet 130, since a pair of superconducting coils 104a and 104b facing each other are arranged, they are directed to both sides in each coil arrangement direction (X direction in FIG. 5). The magnetic field gradually increases, and in the direction orthogonal to this (Y direction in FIG. 5), the magnetic field gradually decreases in the vertical direction. In such a conventional configuration, as shown in FIG. 4, the magnetic field gradient in the range within the bore 115 is too large, so that the thermal convection inhibition generated in the molten semiconductor raw material is imbalanced and the magnetic field efficiency is poor. That is, as shown by diagonal lines in the region of the same magnetic flux density in FIG. 5, the magnetic field uniformity is not good in the region near the central magnetic field (that is, in FIG. 5, it has an elongated cross shape in the vertical and horizontal directions). Therefore, there is a problem that the effect of suppressing heat convection is low and a high-quality single crystal cannot be pulled up.

そこで、上記の問題点を解決するため、図6(a)、図6(b)に示すように、超電導コイル104の数を4以上(例えば、104a、104b、104c、104dの4つ)とし、各超電導コイル中心を引上げ炉の周囲に同軸的に設けた筒形容器内の平面上に配置するとともに、その配置された各超電導コイルを前記筒形容器の軸心を介して対向する向きに設定し、かつ前記超電導コイルの相互に隣接する1対ずつのもの同士が前記筒形容器の内側に向く配設角度θ(図6(b)参照)を100度〜130度の範囲(すなわち、X軸を挟んで隣接するコイル軸間の中心角度α(図6(b)参照)は50度〜80度)に設定することが開示されている(特許文献1)。
これによって、ボア115内部に磁場勾配の少ない均一性のよい横磁場を発生することができ、また、平面上に同心円状もしくは正方形状の磁場分布を発生することができ、不均衡電磁力を大幅に抑制することができるとされる。また、その結果、引上げ方向の均一磁場領域が向上するとともに、横磁場方向の磁場がほぼ水平になり、不均衡電磁力の抑制により、高品質の単結晶の製造が実現できる。
さらに、この単結晶引上げ方法によれば、高品質の単結晶を歩留りよく引上げることも開示されている。
Therefore, in order to solve the above problems, as shown in FIGS. 6A and 6B, the number of superconducting coils 104 is set to 4 or more (for example, 4 of 104a, 104b, 104c, 104d). , The center of each superconducting coil is arranged on a flat surface in a tubular container coaxially provided around the pulling furnace, and the arranged superconducting coils are oriented so as to face each other via the axis of the tubular container. The arrangement angle θ (see FIG. 6B) in which a pair of superconducting coils adjacent to each other is set and faces the inside of the tubular container is in the range of 100 degrees to 130 degrees (that is, that is). It is disclosed that the center angle α (see FIG. 6B) between the coil axes adjacent to each other across the X axis is set to 50 to 80 degrees (Patent Document 1).
As a result, a lateral magnetic field with a small magnetic field gradient and good uniformity can be generated inside the bore 115, and a concentric or square magnetic field distribution can be generated on a plane, resulting in a large unbalanced electromagnetic force. It is said that it can be suppressed. Further, as a result, the uniform magnetic field region in the pulling direction is improved, the magnetic field in the transverse magnetic field direction becomes substantially horizontal, and the imbalanced electromagnetic force is suppressed, so that a high-quality single crystal can be produced.
Further, it is also disclosed that according to this single crystal pulling method, a high quality single crystal is pulled up with a high yield.

すなわち、図6の超電導コイル104a、104b、104c、104dの配設角度θを、それぞれ、100度、110度、115度、120度、130度(すなわち、コイル軸間の中心角度αはそれぞれ80度、70度、65度、60度、50度)とした場合の磁場分布を示した図7〜図11において、中心磁場が十分に広い領域に亘って均一に配置される。その一方で、図12に示すように、配設角度θが90度(コイル軸間の中心角度αは90度)と小さい場合には、中心磁場のY方向の幅が極端に狭くなり、図13に示すように、配設角度θが140度(コイル軸間の中心角度αは40度)と大きい場合には、中心磁場のX方向の幅が極端に狭くなっている。
したがって、図6の超電導磁石130において、配設角度θを100度〜130度の範囲に設定することで、ボア115内部に同心円状もしくは正方形状の等分布磁場を得ることができるとされている。
That is, the arrangement angles θ of the superconducting coils 104a, 104b, 104c, and 104d in FIG. 6 are 100 degrees, 110 degrees, 115 degrees, 120 degrees, and 130 degrees, respectively (that is, the center angles α between the coil axes are 80, respectively. In FIGS. 7 to 11 showing the magnetic field distribution in the case of degrees, 70 degrees, 65 degrees, 60 degrees, and 50 degrees), the central magnetic field is uniformly arranged over a sufficiently wide region. On the other hand, as shown in FIG. 12, when the arrangement angle θ is as small as 90 degrees (the center angle α between the coil axes is 90 degrees), the width of the central magnetic field in the Y direction becomes extremely narrow, and FIG. As shown in 13, when the arrangement angle θ is as large as 140 degrees (the center angle α between the coil axes is 40 degrees), the width of the central magnetic field in the X direction is extremely narrow.
Therefore, in the superconducting magnet 130 of FIG. 6, it is said that a concentric or square evenly distributed magnetic field can be obtained inside the bore 115 by setting the arrangement angle θ in the range of 100 degrees to 130 degrees. ..

しかしながら、図7〜図11に示すように均一な磁場分布であっても、中心軸110における磁力線がX軸方向に向かう横磁場においては、X軸と平行な断面内とX軸に垂直な断面内とでは熱対流に違いがあることを開示している(特許文献2)。
この傾向は4コイルにより均一な磁場分布を形成した特許文献1で開示されている技術(ただし、コイル軸間の中心角度αは60度)でも同様であったが、超電導コイルのコイル軸を含む水平面内の前記中心軸における磁力線方向をX軸としたときに、前記X軸上の磁束密度分布が上に凸の分布である。
However, even if the magnetic field distribution is uniform as shown in FIGS. 7 to 11, in a transverse magnetic field in which the magnetic field lines on the central axis 110 are directed in the X-axis direction, the cross section is parallel to the X-axis and the cross-section is perpendicular to the X-axis. It discloses that there is a difference in heat convection between the inside and the inside (Patent Document 2).
This tendency was the same in the technique disclosed in Patent Document 1 in which a uniform magnetic field distribution was formed by four coils (however, the center angle α between the coil shafts was 60 degrees), but included the coil shafts of the superconducting coils. When the direction of the magnetic field lines on the central axis in the horizontal plane is the X-axis, the magnetic flux density distribution on the X-axis is an upwardly convex distribution.

また、前記水平面内の前記中心軸における磁束密度を磁束密度設定値とした場合、前記X軸上の磁束密度は坩堝壁では前記磁束密度設定値の80%以下となると同時に、前記水平面内において前記X軸と直交し前記中心軸を通るY軸上の磁束密度分布が下に凸の分布であり、前記Y軸上の磁束密度は坩堝壁では前記磁束密度設定値の140%以上となるように磁場分布を発生させるようにしている。 Further, when the magnetic flux density in the central axis in the horizontal plane is set as the magnetic flux density set value, the magnetic flux density on the X-axis is 80% or less of the magnetic flux density set value in the wall, and at the same time, the magnetic flux density in the horizontal plane is described. The magnetic flux density distribution on the Y-axis that is orthogonal to the X-axis and passes through the central axis is a downwardly convex distribution, and the magnetic flux density on the Y-axis is 140% or more of the magnetic flux density set value on the wall. I am trying to generate a magnetic field distribution.

このような構成によれば、電磁力による対流抑制力が不十分だったX軸と垂直な断面内においても、溶融した半導体原料の流速を低減できるとともに、溶融した半導体原料のX軸に平行な断面における流速と、溶融した半導体原料のX軸に垂直な断面における流速とをバランスさせることができる。X軸と垂直な断面内においても、溶融した半導体原料の流速を低減することによって、石英坩堝壁から溶出した酸素が単結晶に到達するまでの時間が長くなり、溶融した半導体原料の自由表面からの酸素蒸発量が増加することで、単結晶に取り込まれる酸素濃度を大幅に低減させることができるようになっている。 According to such a configuration, the flow velocity of the molten semiconductor raw material can be reduced and parallel to the X axis of the molten semiconductor raw material even in a cross section perpendicular to the X axis in which the convection suppression force due to the electromagnetic force is insufficient. The flow velocity in the cross section and the flow velocity in the cross section perpendicular to the X axis of the molten semiconductor raw material can be balanced. Even within the cross section perpendicular to the X-axis, by reducing the flow velocity of the molten semiconductor raw material, it takes longer for oxygen eluted from the quartz wall to reach the single crystal, and from the free surface of the molten semiconductor raw material. By increasing the amount of oxygen evaporated from the single crystal, the oxygen concentration taken into the single crystal can be significantly reduced.

しかしながら、このような極低酸素結晶はパワーデバイスやイメージセンサー用途に限られており、その他のメモリやCPUなどのロジック用途には少なくとも10ppma−JEIDA以上の酸素濃度を有する結晶が要求されていることから、同じ引上げ装置で極低酸素結晶と高酸素結晶の両方を製造できることが望ましい。 However, such ultra-low oxygen crystals are limited to power device and image sensor applications, and crystals having an oxygen concentration of at least 10 ppma-JEIDA are required for other logic applications such as memory and CPU. Therefore, it is desirable that both ultra-low oxygen crystals and high oxygen crystals can be produced by the same pulling device.

例えば、特許文献3では、特許文献2で示された磁場発生装置において、2対あるコイルのうち、1対のコイルに流れる電流の向きを変えられるようにすることで、極低酸素結晶が得られる磁場分布と高酸素結晶となる磁場分布を切り替えて発生させることができる単結晶引上げ装置が開示されている。 For example, in Patent Document 3, in the magnetic field generator shown in Patent Document 2, an extremely low oxygen crystal can be obtained by making it possible to change the direction of the current flowing through one pair of coils among two pairs of coils. A single crystal pulling device capable of switching between a magnetic field distribution to be generated and a magnetic field distribution to be a high oxygen crystal is disclosed.

しかしながら、コイルに流れる電流の向きを変更すると、コイルが受ける力の向きも変わることになることから、コイルを拘束する構造体も2種類の力の向きに対応させておく必要がある。さらに、超電導磁石の場合、超電導線がほんのわずかでも動いてしまうと、摩擦によるジュール熱が発生することでクエンチが発生することが知られているが、この方法のようにコイルに流す電流の向きを切り替えてしまうと、超電導線が受ける力の向きが反転し、位置がずれ易くなるために、クエンチを起こし易くなるという弊害がある。 However, if the direction of the current flowing through the coil is changed, the direction of the force received by the coil also changes. Therefore, it is necessary to make the structure that restrains the coil correspond to the two types of force directions. Furthermore, in the case of superconducting magnets, it is known that if the superconducting wire moves even slightly, Joule heat is generated due to friction, causing quenching. If the above is switched, the direction of the force received by the superconducting wire is reversed, and the position is likely to shift, which has an adverse effect of easily causing quenching.

特開2004−051475号公報Japanese Unexamined Patent Publication No. 2004-051475 特許第6436031号Patent No. 6436031 特開2017−206396号公報JP-A-2017-206396

本発明は前述のような問題に鑑みてなされたもので、育成する単結晶中の酸素濃度を低減できるとともに、育成する単結晶中の成長縞を抑制することができる単結晶引上げ装置、および単結晶引上げ方法を提供するとともに、同じ引上げ装置において、簡便な方法で酸素濃度の高い単結晶も得ることができる単結晶引上げ装置、及び単結晶引上げ方法を提供することを目的とする。 The present invention has been made in view of the above-mentioned problems, and is a single crystal pulling device capable of reducing the oxygen concentration in the growing single crystal and suppressing growth fringes in the growing single crystal, and a single crystal pulling device. It is an object of the present invention to provide a crystal pulling method, a single crystal pulling device capable of obtaining a single crystal having a high oxygen concentration by a simple method in the same pulling device, and a single crystal pulling method.

上記目的を達成するために、本発明は、半導体原料が収容される坩堝と、前記単結晶原料を加熱して溶融する加熱手段とを備えた引上げ炉と、該引上げ炉の周囲に超電導コイルが配設された磁場発生装置とを備え、前記超電導コイルへの通電により、前記坩堝内の溶融した半導体原料を磁力線が貫くように磁場を与えて、前記溶融した半導体原料の前記坩堝内での対流を抑制する単結晶引上げ装置であって、
前記引上げ炉と前記磁場発生装置間には、選択的に設置可能な磁気シールドを具備し、前記磁場発生装置は、前記磁気シールドにより、前記超電導コイルのコイル軸を含む水平面内の前記引上げ炉の中心軸における磁力線方向と磁場分布を変更できるものであることを特徴とする単結晶引上げ装置を提供する。
In order to achieve the above object, the present invention comprises a crucible containing a semiconductor raw material, a pulling furnace provided with a heating means for heating and melting the single crystal raw material, and a superconducting coil around the pulling furnace. A magnetic field generator is provided, and by energizing the superconducting coil, a magnetic field is applied so that the magnetic field lines penetrate the molten semiconductor raw material in the crucible, and convection of the molten semiconductor raw material in the crucible. It is a single crystal pulling device that suppresses
A magnetic shield that can be selectively installed is provided between the pulling furnace and the magnetic field generator, and the magnetic field generating device of the pulling furnace in a horizontal plane including the coil shaft of the superconducting coil by the magnetic shield. Provided is a single crystal pulling device characterized in that the direction of magnetic field lines and the magnetic field distribution on the central axis can be changed.

このように引上げ炉と前記磁場発生装置との間に、磁気シールドを選択的に設置することで、前記超電導コイルのコイル軸を含む水平面内の前記引上げ炉の中心軸における磁力線方向と磁場分布を簡単に変更することができる。 By selectively installing a magnetic shield between the pulling furnace and the magnetic field generator in this way, the magnetic field line direction and the magnetic field distribution in the central axis of the pulling furnace in the horizontal plane including the coil shaft of the superconducting coil can be obtained. It can be changed easily.

また、前記磁気シールドは、形状、配置を変更可能として前記磁力線方向と磁場分布を変更できるものであるとすることができる。 Further, the magnetic shield can be changed in shape and arrangement so that the direction of the magnetic field lines and the magnetic field distribution can be changed.

このように、引上げ炉と前記磁場発生装置との間に、磁気シールドを形状や、配置位置を変更することで、前記磁力線方向と磁場分布をよりきめ細かく変更することができる。 In this way, by changing the shape and arrangement position of the magnetic shield between the pulling furnace and the magnetic field generator, the magnetic field line direction and the magnetic field distribution can be changed more finely.

また、前記磁場発生装置は、前記磁気シールドを前記引上げ炉と前記磁場発生装置間に設置しない設定とした場合に、前記超電導コイルのコイル軸を含む水平面内の前記引上げ炉の中心軸における磁力線方向をX軸としたときに該X軸上の磁束密度分布が上に凸の分布となるものとすることができる。 Further, when the magnetic shield is not installed between the pulling furnace and the magnetic field generating device, the magnetic field line direction in the central axis of the pulling furnace in the horizontal plane including the coil shaft of the superconducting coil. Is assumed to be the X-axis, and the magnetic flux density distribution on the X-axis can be an upwardly convex distribution.

このように磁気シールドを、引上げ炉と磁場発生装置間に設置しないとした場合に、上記のような磁束密度分布のものとすることができる。 When the magnetic shield is not installed between the pulling furnace and the magnetic field generator in this way, the magnetic flux density distribution as described above can be obtained.

また、前記磁場発生装置は、前記超電導コイルのコイル軸を含む水平面内の前記引上げ炉の中心軸における磁束密度を磁束密度設定値とした場合、前記超電導コイルのコイル軸を含む水平面内の前記引上げ炉の中心軸における磁力線方向をX軸としたときに該X軸上の磁束密度は坩堝壁では前記磁束密度設定値の80%以下となると同時に、前記水平面内において前記X軸と直交し前記中心軸を通るY軸上の磁束密度分布が下に凸の分布であり、前記Y軸上の磁束密度は坩堝壁では前記磁束密度設定値の140%以上となる、磁場分布を発生させるものとすることができる。 Further, when the magnetic flux density in the central axis of the pulling furnace in the horizontal plane including the coil shaft of the superconducting coil is set as the magnetic flux density set value, the magnetic field generator raises the pulling in the horizontal plane including the coil shaft of the superconducting coil. When the magnetic field line direction on the central axis of the furnace is the X-axis, the magnetic flux density on the X-axis is 80% or less of the magnetic flux density set value on the wall, and at the same time, it is orthogonal to the X-axis in the horizontal plane and the center. It is assumed that the magnetic flux density distribution on the Y-axis passing through the axis is a downwardly convex distribution, and the magnetic flux density on the Y-axis is 140% or more of the magnetic flux density set value on the wall of the wall to generate a magnetic field distribution. be able to.

このような磁場分布を発生させるものであれば、より均一な磁場分布を有するものとすることができる。 Anything that generates such a magnetic field distribution can have a more uniform magnetic field distribution.

また本発明は、前記磁場発生装置は、それぞれ対向配置された超電導コイルの対をそれぞれのコイル軸が同じ水平面内に含まれるように2対設け、前記超電導コイルのコイル軸を含む水平面内の前記引上げ炉の中心軸における磁力線方向をX軸としたときに、それぞれのコイルの前記X軸を挟む中心角度αを100度以上120度以下としたものであるとすることができる。 Further, in the present invention, the magnetic field generator is provided with two pairs of superconducting coils arranged opposite to each other so that the coil shafts are included in the same horizontal plane, and the magnetic field generator is provided in the horizontal plane including the coil shafts of the superconducting coils. When the direction of the magnetic field lines in the central axis of the pulling furnace is the X-axis, it can be assumed that the central angle α sandwiching the X-axis of each coil is 100 degrees or more and 120 degrees or less.

このような単結晶引上げ装置であれば、前記磁気シールドを挿入しない場合には、育成する単結晶の酸素濃度を大幅に低減できるとともに、育成する単結晶中の成長縞を抑制することができる。 With such a single crystal pulling device, when the magnetic shield is not inserted, the oxygen concentration of the growing single crystal can be significantly reduced, and the growth fringes in the growing single crystal can be suppressed.

このとき、前記磁気シールドは、前記引上げ炉と前記磁場発生装置との間に着脱可能とし、前記磁気シールドを設置するか否かで、または前記磁気シールドの形状、配置を変更することで、単結晶中の酸素濃度を制御可能なものであるとすることができる。 At this time, the magnetic shield can be attached and detached between the pulling furnace and the magnetic field generator, and by simply installing the magnetic shield or changing the shape and arrangement of the magnetic shield. It can be assumed that the oxygen concentration in the crystal can be controlled.

このような単結晶引上げ装置であれば、磁力線方向をX軸とした場合には、磁気シールドの設置、ならびにその形状によって、X軸と垂直な断面内における電磁力による対流抑制力を弱くする方向に変化させることが可能となる。対流抑制力を弱めることで、溶融した原料融液の流速が低減されにくくなるため、坩堝壁から溶出した酸素が単結晶に到達するまでの時間が短くなり、溶融した半導体原料の自由表面からの酸素蒸発量が減少することで、単結晶に取り込まれる酸素濃度を増加させることもできる単結晶引上げ装置とすることができる。 In such a single crystal pulling device, when the direction of the magnetic field line is the X-axis, the direction in which the convective inhibition force due to the electromagnetic force in the cross section perpendicular to the X-axis is weakened depending on the installation of the magnetic shield and its shape. It is possible to change to. By weakening the convection suppression force, it becomes difficult to reduce the flow velocity of the molten raw material melt, so that the time it takes for oxygen eluted from the crucible wall to reach a single crystal is shortened, and the molten semiconductor raw material is released from the free surface. By reducing the amount of oxygen evaporation, it is possible to obtain a single crystal pulling device capable of increasing the oxygen concentration taken into the single crystal.

また、前記磁気シールドは、鉄に比較して比透磁率の大きいパーマロイとすることができる。 Further, the magnetic shield can be a permalloy having a larger relative magnetic permeability than iron.

このようにすれば、磁気シールドの効果は透磁率に依存することから、Fe(比透磁率4,000)よりも比透磁率が大きいパーマロイ(比透磁率80,000)などを用いれば、2mm程度の肉厚でも同様の効果が得られると共に、軽量化が図れることから、容易に取り外しが可能となる。 In this way, since the effect of the magnetic shield depends on the magnetic permeability, if a permalloy (specific magnetic permeability 80,000) or the like having a specific magnetic permeability larger than Fe (specific magnetic permeability 4,000) is used, the thickness is 2 mm. The same effect can be obtained even with a moderate wall thickness, and the weight can be reduced, so that the material can be easily removed.

さらに、前記単結晶引上げ装置を用いて、半導体単結晶を引き上げることができる。 Further, the semiconductor single crystal can be pulled up by using the single crystal pulling device.

このように、本発明の装置を用いれば、製造する単結晶の酸素濃度が違っても、磁気シールドの設置の有無及び設置する磁気シールドの形状を選択することで、同一の製造装置で単結晶を製造することが可能となる。 As described above, by using the apparatus of the present invention, even if the oxygen concentration of the single crystal to be produced is different, the single crystal can be produced by the same production apparatus by selecting whether or not the magnetic shield is installed and the shape of the magnetic shield to be installed. Can be manufactured.

本発明の単結晶引上げ装置および単結晶引上げ方法であれば、取り込まれる酸素濃度が大幅に低減されるとともに成長縞が抑制された半導体単結晶を育成できるとともに、同じ引上げ装置を用いて、取り込まれる酸素濃度を増加させた半導体単結晶も容易に育成することができる。 With the single crystal pulling device and the single crystal pulling method of the present invention, it is possible to grow a semiconductor single crystal in which the oxygen concentration taken in is significantly reduced and growth fringes are suppressed, and the semiconductor single crystal is taken in using the same pulling device. A semiconductor single crystal having an increased oxygen concentration can also be easily grown.

本発明の単結晶引上げ装置の一例を示す概略断面図である。It is the schematic sectional drawing which shows an example of the single crystal pulling apparatus of this invention. 図1に示す単結晶引上げ装置の一例を示す模式的な概略上面図である。It is a schematic schematic top view which shows an example of the single crystal pulling apparatus shown in FIG. 従来の単結晶引上げ装置の一例を示す概略断面図である。It is the schematic sectional drawing which shows an example of the conventional single crystal pulling apparatus. 超電導磁石の一例を示す概略斜視図である。It is a schematic perspective view which shows an example of a superconducting magnet. 従来の磁束密度分布を示す図である。It is a figure which shows the conventional magnetic flux density distribution. 特許文献1の超電導磁石を示す概略斜視図及び概略横断面図である。It is a schematic perspective view and the schematic cross-sectional view which shows the superconducting magnet of Patent Document 1. FIG. 配設角度θ=100度のときの磁束密度分布を示す図である。It is a figure which shows the magnetic flux density distribution when the arrangement angle θ = 100 degrees. 配設角度θ=110度のときの磁束密度分布を示す図である。It is a figure which shows the magnetic flux density distribution when the arrangement angle θ = 110 degrees. 配設角度θ=115度のときの磁束密度分布を示す図である。It is a figure which shows the magnetic flux density distribution when the arrangement angle θ = 115 degrees. 配設角度θ=120度のときの磁束密度分布を示す図である。It is a figure which shows the magnetic flux density distribution when the arrangement angle θ = 120 degrees. 配設角度θ=130度のときの磁束密度分布を示す図である。It is a figure which shows the magnetic flux density distribution when the arrangement angle θ = 130 degrees. 配設角度θ=90度のときの磁束密度分布を示す図である。It is a figure which shows the magnetic flux density distribution when the arrangement angle θ = 90 degrees. 配設角度θ=140度のときの磁束密度分布を示す図である。It is a figure which shows the magnetic flux density distribution when the arrangement angle θ = 140 degrees. 磁気シールドを磁場発生装置と引上げ炉との間に設置しないときの磁束密度分布を示す図である。It is a figure which shows the magnetic flux density distribution when the magnetic shield is not installed between a magnetic field generator and a pulling furnace. 図14(a)で磁力線ベクトルを表示した図である。FIG. 14A is a diagram showing a magnetic field line vector. 磁気シールドを磁場発生装置と引上げ炉との間に設置したときの磁束密度分布を示す図である(実施例1)。It is a figure which shows the magnetic flux density distribution when a magnetic shield is installed between a magnetic field generator and a pulling furnace (Example 1). 図15(a)で磁力線ベクトルを表示した図である。FIG. 15A is a diagram showing a magnetic field line vector. 磁気シールドを磁場発生装置と引上げ炉との間に設置して配置位置を変えたときの磁束密度分布を示す図である(実施例2)。It is a figure which shows the magnetic flux density distribution when the magnetic shield is installed between the magnetic field generator and the pulling furnace, and the arrangement position is changed (Example 2). 図16(a)で磁力線ベクトルを表示した図である。FIG. 16A is a diagram showing a magnetic field line vector.

以下、本発明について図面を参照して実施の形態を説明するが、本発明はこれに限定されるものではない。
前述したように、チョクラルスキー法による単結晶引上げ装置では、ヒータの加熱によって誘起される半導体原料の溶融液の流体運動、即ち熱対流により引上げられる溶融液が乱され、単結晶生成の歩留りの低下を克服するために、炉を挟むように超電導コイルを配置して、超電導コイルに通電することにより炉内の半導体原料を通過する磁力線を発生させ、この磁力線により半導体原料が動作抑止力を受け、炉内で対流することなく、種結晶の引き上げに伴って成長する単結晶が製造されるようになった。
Hereinafter, embodiments of the present invention will be described with reference to the drawings, but the present invention is not limited thereto.
As described above, in the single crystal pulling device by the Czochralski method, the fluid motion of the melt of the semiconductor raw material induced by heating of the heater, that is, the melt pulled by heat convection is disturbed, and the yield of single crystal formation is increased. In order to overcome the decrease, superconducting coils are arranged so as to sandwich the furnace, and by energizing the superconducting coils, magnetic field lines that pass through the semiconductor raw material in the furnace are generated, and the semiconductor raw material receives an operation restraining force by these magnetic field lines. , Single crystals that grow with the pulling of seed crystals have come to be produced without convection in the furnace.

しかしながら、超電導コイルのコイル配置の仕方、配置数によっては、炉内の磁場勾配が大きすぎ、溶融した単結晶原料に発生する熱対流抑制が不均衡となることがあるので、引上げ方向の均一磁場領域を向上させ、不均衡電磁力を抑制することで、高品質の単結晶の製造が実現できるようになった。 However, depending on how the superconducting coils are arranged and the number of arrangements, the magnetic field gradient in the furnace may be too large and the suppression of heat convection generated in the molten single crystal raw material may become unbalanced. By improving the region and suppressing the unbalanced electromagnetic force, it has become possible to produce high-quality single crystals.

それでも、磁力線が向かう軸方向の磁場においては、軸と平行な断面と、軸に垂直な断面内とでは、熱対流に違いがあり、かかる熱対流の違いを克服するために、磁束密度を所定の磁束密度設定値に設定して、磁場分布を発生させるようにして、電磁力による対流抑制力が不十分だった方向の流速を調節させ、石英坩堝壁から溶出した酸素が単結晶に到達するまでの時間を調節して溶融した半導体原料の自由表面からの酸素蒸発量が増加することで、単結晶に取り込まれる酸素濃度を大幅に低減させることができるようになった。 Nevertheless, in the magnetic field in the axial direction in which the lines of magnetic force are directed, there is a difference in thermal convection between the cross section parallel to the axis and the cross section perpendicular to the axis, and the magnetic flux density is determined in order to overcome the difference in thermal convection. By setting the magnetic flux density setting value to generate a magnetic field distribution, the flow velocity in the direction in which the convection suppression force by the electromagnetic force was insufficient is adjusted, and the oxygen eluted from the quartz wall reaches the single crystal. By adjusting the time to increase the amount of oxygen evaporated from the free surface of the molten semiconductor raw material, it has become possible to significantly reduce the oxygen concentration taken into the single crystal.

ところで、用途によっては、単結晶の酸素濃度の異なる結晶が要求されることから、同じ引上げ装置で極低酸素結晶と高酸素結晶の両方を製造できることが望ましいことから、磁場発生装置において、2対あるコイルのうち、1対のコイルに流れる電流の向きを変えられるようにすることで、極低酸素結晶が得られる磁場分布と高酸素結晶となる磁場分布を切り替えて発生させることができる単結晶引上げ装置を提案された。 By the way, depending on the application, crystals having different oxygen concentrations of single crystals are required, and it is desirable that both ultra-low oxygen crystals and high oxygen crystals can be produced by the same pulling device. By making it possible to change the direction of the current flowing through a pair of coils in a certain coil, a single crystal that can be generated by switching between a magnetic field distribution in which an extremely low oxygen crystal is obtained and a magnetic field distribution in which a high oxygen crystal is obtained. A pulling device was proposed.

しかしながら、コイルに流れる電流の向きを変更すると、超電導線が受ける力の向きが反転し、位置がずれ易くなるために、クエンチを起こし易くなるという弊害がある。 However, if the direction of the current flowing through the coil is changed, the direction of the force received by the superconducting wire is reversed, and the position is likely to shift, so that there is an adverse effect that quenching is likely to occur.

以上の課題を解決するために、本発明者は、育成する単結晶中の酸素濃度を低減できるとともに、育成する単結晶中の成長縞を抑制することができる単結晶引上げ装置、および単結晶引上げ方法を提供すること、しかも、同じ引上げ装置において、簡便な方法で酸素濃度の高い単結晶も得ることができる単結晶引上げ装置、及び単結晶引上げ方法について検討した結果、本発明を完成した。 In order to solve the above problems, the present inventor has a single crystal pulling device capable of reducing the oxygen concentration in the growing single crystal and suppressing growth fringes in the growing single crystal, and a single crystal pulling device. The present invention has been completed as a result of studying a single crystal pulling device capable of obtaining a single crystal having a high oxygen concentration by a simple method and a single crystal pulling method in the same pulling device.

すなわち、本発明は、半導体原料が収容される坩堝と、前記半導体原料を加熱して溶融する加熱手段とを備えた引上げ炉と、該引上げ炉の周囲に超電導コイルが配設された磁場発生装置とを備え、前記超電導コイルへの通電により、前記坩堝内の溶融した半導体原料を磁力線が貫くように磁場を与えて、前記溶融した半導体原料の前記坩堝内での対流を抑制する単結晶引上げ装置であって、前記引上げ炉と前記磁場発生装置間には、選択的に設置可能な磁気シールドを具備し、前記磁場発生装置は、前記磁気シールドにより、前記超電導コイルのコイル軸を含む水平面内の前記引上げ炉の中心軸における磁力線方向と磁場分布を変更できるものであることを特徴とする単結晶引上げ装置である。 That is, the present invention is a pulling furnace provided with a pit containing a semiconductor raw material, a heating means for heating and melting the semiconductor raw material, and a magnetic field generator in which a superconducting coil is arranged around the pulling furnace. A single crystal pulling device that suppresses convection of the molten semiconductor raw material in the pit by applying a magnetic field so that the magnetic field lines penetrate the molten semiconductor raw material in the pit by energizing the superconducting coil. A magnetic shield that can be selectively installed is provided between the pulling furnace and the magnetic field generator, and the magnetic field generator is provided by the magnetic shield in a horizontal plane including the coil shaft of the superconducting coil. It is a single crystal pulling device characterized in that the magnetic field line direction and the magnetic field distribution on the central axis of the pulling furnace can be changed.

図1に本発明の単結晶引上げ装置1の一例を示す。
この単結晶引上げ装置1は、上面が開閉可能な引上げ炉2を備え、この引上げ炉2内に坩堝3を内蔵した構成となっている。そして、引上げ炉2の内側には坩堝3内の半導体原料11を加熱溶融するためのヒータ4が坩堝3の周囲に設けられ、引上げ炉2の外側には、1対の超電導コイル5(5a、5b)を円筒型容器としての冷媒容器(以下、円筒型冷媒容器)6に内蔵した超電導磁石7が配置されている。かかる超電導磁石7により、引上げ炉2及び真空容器8の中心軸9に対して軸対称の磁力線10を発生している(この中心軸9の位置を磁場中心と称している)。
FIG. 1 shows an example of the single crystal pulling device 1 of the present invention.
The single crystal pulling device 1 is provided with a pulling furnace 2 whose upper surface can be opened and closed, and has a configuration in which a crucible 3 is built in the pulling furnace 2. A heater 4 for heating and melting the semiconductor raw material 11 in the pit 3 is provided around the pit 3 inside the pulling furnace 2, and a pair of superconducting coils 5 (5a, 5a,) outside the pulling furnace 2. A superconducting magnet 7 having 5b) built in a refrigerant container (hereinafter, cylindrical refrigerant container) 6 as a cylindrical container is arranged. The superconducting magnet 7 generates a magnetic field line 10 that is axisymmetric with respect to the central axis 9 of the pulling furnace 2 and the vacuum vessel 8 (the position of the central axis 9 is referred to as the magnetic field center).

単結晶の製造に際しては、坩堝3内に半導体原料11を入れてヒータ4により加熱し、半導体材料11を溶融させる。この溶融液中に図示しない種結晶を例えば坩堝3の中央部上方から下降して着液させ、図示しない引上げ機構により種結晶を所定の速度で引き上げ方向13の方向に引上げていく。これにより、固体・液体境界層に結晶が成長し、単結晶12が生成される。 In the production of a single crystal, the semiconductor raw material 11 is placed in the crucible 3 and heated by the heater 4 to melt the semiconductor material 11. A seed crystal (not shown) is lowered into the melt from above the central portion of the crucible 3, for example, to land on the liquid, and the seed crystal is pulled up in the pulling direction 13 at a predetermined speed by a pulling mechanism (not shown). As a result, crystals grow in the solid-liquid boundary layer, and a single crystal 12 is produced.

そして、前記引上げ炉2と前記磁場発生装置である超電導磁石7の間には、選択的に設置可能な磁気シールド20を具備し、前記磁場発生装置は、前記磁気シールド20により、前記超電導コイル5のコイル軸を含む水平面内の前記引上げ炉2の中心軸における磁力線方向と磁場分布を変更できるようにしている。 A magnetic shield 20 that can be selectively installed is provided between the pulling furnace 2 and the superconducting magnet 7 that is the magnetic field generator, and the magnetic field generator is provided with the magnetic shield 20 by the superconducting coil 5. The direction of the magnetic field line and the magnetic field distribution in the central axis of the pulling furnace 2 in the horizontal plane including the coil shaft of the above can be changed.

ここで、前記シールド20について説明する。磁気シールド20には例えば、肉厚25mmの鉄を使用しており、磁石の筺体内側面に沿う、断面略円弧形状としている。但し、磁気シールド20の材質は鉄に限定されない。例えば、磁気シールド20には、鉄に比較して比透磁率の大きいパーマロイが適用可能である。何故ならば、磁気シールド20の効果は透磁率に依存することから、Fe(比透磁率4,000)よりも比透磁率が大きいパーマロイ(比透磁率80,000)などを用いれば、2mm程度の肉厚でも同様の効果が得られると共に、軽量化が図れることから、容易に取り外しが可能となる。
すなわち、図2に示すように、磁気シールド20は引上げ炉2を挟むように例えば引上げ炉2の中心軸に対称となるように配置している。なお、図2の単結晶引上げ装置1では、超電導コイル5の数を4つ、引上げ炉2の周囲に配置し、かつ前記超電導コイル5の相互に隣接する1対ずつのもの同士が例えば中心角度αを100度〜130度の範囲である構造のものを示している。また、前記磁気シールド20は、着脱自在であるとともに、引上げ炉2の中心軸周りに配置位置を変更可能に構成している。
また、前記シールド20は、形状の変更が可能であり、例えば幅寸法、すなわち磁石の筺体内側面に対向する円弧面長を規定する、周方向角度を任意に設定することができる。これにより、例えば磁気シールド20を設置しない場合の図14aと比較すれば明らかな通り、引上げ炉2内の石英坩堝を通過する磁力線を好適に制御することができる。
Here, the shield 20 will be described. For example, iron having a wall thickness of 25 mm is used for the magnetic shield 20, and the magnetic shield 20 has a substantially arcuate cross section along the side surface of the magnet housing. However, the material of the magnetic shield 20 is not limited to iron. For example, permalloy, which has a higher relative magnetic permeability than iron, can be applied to the magnetic shield 20. This is because the effect of the magnetic shield 20 depends on the magnetic permeability, so if a permalloy (specific magnetic permeability 80,000) or the like having a specific magnetic permeability higher than Fe (specific magnetic permeability 4,000) is used, it is about 2 mm. The same effect can be obtained with the same wall thickness, and the weight can be reduced, so that it can be easily removed.
That is, as shown in FIG. 2, the magnetic shield 20 is arranged so as to sandwich the pulling furnace 2 so as to be symmetrical with, for example, the central axis of the pulling furnace 2. In the single crystal pulling device 1 of FIG. 2, four superconducting coils 5 are arranged around the pulling furnace 2, and a pair of superconducting coils 5 adjacent to each other have, for example, a center angle. The structure in which α is in the range of 100 degrees to 130 degrees is shown. Further, the magnetic shield 20 is removable and has a structure in which the arrangement position can be changed around the central axis of the pulling furnace 2.
Further, the shape of the shield 20 can be changed, and for example, a circumferential angle that defines a width dimension, that is, an arc surface length facing the side surface of the magnet inside the housing can be arbitrarily set. Thereby, for example, as is clear from FIG. 14a when the magnetic shield 20 is not installed, the magnetic field lines passing through the quartz crucible in the pulling furnace 2 can be suitably controlled.

以上のような磁気シールド20が配置されると、引上げ炉2内の石英坩堝を通過する磁力線が変化する。このような磁力線の変化により、磁力線と垂直な断面内においても、溶融する半導体原料の鉛直方向の自然対流に対する強い抑制力が緩和される(例えば図2参照)。
従って、磁気シールド20の設置の有無、形状、配置を変更することで、磁力線方向や磁場分布を制御できる。よって同一単結晶引上げ装置で育成される単結晶中の酸素濃度を低酸素から高酸素まで自在に制御することができる。
When the magnetic shield 20 as described above is arranged, the magnetic field lines passing through the quartz crucible in the pulling furnace 2 change. Due to such a change in the magnetic field lines, the strong restraining force against the vertical natural convection of the melted semiconductor raw material is relaxed even in the cross section perpendicular to the magnetic force lines (see, for example, FIG. 2).
Therefore, the direction of the magnetic field lines and the magnetic field distribution can be controlled by changing the presence / absence, shape, and arrangement of the magnetic shield 20. Therefore, the oxygen concentration in the single crystal grown by the same single crystal pulling device can be freely controlled from low oxygen to high oxygen.

以下、本発明の実施例及び比較例を示して本発明をより具体的に説明するが、本発明はこれらに限定されるものではない。
(比較例)
特許文献2の磁束密度分布と磁力線ベクトル
ANSYS−Maxwell−3Dにより磁場解析を実施した。磁場中心の磁束密度が1000Gaussになるように、コイルの巻き数×電流値を調整した。
図14(a)は磁束密度分布で図14(b)は磁束密度分布上に、磁力線ベクトルを追加して表示した。
図中、丸印は、直径32インチ(800mm)、石英坩堝の外径を示しており、その中での代表的な磁力線を黒矢印で示した。
このように磁場発生装置と引上機の間に磁気シールド20を挿入しない状態では、中心軸での磁力線方向であるX軸上の磁束密度分布は上に凸の分布となり、水平面内において前記X軸と直交し前記中心軸を通るY軸上の磁束密度分布は下に凸の分布となる。
また坩堝付近では磁力線が大きく湾曲していることがわかる。このような磁力線により、磁力線と垂直な断面内においても、鉛直方向の自然対流に対して強い抑制力が発生することになる。
Hereinafter, the present invention will be described in more detail with reference to Examples and Comparative Examples of the present invention, but the present invention is not limited thereto.
(Comparison example)
A magnetic field analysis was performed using the magnetic flux density distribution of Patent Document 2 and the magnetic field line vector ANSYS-Maxwell-3D. The number of coil turns x the current value was adjusted so that the magnetic flux density at the center of the magnetic field was 1000 Gauss.
FIG. 14 (a) shows the magnetic flux density distribution, and FIG. 14 (b) shows the magnetic flux density distribution with the addition of a magnetic field line vector.
In the figure, the circles indicate the outer diameter of the quartz crucible having a diameter of 32 inches (800 mm), and the representative magnetic field lines in the circles are indicated by black arrows.
In the state where the magnetic shield 20 is not inserted between the magnetic field generator and the puller in this way, the magnetic flux density distribution on the X-axis, which is the direction of the magnetic field lines on the central axis, becomes an upwardly convex distribution, and the X in the horizontal plane. The magnetic flux density distribution on the Y-axis that is orthogonal to the axis and passes through the central axis is a downwardly convex distribution.
It can also be seen that the lines of magnetic force are greatly curved near the crucible. Due to such lines of magnetic force, a strong restraining force against natural convection in the vertical direction is generated even in a cross section perpendicular to the lines of magnetic force.

(実施例1)
磁気シールド60度×2箇所、Fe(t25mm)
周方向角度60度の磁気シールド20を、左下と右上の対になっているコイルの内側に配置した。その結果、シールドの無い左上と右下のコイルによる磁場が優勢となり、磁束密度が左右非対称に変化し、中心軸における磁力線方向であるX軸は右下方向に変化した。また、坩堝近くの磁力線を見ると、特にX軸の右側で磁力線の湾曲度が小さくなっていることから、磁力線と垂直な断面内における自然対流の抑制力が比較例よりも弱くなっていることがわかる(図15(a)、図15(b))。
本実施例では、磁気シールド20に肉厚25mmの鉄を使用しており、磁石の筺体内径に沿う形状とし、ホイストクレーンを用いて筺体下部の支持部に載せる形で設置を行った。
磁気シールド20は強磁性材であるため、磁場が発生すると磁石に吸着するように固定されるが、保磁力が大きくないため、磁場が発生していなければ、取り外しもクレーンで取り外し可能である。
(Example 1)
Magnetic shield 60 degrees x 2 places, Fe (t25mm)
A magnetic shield 20 having a circumferential angle of 60 degrees was placed inside a pair of coils in the lower left and upper right. As a result, the magnetic fields generated by the upper left and lower right coils without a shield became dominant, the magnetic flux density changed asymmetrically, and the X axis, which is the direction of the magnetic field lines on the central axis, changed in the lower right direction. Also, looking at the lines of magnetic force near the crucible, the degree of curvature of the lines of magnetic force is small, especially on the right side of the X-axis, so the force of suppressing natural convection in the cross section perpendicular to the lines of magnetic force is weaker than in the comparative example. Can be seen (FIG. 15 (a), FIG. 15 (b)).
In this embodiment, iron having a wall thickness of 25 mm is used for the magnetic shield 20, the shape is formed along the inner diameter of the housing of the magnet, and the magnetic shield 20 is placed on the support portion at the lower part of the housing by using a hoist crane.
Since the magnetic shield 20 is a ferromagnetic material, it is fixed so as to be attracted to the magnet when a magnetic field is generated, but since the coercive force is not large, it can be removed by a crane if the magnetic field is not generated.

(実施例2)
磁気シールド90度×2箇所、Fe(t25mm)
周方向角度90度の磁気シールド20を、同じく左下と右上の対になっているコイルの内側に配置した。中心軸上の磁力線方向X軸は実施例1よりもさらに右下方向に回転し、また、X軸の右側では磁力線の湾曲度が実施例1よりもさらに小さくなっている(図16(a),図16(b))。
(Example 2)
Magnetic shield 90 degrees x 2 places, Fe (t25mm)
A magnetic shield 20 having a circumferential angle of 90 degrees was also placed inside a pair of coils in the lower left and upper right. The X-axis in the direction of the magnetic field lines on the central axis rotates further to the lower right than in the first embodiment, and the curvature of the magnetic force lines on the right side of the X-axis is further smaller than that in the first embodiment (FIG. 16 (a)). , FIG. 16 (b)).

上記、比較例と実施例1、2について、各々、下記条件でシリコン単結晶の引き上げを行い、直胴40cm付近の酸素濃度を比較した。

使用坩堝 :直径800mm
単結晶材料のチャージ量 :400kg
育成する単結晶 :直径306mm
単結晶の直胴部の長さ :40cm
磁束密度 :磁気シールドが無い状態で中心1000Gとなるように調整
単結晶回転速度 :6rpm
坩堝回転速度 :0.03rpm
For each of the above-mentioned Comparative Example and Examples 1 and 2, the silicon single crystal was pulled up under the following conditions, and the oxygen concentration in the vicinity of the straight cylinder 40 cm was compared.

Crucible used: 800 mm in diameter
Charge amount of single crystal material: 400 kg
Single crystal to grow: 306 mm in diameter
Single crystal straight body length: 40 cm
Magnetic flux density: Adjusted to center 1000G without magnetic shield Single crystal rotation speed: 6rpm
Crucible rotation speed: 0.03 rpm

Figure 2021046342
Figure 2021046342

比較例の条件では中心軸上の磁束密度が最も高く、結晶中の酸素も最も低い。実施例1になると中心磁場は820Gまで低下するが酸素濃度は増加傾向となり、実施例2になると比較例と遜色ない磁束密度になるとともに、結晶中酸素濃度は10ppma以上にまで増加した。
なお、今回の実施例では、肉厚25mmのFeによる磁気シールド20を用いたが、磁気シールド20の効果は透磁率に依存することから、Fe(比透磁率4,000)よりも比透磁率が大きいパーマロイ(比透磁率80,000)などを用いれば、2mm程度の肉厚でも同様の効果が得られると共に、軽量化が図れることが可能となりより容易に取り外しが可能となる。
このように、製造する単結晶の酸素濃度が違っても、磁気シールドの設置の有無及び設置する磁気シールドの形状を選択することで、同一の製造装置で異なる酸素濃度の単結晶を製造することが可能となる。
Under the conditions of the comparative example, the magnetic flux density on the central axis is the highest, and the oxygen in the crystal is also the lowest. In Example 1, the central magnetic field decreased to 820 G, but the oxygen concentration tended to increase, and in Example 2, the magnetic flux density was comparable to that of Comparative Example, and the oxygen concentration in the crystal increased to 10 ppma or more.
In this example, a magnetic shield 20 made of Fe having a wall thickness of 25 mm was used, but since the effect of the magnetic shield 20 depends on the magnetic permeability, the relative magnetic permeability is higher than that of Fe (specific magnetic permeability 4,000). If a permalloy (specific magnetic permeability 80,000) or the like having a large magnetic permeability is used, the same effect can be obtained even with a wall thickness of about 2 mm, the weight can be reduced, and the removal can be performed more easily.
In this way, even if the oxygen concentration of the single crystal to be manufactured is different, by selecting the presence or absence of the magnetic shield and the shape of the magnetic shield to be installed, the single crystal having a different oxygen concentration can be manufactured by the same manufacturing apparatus. Is possible.

なお、本発明は、上記実施形態に限定されるものではない。上記実施形態は、例示であり、本発明の特許請求の範囲に記載された技術的思想と実質的に同一な構成を有し、同様な作用効果を奏するものは、いかなるものであっても本発明の技術的範囲に包含される。 The present invention is not limited to the above embodiment. The above embodiment is an example, and any one having substantially the same configuration as the technical idea described in the claims of the present invention and exhibiting the same effect and effect is the present invention. It is included in the technical scope of the invention.

1…単結晶引上げ装置、 2…引上げ炉, 3…坩堝、 4…ヒータ、 5…超電導コイル、 6…円筒型冷媒容器、 7…超電導磁石、 8…真空容器、 9…中心軸、 10…磁力線、 11…半導体原料、 12…単結晶、 13…引き上げ方向、 20…磁気シールド。
1 ... Single crystal pulling device, 2 ... Pulling furnace, 3 ... 坩 堝, 4 ... Heater, 5 ... Superconducting coil, 6 ... Cylindrical refrigerant container, 7 ... Superconducting magnet, 8 ... Vacuum container, 9 ... Central axis, 10 ... Magnetic line , 11 ... Semiconductor raw material, 12 ... Single crystal, 13 ... Pulling direction, 20 ... Magnetic shield.

Claims (8)

半導体原料が収容される坩堝と、前記半導体原料を加熱して溶融する加熱手段とを備えた引上げ炉と、該引上げ炉の周囲に超電導コイルが配設された磁場発生装置とを備え、前記超電導コイルへの通電により、前記坩堝内の溶融した半導体原料を磁力線が貫くように磁場を与えて、前記溶融した半導体原料の前記坩堝内での対流を抑制する単結晶引上げ装置であって、
前記引上げ炉と前記磁場発生装置間には、選択的に設置可能な磁気シールドを具備し、前記磁場発生装置は、前記磁気シールドにより、前記超電導コイルのコイル軸を含む水平面内の前記引上げ炉の中心軸における磁力線方向と磁場分布を変更できるものであることを特徴とする単結晶引上げ装置。
The crucible containing the semiconductor raw material, a pulling furnace provided with a heating means for heating and melting the semiconductor raw material, and a magnetic field generator in which a superconducting coil is arranged around the pulling furnace are provided. A single crystal pulling device that suppresses convection of the molten semiconductor raw material in the crucible by applying a magnetic field so that the magnetic field lines penetrate the molten semiconductor raw material in the crucible by energizing the coil.
A magnetic shield that can be selectively installed is provided between the pulling furnace and the magnetic field generator, and the magnetic field generating device of the pulling furnace in a horizontal plane including the coil shaft of the superconducting coil by the magnetic shield. A single crystal pulling device characterized in that the direction of magnetic field lines and the magnetic field distribution on the central axis can be changed.
前記磁気シールドは、形状、配置を変更可能として前記磁力線方向と磁場分布を変更できるものであることを特徴とする請求項1に記載の単結晶引上げ装置。 The single crystal pulling device according to claim 1, wherein the magnetic shield can change the direction of the magnetic field lines and the magnetic field distribution so that the shape and arrangement can be changed. 前記磁場発生装置は、前記磁気シールドを前記引上げ炉と前記磁場発生装置間に設置しない設定とした場合に、前記超電導コイルのコイル軸を含む水平面内の前記引上げ炉の中心軸における磁力線方向をX軸としたときに該X軸上の磁束密度分布が上に凸の分布となるものであることを特徴とする請求項1または請求項2に記載の単結晶引上げ装置。 When the magnetic field generator is set so that the magnetic shield is not installed between the pulling furnace and the magnetic field generator, the magnetic field line direction in the central axis of the pulling furnace in the horizontal plane including the coil shaft of the superconducting coil is X. The single crystal pulling device according to claim 1 or 2, wherein the magnetic flux density distribution on the X-axis has an upwardly convex distribution when used as an axis. 前記磁場発生装置は、前記超電導コイルのコイル軸を含む水平面内の前記引上げ炉の中心軸における磁束密度を磁束密度設定値とした場合、前記超電導コイルのコイル軸を含む水平面内の前記引上げ炉の中心軸における磁力線方向をX軸としたときに該X軸上の磁束密度は坩堝壁では前記磁束密度設定値の80%以下となると同時に、前記水平面内において前記X軸と直交し前記中心軸を通るY軸上の磁束密度分布が下に凸の分布であり、前記Y軸上の磁束密度は坩堝壁では前記磁束密度設定値の140%以上となる、磁場分布を発生させるものであることを特徴とする請求項1から請求項3のいずれか一項に記載の単結晶引上げ装置。 When the magnetic flux density at the central axis of the pulling furnace in the horizontal plane including the coil shaft of the superconducting coil is set as the magnetic flux density set value, the magnetic field generator of the pulling furnace in the horizontal plane including the coil shaft of the superconducting coil. When the direction of the magnetic field line on the central axis is the X-axis, the magnetic flux density on the X-axis is 80% or less of the magnetic flux density set value on the wall, and at the same time, the central axis is orthogonal to the X-axis in the horizontal plane. The magnetic flux density distribution on the Y-axis passing through is a downwardly convex distribution, and the magnetic flux density on the Y-axis generates a magnetic field distribution that is 140% or more of the magnetic flux density set value at the wall. The single crystal pulling device according to any one of claims 1 to 3, wherein the single crystal pulling device is characterized. 前記磁場発生装置は、それぞれ対向配置された超電導コイルの対をそれぞれのコイル軸が同じ水平面内に含まれるように2対設け、前記超電導コイルのコイル軸を含む水平面内の前記引上げ炉の中心軸における磁力線方向をX軸としたときに、それぞれのコイルの前記X軸を挟む中心角度αを100度以上120度以下としたものであることを特徴とする請求項1から請求項4のいずれか一項に記載の単結晶引上げ装置。 The magnetic field generator is provided with two pairs of superconducting coils arranged opposite to each other so that their coil shafts are contained in the same horizontal plane, and the central shaft of the pulling furnace in the horizontal plane including the coil shafts of the superconducting coils. Any of claims 1 to 4, wherein the central angle α of each coil sandwiching the X-axis is 100 degrees or more and 120 degrees or less when the direction of the magnetic field lines in the above is taken as the X-axis. The single crystal pulling device according to item 1. 前記磁気シールドは、前記引上げ炉と前記磁場発生装置との間に着脱可能とし、前記磁気シールドを設置するか否かで、または前記磁気シールドの形状、配置を変更することで、単結晶中の酸素濃度を制御可能なものであることを特徴とする請求項1から請求項5のいずれか一項に記載の単結晶引上げ装置。 The magnetic shield can be attached and detached between the pulling furnace and the magnetic field generator, and can be formed in a single crystal depending on whether or not the magnetic shield is installed or by changing the shape and arrangement of the magnetic shield. The single crystal pulling device according to any one of claims 1 to 5, wherein the oxygen concentration can be controlled. 前記磁気シールドは、鉄に比較して比透磁率の大きいパーマロイであることを特徴とする請求項1から請求項6のいずれか一項に記載の単結晶引上げ装置。 The single crystal pulling device according to any one of claims 1 to 6, wherein the magnetic shield is a permalloy having a large relative magnetic permeability as compared with iron. 請求項1から請求項7のいずれか一項に記載の単結晶引上げ装置を用いて、半導体単結晶を引き上げることを特徴とする単結晶引上げ方法。 A method for pulling a single crystal, which comprises pulling a semiconductor single crystal by using the single crystal pulling device according to any one of claims 1 to 7.
JP2019170878A 2019-09-19 2019-09-19 Single crystal pulling apparatus and single crystal pulling method Active JP7160006B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2019170878A JP7160006B2 (en) 2019-09-19 2019-09-19 Single crystal pulling apparatus and single crystal pulling method

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2019170878A JP7160006B2 (en) 2019-09-19 2019-09-19 Single crystal pulling apparatus and single crystal pulling method

Publications (2)

Publication Number Publication Date
JP2021046342A true JP2021046342A (en) 2021-03-25
JP7160006B2 JP7160006B2 (en) 2022-10-25

Family

ID=74877745

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2019170878A Active JP7160006B2 (en) 2019-09-19 2019-09-19 Single crystal pulling apparatus and single crystal pulling method

Country Status (1)

Country Link
JP (1) JP7160006B2 (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN113502546A (en) * 2021-07-06 2021-10-15 中国电子科技集团公司第十三研究所 Method for synthesizing and continuously growing phosphide in magnetic field

Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS6270286A (en) * 1985-09-24 1987-03-31 Toshiba Corp Apparatus for producting single crystal
JPH0260199A (en) * 1988-08-26 1990-02-28 Toshiba Corp Magnetic shielding device
JPH10279395A (en) * 1997-03-31 1998-10-20 Sumitomo Sitix Corp Apparatus for growing single crystal and method therefor
JP2004196655A (en) * 2002-12-19 2004-07-15 Siltronic Ag Silicon single crystal, semiconductor wafer obtained from the same, and process and apparatus for producing single crystal
JP2004292309A (en) * 2003-03-27 2004-10-21 Siltronic Ag Method and apparatus for manufacturing silicon single crystal, silicon single crystal, and semiconductor wafer cut out therefrom
KR20100028798A (en) * 2008-09-05 2010-03-15 주식회사 실트론 Apparatus and method for manufacturing semiconductor single crystal using selective magnetic shielding
JP2017057127A (en) * 2015-09-18 2017-03-23 信越半導体株式会社 Single crystal pulling-up device and single crystal pulling-up method

Patent Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS6270286A (en) * 1985-09-24 1987-03-31 Toshiba Corp Apparatus for producting single crystal
JPH0260199A (en) * 1988-08-26 1990-02-28 Toshiba Corp Magnetic shielding device
JPH10279395A (en) * 1997-03-31 1998-10-20 Sumitomo Sitix Corp Apparatus for growing single crystal and method therefor
JP2004196655A (en) * 2002-12-19 2004-07-15 Siltronic Ag Silicon single crystal, semiconductor wafer obtained from the same, and process and apparatus for producing single crystal
JP2004292309A (en) * 2003-03-27 2004-10-21 Siltronic Ag Method and apparatus for manufacturing silicon single crystal, silicon single crystal, and semiconductor wafer cut out therefrom
KR20100028798A (en) * 2008-09-05 2010-03-15 주식회사 실트론 Apparatus and method for manufacturing semiconductor single crystal using selective magnetic shielding
JP2017057127A (en) * 2015-09-18 2017-03-23 信越半導体株式会社 Single crystal pulling-up device and single crystal pulling-up method

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN113502546A (en) * 2021-07-06 2021-10-15 中国电子科技集团公司第十三研究所 Method for synthesizing and continuously growing phosphide in magnetic field
CN113502546B (en) * 2021-07-06 2022-08-19 中国电子科技集团公司第十三研究所 Method for synthesizing and continuously growing phosphide in magnetic field

Also Published As

Publication number Publication date
JP7160006B2 (en) 2022-10-25

Similar Documents

Publication Publication Date Title
JP6436031B2 (en) Single crystal pulling apparatus and single crystal pulling method
JP2010100474A (en) Method for optimizing horizontal magnetic field in pulling-up silicon single crystal, and method for manufacturing silicon single crystal
Vegad et al. Review of some aspects of single crystal growth using Czochralski crystal growth technique
JP2004051475A (en) Single crystal puller, superconductive magnet, and method for pulling up single crystal
WO2017199536A1 (en) Single crystal pulling device and single crystal pulling method
WO2020225985A1 (en) Single crystal pulling apparatus and single crystal pulling method
JP7160006B2 (en) Single crystal pulling apparatus and single crystal pulling method
Vizman Flow control by magnetic fields during crystal growth from melt
JP7230781B2 (en) Single crystal pulling apparatus and single crystal pulling method
CN116096946A (en) System and method for reducing silicon crystal wobble and drop in silicon production process
JP7548081B2 (en) Single crystal pulling apparatus and method
WO2021187017A1 (en) Single crystal pulling device and single crystal pulling method
WO2022196127A1 (en) Single crystal pulling-up apparatus and single crystal pulling-up method
WO2022163091A1 (en) Single crystal pulling device and single crystal pulling method
TWI822373B (en) Magnet for single crystal manufacturing apparatus, single crystal manufacturing apparatus and single crystal manufacturing method
JPS623091A (en) Single crystal pulling up apparatus
JPS6270286A (en) Apparatus for producting single crystal
JPH01246192A (en) Device for pulling up single crystal
JPS6278184A (en) Single crystal growth apparatus
JPWO2022020551A5 (en)

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20210922

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20220704

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20220712

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20220830

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20220913

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20220926

R150 Certificate of patent or registration of utility model

Ref document number: 7160006

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150