JPS6036392A - Apparatus for pulling single crystal - Google Patents

Apparatus for pulling single crystal

Info

Publication number
JPS6036392A
JPS6036392A JP14354083A JP14354083A JPS6036392A JP S6036392 A JPS6036392 A JP S6036392A JP 14354083 A JP14354083 A JP 14354083A JP 14354083 A JP14354083 A JP 14354083A JP S6036392 A JPS6036392 A JP S6036392A
Authority
JP
Japan
Prior art keywords
single crystal
magnetic field
magnet
melt
boundary layer
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP14354083A
Other languages
Japanese (ja)
Inventor
Kinya Matsutani
松谷 欣也
Shunichi Yokota
俊一 横田
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Toshiba Corp
Original Assignee
Toshiba Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Toshiba Corp filed Critical Toshiba Corp
Priority to JP14354083A priority Critical patent/JPS6036392A/en
Priority to US06/636,682 priority patent/US4565671A/en
Priority to GB08419677A priority patent/GB2144338B/en
Publication of JPS6036392A publication Critical patent/JPS6036392A/en
Pending legal-status Critical Current

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C30CRYSTAL GROWTH
    • C30BSINGLE-CRYSTAL GROWTH; UNIDIRECTIONAL SOLIDIFICATION OF EUTECTIC MATERIAL OR UNIDIRECTIONAL DEMIXING OF EUTECTOID MATERIAL; REFINING BY ZONE-MELTING OF MATERIAL; PRODUCTION OF A HOMOGENEOUS POLYCRYSTALLINE MATERIAL WITH DEFINED STRUCTURE; SINGLE CRYSTALS OR HOMOGENEOUS POLYCRYSTALLINE MATERIAL WITH DEFINED STRUCTURE; AFTER-TREATMENT OF SINGLE CRYSTALS OR A HOMOGENEOUS POLYCRYSTALLINE MATERIAL WITH DEFINED STRUCTURE; APPARATUS THEREFOR
    • C30B15/00Single-crystal growth by pulling from a melt, e.g. Czochralski method
    • C30B15/30Mechanisms for rotating or moving either the melt or the crystal
    • C30B15/305Stirring of the melt

Landscapes

  • Chemical & Material Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Crystallography & Structural Chemistry (AREA)
  • Materials Engineering (AREA)
  • Metallurgy (AREA)
  • Organic Chemistry (AREA)
  • Crystals, And After-Treatments Of Crystals (AREA)

Abstract

PURPOSE:To effect the growth of uniform single crystal, and to prevent the breakage of the crucible by thermal stress, by placing a magnet device to apply a magnetic field near the upper and the lower parts of the pulling surface of a single crystal, thereby suppressing the thermal convection at the upper part of the molten liquid and stirring the lower part of the liquid. CONSTITUTION:The objective single crystal pulling apparatus is composed of the main body of the pulling apparatus to pull up the seed crystal immersed in the molten liquid 1 of the raw material of the crystal to form the single crystal, and the magnet device to apply a magnetic field to the molten liquid 1. The magnet device is a superconductive magnet consisting of the magnet 28 to suppress the thermal convection near the boundary layer 6 between the solid and liquid interface of the molten liquid 1 and the magnet 29 to generate the rotary magnetic field to stir the part lower than the boundary layer 6. The magnet 28 is directed to generate the magnetic field perpendicular to the pulling direction of the single crystal, and the magnet 29 is placed to direct the magnetic field parallel to the pulling direction.

Description

【発明の詳細な説明】 〔発明の技術分野〕 本発明は、例えば半導体材料として用いるシリコン単結
晶を製造する単結晶引上装置に係シ、特に単結晶原料融
液に磁場を印加する磁石装置を具備した単結晶引上装置
に関する。
DETAILED DESCRIPTION OF THE INVENTION [Technical Field of the Invention] The present invention relates to a single crystal pulling apparatus for producing a silicon single crystal used as a semiconductor material, for example, and in particular to a magnet apparatus for applying a magnetic field to a single crystal raw material melt. The present invention relates to a single crystal pulling device equipped with the following.

〔発明の技術的背景〕[Technical background of the invention]

第1図にC2法(チョクラルスキー法)によあるルツボ
2は、ヒータ3によシ加熱され、単結晶原料は常に融液
状態を保っている。この融液I中に種結晶4を挿入し、
引上駆動機構5によシ釉結晶4をある一定速度にて引上
げてゆくと、固体−液界面境界層6にて結晶が成長し、
単結晶7が生成される。この際、ヒータ3の加熱によっ
て紡起される融液1の流体的運動、即ち熱対流8が発生
する。
A crucible 2 according to the C2 method (Czochralski method) shown in FIG. 1 is heated by a heater 3, and the single crystal raw material is always kept in a molten state. A seed crystal 4 is inserted into this melt I,
When the glaze crystal 4 is pulled up at a certain speed by the pulling drive mechanism 5, the crystal grows in the solid-liquid interface boundary layer 6,
A single crystal 7 is produced. At this time, fluid movement of the melt 1 spun by the heating of the heater 3, that is, thermal convection 8 occurs.

この熱対流8の発生原因は次の様に説明される。即ち、
熱対流8は、一般に流体の熱膨張による浮力と流体の粘
性力との釣合いが破れた時に生ずる。この浮力と粘性力
との釣合い関係を表わす無次元量がグラスホフ数NGr
である@NorミJ番α・ΔT−R/ν ここで、1:重力加速度 α;融液の熱膨張率 ΔT;ルツ7I?牛径方向温度差 R;ルツが半径 ν;融液の動粘性係数 一般に、グラスホフ数NcJrが融液1の幾何学的寸法
、熱的境界条件等によって決定される臨界値を越えると
、融液1内に熱対流8が発生する。通常、Nor〉10
5にて融液1の熱対流8は乱流状態となシN。r〉10
9では攪乱状態となる。
The cause of this thermal convection 8 is explained as follows. That is,
Thermal convection 8 generally occurs when the balance between the buoyant force due to thermal expansion of the fluid and the viscous force of the fluid is broken. The dimensionless quantity that represents the balance between this buoyant force and viscous force is the Grashof number NGr
@Normi J number α・ΔT−R/ν Where, 1: Gravitational acceleration α; Coefficient of thermal expansion of melt ΔT; Ruth 7I? Radial temperature difference R; radius ν; kinematic viscosity coefficient of the melt Generally, when the Grashoff number NcJr exceeds a critical value determined by the geometric dimensions of the melt 1, thermal boundary conditions, etc. Heat convection 8 occurs within 1. Normally, Nor>10
At 5, the thermal convection 8 of the melt 1 is in a turbulent state. r〉10
At 9, the state becomes a disturbance state.

現在性なわれているは径3〜4インチの単結晶引上げの
融液条件においては、Nor〉109となシ(前記N。
Currently, under the melt conditions for pulling a single crystal with a diameter of 3 to 4 inches, Nor>109 (the above N.

、の式による)融液1内は攪乱状態となシ、融液1の表
面すなわち固体−液界面境界層6は波立った状態となる
(according to the equation) The interior of the melt 1 is not in a disturbed state, and the surface of the melt 1, that is, the solid-liquid interface boundary layer 6, is in a wavy state.

このような攪乱状態の熱対流8が存在すると、融液1内
、特に固体−液界面層6での温度変動が激しくなシ、固
体−液界面境界層6の厚さの位置的及び時間的変動が激
しく、成長中結晶の微視的再溶解が顕著とガシ、成長し
た単結晶7中には転位ループ、積層欠陥等が発生する。
If such a disturbed thermal convection 8 exists, temperature fluctuations within the melt 1, especially in the solid-liquid interface layer 6, will be severe, and the thickness of the solid-liquid interface layer 6 will change positionally and temporally. The fluctuation is severe, and the microscopic re-dissolution of the crystal during growth is remarkable, and dislocation loops, stacking faults, etc. occur in the grown single crystal 7.

しかもこの欠陥部分は、不規則な固体−液界面境界層6
の変動によシ単結晶引上方向に対して非均−に発生ずる
Moreover, this defect area is caused by an irregular solid-liquid interface boundary layer 6.
This occurs non-uniformly with respect to the direction of single crystal pulling due to fluctuations in .

更φに、高温の融液1(例えば1500℃程度が接する
ルツボ2内面における融液1とルツボ2との化学変化に
よシ、ルツボ2内面よシ融液1中に溶解している不純物
9がこの熱対流8に搬送され、融液1の内部全体にわた
って分散する。この不純物9が核となシ単結晶7中に転
位ループや欠陥、成長縞等が発生して単結晶70品質を
劣化させている。このため、このような単結晶7よi)
 LS I (Large 5cale Integr
ation;大規模集積回路)のウェハーを製造すると
、欠陥部分を含んだウェハーは電気的特性が劣化してい
るため使用不可能であシ、従って歩留シが悪くなる。
Furthermore, impurities 9 dissolved in the melt 1 from the inner surface of the crucible 2 due to chemical changes between the melt 1 and the crucible 2 on the inner surface of the crucible 2, which are in contact with the high temperature melt 1 (for example, about 1500°C). is carried by this thermal convection 8 and dispersed throughout the interior of the melt 1. These impurities 9 act as nuclei, causing dislocation loops, defects, growth stripes, etc. in the single crystal 7, deteriorating the quality of the single crystal 70. For this reason, such a single crystal7i)
LS I (Large 5cale Integr
When manufacturing wafers for large-scale integrated circuits, wafers containing defective parts cannot be used because their electrical characteristics have deteriorated, resulting in poor yields.

今後、単結晶7は増々大直径化してゆくが、前記のグ2
スホフ数の式からもわかるようにルツボ2の直径が増大
すればする程、グラスホフ数も増大し、融液1の熱対流
8は一層激しさを増し、単結晶7の品質も劣化の一途を
たどることになる。そこで、熱対流8を抑制し熱的・化
学的に平衡状態に近い成長条件にて単結晶引上げを行な
うために、融液1に直流磁場を印加する手法が提案され
ている。
In the future, the single crystal 7 will become increasingly larger in diameter, but the above-mentioned group 2
As can be seen from the formula for the Sukhoff number, as the diameter of the crucible 2 increases, the Grashoff number also increases, the thermal convection 8 of the melt 1 becomes even more intense, and the quality of the single crystal 7 continues to deteriorate. I will follow it. Therefore, a method has been proposed in which a DC magnetic field is applied to the melt 1 in order to suppress the thermal convection 8 and pull the single crystal under growth conditions close to a thermally and chemically equilibrium state.

第2図(a)に磁場印加による従来の単結晶引上装置の
一例を示す。第2図(a)においては第1図と同一部分
には同一符号を伺してその説明は省略する。即ち、第2
図(、)においては、ルツボ2の外周に、融液I中に単
結晶引上方向と垂直である図示11方向に一様磁場が印
加されるように銅コイルから構成された磁石1oを配置
する。
FIG. 2(a) shows an example of a conventional single crystal pulling apparatus using magnetic field application. In FIG. 2(a), the same parts as in FIG. 1 are denoted by the same reference numerals, and their explanation will be omitted. That is, the second
In the figure (,), a magnet 1o made of a copper coil is arranged around the outer periphery of the crucible 2 so that a uniform magnetic field is applied to the melt I in the 11 directions shown, which are perpendicular to the single crystal pulling direction. do.

単結晶7の融液1は一般に電気伝導度σを有する導電体
である。このため、電気伝導度を有する流体が熱対流8
によシ運動する際、磁場印加方向11と平行でない方向
に運動している流体は、レンツの法則によシ磁気的抵抗
カを受ける。このため熱対流8の運動は阻止される。
The melt 1 of the single crystal 7 is generally a conductor having an electrical conductivity σ. For this reason, a fluid with electrical conductivity undergoes thermal convection 8
When the fluid moves in a direction that is not parallel to the magnetic field application direction 11, it is subjected to magnetic resistance according to Lenz's law. Therefore, the movement of thermal convection 8 is prevented.

一般に、磁場が印加された時の磁気抵抗力す々わち磁気
粘性係数ν87.は、 νeff =(μHD)σ/ρ ここで1μ;融液の透磁率 H;磁場強さ D;ルツボ直径 α;融液の電気伝導度 ρ:融液の密度 となシ磁場強さが増大すると磁気粘性係数ν8.。
Generally, when a magnetic field is applied, the magnetoresistive force, that is, the magnetorheological coefficient ν87. is, νeff = (μHD)σ/ρ where 1μ; magnetic permeability of the melt H; magnetic field strength D; crucible diameter α; electrical conductivity of the melt ρ: magnetic field strength increases as the density of the melt increases. Then, the magnetorheological coefficient ν8. .

が増大し、先に示したグラスホフ数の式中のνが増大す
ることとなシ、ダラスホフ数は急激に減少し、ある磁場
強さによってグラスホフ数を臨界値よシ小さくすること
が出来る。これによシ、融液1の熱対流は完全に抑制さ
れる。
increases, ν in the formula for the Grashof number shown above increases, and the Dallashoff number rapidly decreases, and the Glashof number can be made smaller than the critical value by a certain magnetic field strength. As a result, thermal convection of the melt 1 is completely suppressed.

このようにして磁場を印加することによシ熱対流が抑制
されるので上記した単結晶7中の不純物含有、転位ルー
ズの発生、欠陥・成長縞の発生がなくなシ、シかも単結
晶引上方向に均一な品質の単結晶7が得られ、単結晶7
の品質および歩留シが向上する。
By applying a magnetic field in this way, thermal convection is suppressed, which eliminates the inclusion of impurities in the single crystal 7, the generation of loose dislocations, and the generation of defects and growth stripes. A single crystal 7 of uniform quality is obtained in the upward direction, and the single crystal 7
Improved quality and yield.

〔背景技術の問題点〕[Problems with background technology]

ところで、第2図(、)に示す従来の銅コイルによシ構
成された常電導磁石を具備した単結晶引上装置には次の
ような欠点がある。即ち、育成する単結晶サイズが4イ
ンチ以上のいわゆる大型単結晶引上装置では、ルツ?2
およびヒータ3を収納しているチャンバー12が、例え
ば直を抑制するために、固体−液界面境界N6に所要の
磁場強度Bs (例えば2000ガウス以上)をチャン
バー12の外周に設叙された磁石1゜によシ得ようとす
る場合、ビオ・サバールの法則よシ計算すると非常に大
きなコイルのアンペア・ターンが必要である。例えば、
106アンペアターン以上必要となる。
By the way, the conventional single-crystal pulling apparatus shown in FIG. 2 (,), which is equipped with a normal-conducting magnet constituted by a copper coil, has the following drawbacks. That is, in a so-called large single crystal pulling apparatus in which the single crystal size to be grown is 4 inches or more, Ruth? 2
The chamber 12 housing the heater 3 is equipped with a magnet 1 installed on the outer periphery of the chamber 12 to apply a required magnetic field strength Bs (for example, 2000 Gauss or more) to the solid-liquid interface N6 in order to suppress direct vibration, for example. If you are trying to get a better result, you will need a very large coil ampere turn, calculated according to the Biot-Savart law. for example,
106 ampere turns or more are required.

常電導磁石によジ、この様に大きなアンペア・ターンを
実現させようとすると、そのコイル径は巨大となシ、通
常はルッ日ン2の高さよシコイル内径は充分に太きくな
シ、ルッyJ?2はコイルによシすりぼシと覆われるか
たちとなる。このため、ルツボ2内の磁場分布13は、
第2図(b)に示すように、ルツボ2の高さ方向に対し
て/1ぼ一様となシ、通常、固体−液界面境界層6でグ
ラスホフ数N。C以下となる。ここで、NG、およびN
G2は、夫々固体−液界面境界層6、ルツが2の底部に
おける融液のグラスホフ数である。
In order to achieve such a large ampere turn with a normally conducting magnet, the diameter of the coil must be enormous. yJ? 2 is in the form of being roughly covered by the coil. Therefore, the magnetic field distribution 13 inside the crucible 2 is
As shown in FIG. 2(b), the Grashof number N at the solid-liquid interface boundary layer 6 is generally uniform at about /1 in the height direction of the crucible 2. It will be below C. Here, NG, and N
G2 is the Grashof number of the melt at the bottom of the solid-liquid interface boundary layer 6 and Ruth 2, respectively.

よって、ルツ7+?2内部の融液1は、いたるところで
その熱対流が抑制され、融液1は完全に静止した状態と
なる。この状態では、対流熱伝達による熱の移動路がな
くなシ、ヒータ3からの融液1への熱供給は熱伝導のみ
となる。
Therefore, Ruth 7+? Heat convection is suppressed everywhere in the melt 1 inside the melt 1, and the melt 1 becomes completely stationary. In this state, there is no heat transfer path due to convective heat transfer, and heat is supplied from the heater 3 to the melt 1 only by thermal conduction.

さて、単結晶サイズが2〜3インチと小型の場合はルツ
が2も4〜6インチと小型であ)、磁場印加によシ融液
1が完全に静止しても、ヒータ3から供給される熱は、
融液1の熱伝導によシ充分に固体−液境界層6まで伝え
られるので、固体−液境界層6とルツyl?2の周辺部
との温度差はほとんど生じない。具体的には通常10数
℃以内に抑えられる。
Now, if the single crystal size is small (2 to 3 inches), the melt 2 is also small (4 to 6 inches), and even if the melt 1 is completely still when a magnetic field is applied, it will not be supplied from the heater 3. The heat is
Since the heat conduction of the melt 1 is sufficiently conducted to the solid-liquid boundary layer 6, the temperature between the solid-liquid boundary layer 6 and the melt? There is almost no temperature difference with the surrounding area of 2. Specifically, the temperature is usually kept within 10-odd degrees Celsius.

これに対して、単結晶サイズが4インチ以上の大型の単
結晶引上装置では、ルツボ2の直径が10〜14インチ
と大型化するため、熱伝導のみでは、もはやルツが2の
中心にある固体−液界面境界層6まで充分にヒータ3の
熱が伝わらない。このため、固体−液界面境界層6とル
ツボ2の周辺部では、大きな温度差が生じてしまう。具
体的には、通例、数lθ℃程度となる。
On the other hand, in large single crystal pulling equipment where the single crystal size is 4 inches or more, the diameter of the crucible 2 is increased to 10 to 14 inches, so heat conduction alone is no longer enough to keep the crucible at the center of the crucible 2. Heat from the heater 3 is not sufficiently transmitted to the solid-liquid interface boundary layer 6. Therefore, a large temperature difference occurs between the solid-liquid interface boundary layer 6 and the peripheral area of the crucible 2. Specifically, it is usually about several lθ°C.

固体−液界面境界層6にて、有効に単結晶7の育成を行
なうためには、ある程度以上の充分な温度が必要である
。例えば、シリコン単結晶の場合は、1400℃以上必
要である。このため、ヒータ電力を増大させ温度勾配に
打ち勝って、固体−液界面境界層6に所要の温度を与え
る必要がある。
In order to effectively grow the single crystal 7 in the solid-liquid interface boundary layer 6, a sufficient temperature above a certain level is required. For example, in the case of silicon single crystal, a temperature of 1400° C. or higher is required. Therefore, it is necessary to increase the heater power to overcome the temperature gradient and provide the required temperature to the solid-liquid interface boundary layer 6.

更らに、温度勾配が大きいと、単結晶サイズが大きい場
合は固体−液界面境界層6内でも相当の温度勾配が生じ
てしまう。均質な単結晶7を育成さぜるためには、育成
領域でのi2!度一様性も要求される。従って、このよ
うに温度勾配があることは単結晶育成上好ましくない。
Furthermore, if the temperature gradient is large, a considerable temperature gradient will also occur within the solid-liquid interface boundary layer 6 when the single crystal size is large. In order to grow a homogeneous single crystal 7, i2! Uniformity is also required. Therefore, such a temperature gradient is not preferable for single crystal growth.

また、ルツボ2の中心と周辺部との温度差が太きすぎる
と、ルツボ2に作用する熱応力が過大となシ、ルツが2
の割れが生じやすくなる。
Also, if the temperature difference between the center and the periphery of the crucible 2 is too large, the thermal stress acting on the crucible 2 will be excessive, and the crucible will
cracks are more likely to occur.

〔発明の目的〕[Purpose of the invention]

本発明は上記事情に基づいてなされたもので、その目的
とするところは、均質な単結晶の育成を図シ且つ熱応力
によるルツボの割れ防止を図った単結晶引上装置鍼を提
供することにある。
The present invention was made based on the above-mentioned circumstances, and its purpose is to provide a single-crystal pulling device that facilitates the growth of homogeneous single crystals and prevents the crucible from cracking due to thermal stress. It is in.

〔発明の顧、要〕[Advantage of the invention]

本発明による単結晶引上装置は、単結晶引上装置本体と
、この単結晶引上装置本体の単結晶原料融液の固体−液
界面境界層近傍における熱対流は抑制し且つ上記単結晶
原料融液の固体−液界面境界層近傍よシ下部における熱
対流は存在するように上記単結晶引上装置本体に対して
配置した磁石装置とから構成され、上記固体−液界面境
界層と上記単結晶原料融液が充填されたルツが周辺部と
の温度差を小さくシ、もって均質な単結晶を育成し且つ
熱応力による上記ルツボの割れを防止するようにしてい
る。
The single crystal pulling apparatus according to the present invention suppresses thermal convection in the vicinity of the solid-liquid interface boundary layer of the single crystal raw material melt in the single crystal pulling apparatus main body and the single crystal raw material melt in the single crystal pulling apparatus main body. It is composed of a magnet device arranged on the main body of the single crystal pulling apparatus so that thermal convection exists near the solid-liquid interface boundary layer of the melt and in the lower part of the single crystal. The crucible filled with the crystal raw material melt has a small temperature difference with the surrounding area, thereby growing a homogeneous single crystal and preventing the crucible from cracking due to thermal stress.

〔発明の実施例〕[Embodiments of the invention]

以下本発明の一実施例を図面を参照して説明する。 An embodiment of the present invention will be described below with reference to the drawings.

第311 (a) (b) (e)は、本発明による単
結晶引上装置の第1の実施例を示すもので、落8図(、
)は構成図、第3図(b)は磁場強度と位置との特性図
、第3図(c)はグラスホフ数と位置と′のl+!j性
iであ 。
No. 311 (a), (b), and (e) show the first embodiment of the single crystal pulling apparatus according to the present invention.
) is a configuration diagram, FIG. 3(b) is a characteristic diagram of magnetic field strength and position, and FIG. 3(c) is a characteristic diagram of Grashof number, position, and 'l+! It's sex i.

シ\算2M(2)ζ帥(C) と同一部分には同一符号を付して、その説明は省略する
The same parts as in 2M(2)ζ帥(C) are given the same reference numerals, and their explanation will be omitted.

超電導コイル15a、15b夫々のコイル中心軸X、〜
XI′及びX2〜X2′を、固体−液界面境界層6の延
長線上に一致させ、チャンバー12を挾んで超電導コイ
ル15a、15bを単結晶引上軸16に対して平行に配
置する。このコイル配置によシ、融液1には、単結晶引
上軸16に対して直角方向の磁場1ノが印加される。
The coil center axis X of each superconducting coil 15a, 15b, ~
XI' and X2 to X2' are made to coincide with the extension line of the solid-liquid interface boundary layer 6, and the superconducting coils 15a and 15b are arranged parallel to the single crystal pulling axis 16 with the chamber 12 in between. Due to this coil arrangement, a magnetic field 1 in a direction perpendicular to the single crystal pulling axis 16 is applied to the melt 1 .

超電導コイル15a、15b間の距Nct’ 2は、チ
ャンバー直径Ll 、超電導コイル15a。
The distance Nct' 2 between the superconducting coils 15a and 15b is the chamber diameter Ll and the superconducting coil 15a.

15bの保冷容器x7h、17bの幅T、保冷容器17
a、17bとチャンバー12の間Htに対してN L 
t =L r + 2 t 十Tとして決定される距離
L2 なる間隔にて配置された超電導コイル1’5a、
15bの内生径R1,外半径R32幅D1およびアンペ
ア・ターンを、第3図(b)に示すような磁場分布18
になる様に選定する。
15b cold container x 7h, 17b width T, cold container 17
N L for Ht between a, 17b and chamber 12
Superconducting coils 1'5a arranged at a distance L2 determined as t = L r + 2 t + T,
The inner diameter R1, outer radius R32, width D1, and ampere turns of the magnetic field distribution 18 as shown in FIG.
Select so that

すなわち、固体−准界面境界層厚δに対して、H(H)
δ)なる深さ位置に於けるグラスホフ数が、第3図(c
)に示すように臨界グラスホン数N になる様、その位
置での磁場強′度をN。CにC 対応した磁場強度B8にする。これによシ、ルツボ2の
高さ方向の磁場分布は第3図(b)における図示18の
様にこれに対応したグラスホフ数分布は第3図(c)に
おける図示19となる。
That is, for the solid-quasi-interface boundary layer thickness δ, H(H)
The Grashoff number at the depth position δ) is shown in Figure 3 (c
), set the magnetic field strength at that position to N so that the critical glassphone number N is achieved. Set the magnetic field strength B8 corresponding to C to C. Accordingly, the magnetic field distribution in the height direction of the crucible 2 becomes as shown in 18 in FIG. 3(b), and the corresponding Grashof number distribution becomes as shown in 19 in FIG. 3(c).

ここで、B4は、固体−液界面境界層6における磁場強
度であシ、B 4 > B s なる関係を有し、B、
は、ルツボ2の底部に於ける磁場強度であ、!l) B
 5 < B a なる関係を有し、Na4は、B、に
対応したグラスホフ数でおpNG4〈Nocなる関係を
有し、No5は、B、に対応したグラスホ7PでありN
(J5〉Nocなる関係を有する。
Here, B4 is the magnetic field strength in the solid-liquid interface boundary layer 6, and has the relationship B4>Bs, and B,
is the magnetic field strength at the bottom of crucible 2, and! l)B
5 < B a, Na4 is the Grashof number corresponding to B, and pNG4<Noc, No5 is the Grashof 7P corresponding to B, and N
(J5>Noc).

次に上記のように構成した本実施例の単結晶引上装置の
動作・作用を説明する。固体−液界面境界rf:I6よ
シ深さHまでは、磁場強度がB。
Next, the operation and effect of the single crystal pulling apparatus of this embodiment configured as described above will be explained. Solid-liquid interface boundary rf: From I6 to depth H, the magnetic field strength is B.

よシ大きいので、融液1のグラスホ7数NGはNo<N
Gcとなシ融液1の熱対流8は抑制され融液1は静止し
ている。−万、深さHよシルッが2の底部までは、磁場
強度がB、よシ小さいので融液lのグラスホフ数N。は
、NG)N、cト;11融液1中の熱対流8は依然とし
て存在している。
Since it is very large, the number of glass holes for melt 1 is NG: No<N
Thermal convection 8 of the melt 1 is suppressed and the melt 1 remains stationary. - 10,000, depth H up to the bottom where the shield is 2, the magnetic field strength is B, so small that the Grashof number N of the melt l. NG)N,c;11 Thermal convection 8 in the melt 1 still exists.

従って、ヒータ3よシの熱は、この熱対流8による対流
熱伝達によシ、この領域では有効に中心部まで伝熱され
る。このため融液1内は、はぼ一様の温度分布となる。
Therefore, the heat from the heater 3 is effectively transferred to the center in this region by convection heat transfer by the heat convection 8. Therefore, the inside of the melt 1 has a fairly uniform temperature distribution.

これに対して、固体−液界面境界層6よシ深さH′?:
、での領域では、対流熱伝達はない。ヒータ3からの熱
は、ルツボ2の周辺部および深さHより下部の一様温度
融液部からの熱伝導によシ、固体−液界面境界層6へと
伝熱される。従って、従来型に比べて固体−液界面境界
層6への伝熱効果が高められるので、ルツボ2の周辺部
と固体−液界面境界層6との温度差は小さく在る。
On the other hand, the depth H'? of the solid-liquid interface boundary layer 6? :
, there is no convective heat transfer. The heat from the heater 3 is transferred to the solid-liquid interface boundary layer 6 by heat conduction from the periphery of the crucible 2 and the uniform temperature melt portion below the depth H. Therefore, since the heat transfer effect to the solid-liquid interface boundary layer 6 is enhanced compared to the conventional type, the temperature difference between the peripheral area of the crucible 2 and the solid-liquid interface boundary layer 6 is small.

更らに、単結晶7が育成される固体−液界面境界層6の
真下まで融液1は熱対流8によシ、良好に攪拌されてい
乙ので、均質な原料としての融液1が育成部へと供給さ
れる。
Furthermore, since the melt 1 is well stirred by the thermal convection 8 until just below the solid-liquid interface boundary layer 6 where the single crystal 7 is grown, the melt 1 as a homogeneous raw material is grown. supplied to the department.

次に本発明の第2の実施例を第4図(−) (b) (
C)を参照して説明する。
Next, the second embodiment of the present invention is shown in FIG. 4 (-) (b) (
This will be explained with reference to C).

M4図(a) (b) (c)は、本発明による単結晶
引上装置の第2の実施例を示すもので、第4図(a)は
構成図、第4図(b)は磁場強度と位置との特性図、第
4図(C)はグラスホフ数と位置との特性図であり、第
1図、第2図及び第3図(a) (b) (c)と同一
部分には同一符号を付して、その説明は省略するO第4
図(a)において、超電導コイル15a。
M4 diagrams (a), (b), and (c) show a second embodiment of the single crystal pulling apparatus according to the present invention, where FIG. 4(a) is a configuration diagram and FIG. 4(b) is a magnetic field The characteristic diagram of intensity and position, Figure 4 (C) is the characteristic diagram of Grashof number and position, and it is in the same part as Figures 1, 2, and 3 (a), (b), and (c). are given the same reference numerals and the explanation thereof will be omitted.
In figure (a), superconducting coil 15a.

15bのかわシに、単結晶引上軸16と平行方向2oな
る磁場を印加する超電導コイル21と、これを収納して
いる保冷容器22とを、そのコイル中心軸Y、%Y、’
が、固体−液界面境界層6と一致するように配置する。
A superconducting coil 21 that applies a magnetic field 2o in a direction parallel to the single crystal pulling axis 16 and a cold container 22 that houses the superconducting coil 21 are connected to the wire 15b with the coil center axis Y, %Y,'
is arranged so that it coincides with the solid-liquid interface boundary layer 6.

この超電導コイル21の内半径、外半径2幅、アンペア
・ターン等の・ぐラメータは、第3図(a)で示した第
1の実施例と同様な第4図(b)に示す磁場分布22、
第4図(c)に示すようなグラスホフ数分布23が実現
出来るように決められている。
The parameters of the superconducting coil 21, such as the inner radius, two outer radius widths, ampere turns, etc., are the same as the magnetic field distribution shown in FIG. 4(b) as in the first embodiment shown in FIG. 3(a). 22,
It is determined so that a Grashof number distribution 23 as shown in FIG. 4(c) can be realized.

なお動作・作用は、第3図の(a) (b) (c)に
示す第1の実施例と同一であるので、その説明は省略す
る。
Note that the operation and effect are the same as those of the first embodiment shown in FIGS. 3(a), 3(b), and 3(c), so the explanation thereof will be omitted.

次に本発明の第3の実施例を第5図(a) (b) (
C)を参照して説明する。
Next, the third embodiment of the present invention is shown in FIGS.
This will be explained with reference to C).

第5図(a) (b) (c)は、本発明による単結晶
引上装置の第3の実施例を示すもので、第5図(−)は
構成図、第5図(b)は磁場強度と位置との特性図、第
5図(c)はグラスホフ数と位置との特性図であシ第1
図、第2図、第3図(、) (b) (c)及び第4図
(、)(b) (、)と同一部分には同一符号を付して
、その説明は省略する。
5(a), 5(b), and 5(c) show a third embodiment of the single crystal pulling apparatus according to the present invention, FIG. 5(-) is a block diagram, and FIG. 5(b) is a block diagram. Figure 5(c) is a characteristic diagram of magnetic field strength and position, and Figure 5(c) is a characteristic diagram of Grashof number and position.
The same parts as in FIGS. 2 and 3 (,) (b) (c) and FIG.

即ち、超電導コイル25(第3図(=)あるじは第4図
(、)で示した実施例のいずれの構成のものでも良い)
を固体−液界面境界層6よ6hだけ上部に配置する。
That is, the superconducting coil 25 (Fig. 3 (=) may have any configuration of the embodiment shown in Fig. 4 (, ))
is placed above the solid-liquid interface by a boundary layer 6h.

このような構成とすれば、第3図(、)に示す第1の実
施例と同様な第5図(b)に示す磁場分布26、第5図
(c)に示すグラスホフ数分布27をルツボ2の融液1
中に得るととが出来る。また上記のようなコイル配置に
する理由は、例えばルツボ2の深さが浅い等、ルツが2
の形状によっては超電導コイルを使用しても、第3図(
、)に示した第1の実施例の如き磁場分布を得ることが
不可能な場合があるためである。上記のような場合に、
第3の本実施例を適用すれば、所望の磁場分布が得られ
る。
With such a configuration, the magnetic field distribution 26 shown in FIG. 5(b) and the Grashof number distribution 27 shown in FIG. 5(c), which are similar to the first embodiment shown in FIG. 2 melt 1
When you get it inside, you can do it. In addition, the reason for arranging the coils as described above is because the depth of crucible 2 is shallow, etc.
Even if a superconducting coil is used depending on the shape of the
This is because it may be impossible to obtain the magnetic field distribution as in the first embodiment shown in . In the above case,
By applying the third present embodiment, a desired magnetic field distribution can be obtained.

なお、動作・作用は第3図(、)に示す第1の実施例と
同一であるので、その説明は省略する。
Incidentally, since the operation and effect are the same as those of the first embodiment shown in FIG.

次に本発明の第4の実施例を第6図を参照して説明する
Next, a fourth embodiment of the present invention will be described with reference to FIG.

第6図は、本発明による単結晶引上装置の第4の実施例
を示す構成図であシ、第1図乃至第5図と同一部分には
同一符号を付して、その説明は省略する。RIJち、第
6図において、ルツが2の下部における融液1の攪拌効
果を増大させるために、融液1の熱対流抑制用コイル2
8の下部に、回転磁界3θを発生させるコイル29を配
置する。このコイル29は、例えば、3相交流を用いて
、3つのコイルをチャンバー12の外周に単結晶引上軸
16を中心として120゜ずつずらして配置するととに
よシ実現出来る。
FIG. 6 is a configuration diagram showing a fourth embodiment of the single crystal pulling apparatus according to the present invention, and the same parts as in FIGS. do. RIJ, in FIG. 6, in order to increase the stirring effect of the melt 1 at the bottom of the melt 1, a coil 2 for suppressing thermal convection of the melt 1 is installed.
A coil 29 that generates a rotating magnetic field 3θ is disposed below the coil 8 . This coil 29 can be best realized, for example, by using three-phase alternating current and arranging three coils around the outer periphery of the chamber 12 so as to be shifted by 120 degrees around the single crystal pulling axis 16.

コイル28によシ、固体−液界面境界層6近傍の融液1
の熱対流は静止し、コイル29によシ、ルツボ2の下部
の融液1は攪拌されるので第3図(a) (b) (c
)に示した第1の実施例と同様の動作・作用が得られる
By the coil 28, the melt 1 near the solid-liquid interface boundary layer 6
The thermal convection of is stationary, and the melt 1 at the bottom of the crucible 2 is stirred by the coil 29, so that
) The same operation and effect as the first embodiment shown in ) can be obtained.

次に本発明の第5の実施例を第7図を参照して説明する
Next, a fifth embodiment of the present invention will be described with reference to FIG.

第7図は、本発明による単結晶引上装置の第5の実施例
を示す構成図であシ、第1図乃至第6図と同一部分には
同一符号を付して、その説明は省略する。即ち、第7図
においてはルツボ2の下部における融液1の攪拌効果を
増大させるために、ルツぜ2の下部に、導波管31を介
して超音波発生器32よシ発生した超音波32をルツボ
2の下部の融液1に導き入れる。
FIG. 7 is a configuration diagram showing a fifth embodiment of the single crystal pulling apparatus according to the present invention, and the same parts as in FIGS. do. That is, in FIG. 7, in order to increase the stirring effect of the melt 1 in the lower part of the crucible 2, an ultrasonic wave 32 generated by an ultrasonic generator 32 via a waveguide 31 is applied to the lower part of the crucible 2. is introduced into the melt 1 at the bottom of the crucible 2.

このように構成すれば、コイル28によシ、固体−液界
面境界層6の近傍の融液1の熱対流は静止し、超音波3
2によシルツボ2の下部の融液1は攪拌されるので第3
図(a)(b)(c)に示した第1の実施例と同様の動
作・作用が得られる。
With this configuration, the thermal convection of the melt 1 near the solid-liquid interface boundary layer 6 is stopped by the coil 28, and the ultrasonic wave 3
2, the melt 1 at the bottom of the crucible 2 is stirred, so the third
The same operation and effect as the first embodiment shown in FIGS. (a), (b), and (c) can be obtained.

なお、本発明は上記実施例に限足されるものではなく、
その要旨を逸脱しない範囲で種々変形して実施可能であ
る。
Note that the present invention is not limited to the above embodiments,
Various modifications can be made without departing from the gist of the invention.

〔発明の効果〕〔Effect of the invention〕

以上述べたように本発明による単結晶引上装置は、単結
晶引上装置本体と、この単結晶引上装置本体の単結晶原
料融液の固体−液界面境界層近傍における熱対流は抑制
し且つ上記単結晶原料融液の固体−液界面境界層近傍よ
シ下部における熱対流は存在するように上記単結晶引上
装置本体に対して配置した磁石装置とにより構成したの
で、以下述べるような効果を呈する。
As described above, the single crystal pulling apparatus according to the present invention suppresses thermal convection in the vicinity of the solid-liquid interface boundary layer between the single crystal pulling apparatus main body and the single crystal raw material melt in the single crystal pulling apparatus main body. In addition, it was constructed with a magnet device placed on the main body of the single crystal pulling apparatus so that thermal convection exists near the solid-liquid interface boundary layer of the single crystal raw material melt and at the lower part of the single crystal material melt. exhibits an effect.

即ち、固体−液界面境界層の近傍は、熱対流が抑制され
、熱的・化学的平衡状態に近い成長条件が満されると同
時に、上記固体−液界面境界)膚の近傍よシ下部の領域
では、熱対流によシ融液が良好に攪拌され、融液が均質
化され、かつ温度が一様に保たれる。このため、固体−
液界面境界層への熱伝導効果が高められ、ルツが周辺と
固体−液界面境界層との温度差が小さくなシ、更に、充
分に攪拌された融液が固体−液界面境界層に供給される
ので、均質な単結晶が育成される。また、ルッが中心と
周辺部との温度差が小さくなるので熱応力によるルツが
の割れが回避される。
In other words, near the solid-liquid interface boundary layer, thermal convection is suppressed and growth conditions close to thermal and chemical equilibrium are satisfied, while at the same time In this region, the melt is well stirred by thermal convection, the melt is homogenized, and the temperature is kept uniform. Therefore, solid -
The heat conduction effect to the liquid interface boundary layer is enhanced, the temperature difference between the surrounding area and the solid-liquid interface boundary layer is small, and the sufficiently stirred melt is supplied to the solid-liquid interface boundary layer. As a result, a homogeneous single crystal is grown. In addition, since the temperature difference between the center and the periphery of the bolt is reduced, cracking of the bolt due to thermal stress is avoided.

【図面の簡単な説明】 第1図は従来の単結晶引上装置の一例を示す構成図、第
2図は磁石を具備した従来の単結晶引上装置の一例を説
明するための図、第3図乃至第7図は夫々本発明による
単結晶引上装置の第1乃至第5の実施例を説明するだめ
の図である。 1・・・融液、2・・・ルツが、3・・・ヒータ、4.
・・種結晶、5・・・引上駆動機構、6・・・固体−液
界面境界層、7・・・単結晶、8・・・熱対流、9・・
・不純物、10・・・磁石、11.20・・・磁場方向
、12・・・チャンバー、13.18.23,26°・
・磁場分布、14.19,24.27・・・グラスホ7
数分布、15 a 、 15 b 、 21 、25−
−−超電導コイル、16−・・単結晶引上軸、17 a
 * 17 b −22・=保冷容器、28・・・熱対
流抑制コイル、29・・・回転磁界用コイル、30・・
・回転磁界、31・・・導波管、32・・・超音波発生
器、32・・・超音波。 出願人代理人 弁理士 鈴 江 武 彦(8) 第5図 第7図
[Brief Description of the Drawings] Fig. 1 is a configuration diagram showing an example of a conventional single crystal pulling device, Fig. 2 is a diagram for explaining an example of a conventional single crystal pulling device equipped with a magnet, 3 to 7 are diagrams for explaining first to fifth embodiments of the single crystal pulling apparatus according to the present invention, respectively. 1... Melt, 2... Ruth, 3... Heater, 4.
... Seed crystal, 5... Pulling drive mechanism, 6... Solid-liquid interface boundary layer, 7... Single crystal, 8... Thermal convection, 9...
・Impurity, 10...Magnet, 11.20...Magnetic field direction, 12...Chamber, 13.18.23,26°・
・Magnetic field distribution, 14.19, 24.27... Glassho 7
Number distribution, 15 a, 15 b, 21, 25-
--Superconducting coil, 16--Single crystal pulling shaft, 17 a
*17 b -22・=cold container, 28・thermal convection suppression coil, 29・rotating magnetic field coil, 30・・
- Rotating magnetic field, 31... Waveguide, 32... Ultrasonic generator, 32... Ultrasonic wave. Applicant's agent Patent attorney Takehiko Suzue (8) Figure 5 Figure 7

Claims (6)

【特許請求の範囲】[Claims] (1)ルツ7Iζに充填された単結晶原料融液に種結晶
を挿入しこの種結晶を引上げることによシ単結晶を生成
する単結晶引上装置本体と、上記単結晶原料融液に磁場
を印加するものであって上記単結晶原料融液の固体−液
界面境界層近傍における熱対流は抑制し且つ上記単結晶
原料融液の固体−液界面境界層近傍よシ下部における熱
対流は存在するように配置された磁石装置とからなる単
結晶引上装置。
(1) A single crystal pulling device main body that generates a single crystal by inserting a seed crystal into the single crystal raw material melt filled in Ruth 7Iζ and pulling the seed crystal; It applies a magnetic field, suppresses thermal convection near the solid-liquid interface boundary layer of the single-crystal raw material melt, and suppresses thermal convection near the solid-liquid interface boundary layer of the single-crystal raw material melt below. A single crystal pulling device comprising a magnet device arranged so as to be present.
(2)磁石装置は、超電導マグネットである特許請求の
範囲第(1)項記載の単結晶引上装置。
(2) The single crystal pulling device according to claim (1), wherein the magnet device is a superconducting magnet.
(3)磁石装置は、磁場方向が単結晶引上方向に対して
垂直となるように配置されてなる特許請求の範囲第(1
)項記載の単結晶引上装置。
(3) The magnet device is arranged such that the direction of the magnetic field is perpendicular to the single crystal pulling direction.
) The single crystal pulling device described in item 2.
(4)磁石装置は、@場方向が単結晶引上方向に対して
平行となるように配置されてなる特許請求の範囲第(1
)項記載の単結晶引上装置。
(4) The magnet device is arranged so that the field direction is parallel to the single crystal pulling direction.
) The single crystal pulling device described in item 2.
(5)磁石装置は、上記単結晶原料融液の熱対流を抑制
する第1・の磁石と、上記単結晶原料融液を攪拌するだ
めの回転磁界を発生させる第2の磁石とからなる特許請
求の範囲第(1)項記載の単結晶引上装置。
(5) A patented magnet device comprising a first magnet for suppressing thermal convection of the single-crystal raw material melt, and a second magnet for generating a rotating magnetic field for stirring the single-crystal raw material melt. A single crystal pulling apparatus according to claim (1).
(6)単結晶引上装置本体は、上記単結晶原料融液を攪
拌するための超音波発生装置を具備して々る特許請求の
範囲第(1)項記載の単結晶引上装置。
(6) The single crystal pulling apparatus according to claim 1, wherein the single crystal pulling apparatus main body includes an ultrasonic generator for stirring the single crystal raw material melt.
JP14354083A 1983-08-05 1983-08-05 Apparatus for pulling single crystal Pending JPS6036392A (en)

Priority Applications (3)

Application Number Priority Date Filing Date Title
JP14354083A JPS6036392A (en) 1983-08-05 1983-08-05 Apparatus for pulling single crystal
US06/636,682 US4565671A (en) 1983-08-05 1984-08-01 Single crystal manufacturing apparatus
GB08419677A GB2144338B (en) 1983-08-05 1984-08-02 Single crystal manufacturing apparatus

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP14354083A JPS6036392A (en) 1983-08-05 1983-08-05 Apparatus for pulling single crystal

Publications (1)

Publication Number Publication Date
JPS6036392A true JPS6036392A (en) 1985-02-25

Family

ID=15341120

Family Applications (1)

Application Number Title Priority Date Filing Date
JP14354083A Pending JPS6036392A (en) 1983-08-05 1983-08-05 Apparatus for pulling single crystal

Country Status (1)

Country Link
JP (1) JPS6036392A (en)

Cited By (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS6236097A (en) * 1985-08-07 1987-02-17 Kawasaki Steel Corp Production of single crystal and device therefor
JPS6236096A (en) * 1985-08-07 1987-02-17 Kawasaki Steel Corp Production of single crystal and device therefor
JPS62256791A (en) * 1986-04-30 1987-11-09 Toshiba Ceramics Co Ltd Device for growing single crystal
JPS6424090A (en) * 1987-07-20 1989-01-26 Toshiba Ceramics Co Method and apparatus for producing single crystal
JPH06279174A (en) * 1993-03-23 1994-10-04 Natl Inst For Res In Inorg Mater Production of oxide single crystal
JPH0761893A (en) * 1993-08-26 1995-03-07 Nec Corp Single crystal growing method
JP2013136466A (en) * 2011-12-27 2013-07-11 Sumitomo Chemical Co Ltd Crystal growing device and method of growing crystal

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS55130893A (en) * 1979-03-28 1980-10-11 Hitachi Ltd Single crystal drawing up apparatus
JPS5761696A (en) * 1980-09-29 1982-04-14 Seiko Instr & Electronics Ltd Manufacturing of single crystal
JPS57149894A (en) * 1981-03-09 1982-09-16 Nippon Telegr & Teleph Corp <Ntt> Method and apparatus for growing grystal
JPS57170890A (en) * 1981-04-15 1982-10-21 Mitsubishi Monsanto Chem Co Growing method for single crystal

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS55130893A (en) * 1979-03-28 1980-10-11 Hitachi Ltd Single crystal drawing up apparatus
JPS5761696A (en) * 1980-09-29 1982-04-14 Seiko Instr & Electronics Ltd Manufacturing of single crystal
JPS57149894A (en) * 1981-03-09 1982-09-16 Nippon Telegr & Teleph Corp <Ntt> Method and apparatus for growing grystal
JPS57170890A (en) * 1981-04-15 1982-10-21 Mitsubishi Monsanto Chem Co Growing method for single crystal

Cited By (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS6236097A (en) * 1985-08-07 1987-02-17 Kawasaki Steel Corp Production of single crystal and device therefor
JPS6236096A (en) * 1985-08-07 1987-02-17 Kawasaki Steel Corp Production of single crystal and device therefor
JPH0329751B2 (en) * 1985-08-07 1991-04-25
JPH0351673B2 (en) * 1985-08-07 1991-08-07 Kawasaki Steel Co
JPS62256791A (en) * 1986-04-30 1987-11-09 Toshiba Ceramics Co Ltd Device for growing single crystal
JPS6424090A (en) * 1987-07-20 1989-01-26 Toshiba Ceramics Co Method and apparatus for producing single crystal
JPH06279174A (en) * 1993-03-23 1994-10-04 Natl Inst For Res In Inorg Mater Production of oxide single crystal
JPH0761893A (en) * 1993-08-26 1995-03-07 Nec Corp Single crystal growing method
JP2013136466A (en) * 2011-12-27 2013-07-11 Sumitomo Chemical Co Ltd Crystal growing device and method of growing crystal

Similar Documents

Publication Publication Date Title
KR100558177B1 (en) Silicon single crystal manufacturing method and apparatus having no crystal defect, and silicon single crystal and silicon wafer manufactured thereby
JPS6144797A (en) Apparatus for growing single crystal and method for controlling same
JP6436031B2 (en) Single crystal pulling apparatus and single crystal pulling method
CN101680108A (en) Method and apparatus for producing a single crystal
JPS5874594A (en) Growing method for crystal
JPS6036392A (en) Apparatus for pulling single crystal
JP3086850B2 (en) Method and apparatus for growing single crystal
JPS62256787A (en) Method and device for growing single crystal
JP4193558B2 (en) Single crystal manufacturing method
JPH05155682A (en) Method for pulling up silicon single crystal
US5268063A (en) Method of manufacturing single-crystal silicon
JPS6033294A (en) Pulling device for single crystal semiconductor
JP3585731B2 (en) Magnetic field application type single crystal manufacturing equipment
JP2000044387A (en) Production of silicon single crystal
JP4150167B2 (en) Method for producing silicon single crystal
JP3018738B2 (en) Single crystal manufacturing equipment
JPS6270286A (en) Apparatus for producting single crystal
Yugova et al. Effect of a Travelling Magnetic Field on the Parameters of Tellurium-Doped Gallium Arsenide Single Crystals Grown by the Czochralski Method
JPS62256788A (en) Device for growing single crystal
TWI282379B (en) Silicon single-crystal wafer manufacturing method, silicon single-crystal wafer, and epitaxial wafer
JPS6081086A (en) Process and apparatus for growing single crystal
JPH0478591B2 (en)
JP2623465B2 (en) Single crystal pulling device
JPS6278184A (en) Single crystal growth apparatus
JP2019196289A (en) Production method of single crystal, and draw-up device of single crystal