JP3585731B2 - Magnetic field application type single crystal manufacturing equipment - Google Patents

Magnetic field application type single crystal manufacturing equipment Download PDF

Info

Publication number
JP3585731B2
JP3585731B2 JP13062398A JP13062398A JP3585731B2 JP 3585731 B2 JP3585731 B2 JP 3585731B2 JP 13062398 A JP13062398 A JP 13062398A JP 13062398 A JP13062398 A JP 13062398A JP 3585731 B2 JP3585731 B2 JP 3585731B2
Authority
JP
Japan
Prior art keywords
coil
magnetic field
single crystal
sub
main
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP13062398A
Other languages
Japanese (ja)
Other versions
JPH11322486A (en
Inventor
恒明 湊
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Mitsubishi Electric Corp
Original Assignee
Mitsubishi Electric Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Mitsubishi Electric Corp filed Critical Mitsubishi Electric Corp
Priority to JP13062398A priority Critical patent/JP3585731B2/en
Publication of JPH11322486A publication Critical patent/JPH11322486A/en
Application granted granted Critical
Publication of JP3585731B2 publication Critical patent/JP3585731B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Images

Description

【0001】
【発明の属する技術分野】
この発明は、例えば半導体材料として用いるシリコン単結晶を製造する装置に関し、特に結晶原料融液に磁界を印加する磁界発生部を具備した磁界印加式単結晶製造装置に関するものである。
【0002】
【従来の技術】
図9は、例えば特公平3−61630号公報に記載されたCZ法(チョコラルスキー法)に記載された従来の単結晶製造装置の構成図である。
図に示すように、単結晶原料融液1(以下、融液1と称す)が充填してあるルツボ2は、ヒータ3により加熱され、単結晶材料は常に融液状態に保たれている。この融液1中に、種結晶4を挿入し、引き上げ駆動機構5により種結晶4をある一定速度にて引き上げていくと、固体−液界面境界層6にて結晶が成長し、単結晶7が生成される。
この際、ヒータ3の加熱によって誘起される融液1の液体的運動、すなわち熱対流8が発生する。
【0003】
この熱対流8の発生原因は次のように説明される。すなわち、熱対流8は、一般に流体の熱膨張による浮力と流体の粘性力との釣り合いが破れたときに生じる。この浮力と粘性力との釣り合い関係を表す無次元量がグラスホフ数NGrである。
【0004】
Gr=g・α・△T・R/ν
ここで、g;重力加速度
α;融液の熱膨張率
△T;ルツボ半径方向温度差
R;ルツボ半径
ν;融液の動粘性係数
【0005】
一般に、グラスホフ数NGrが融液1の幾何学的寸法、熱的境界条件等によって決定される臨界値を越えると、融液1内で熱対流8が発生する。通常、NGr>10にて融液1の熱対流8は乱流状態となり、NGr>10では攪乱状態となる。現在行われている直径7.62〜10.16センチ(3〜4インチ)の単結晶引き上げの融液条件においては、上記式によりNGr>10となり、融液1内は攪乱状態となり、融液の表面すなわち固体−液界面境界層6は波立った状態となる。
【0006】
この様な攪乱状態の熱対流8が存在すると、融液1内、特に固体−液界面境界層6での温度変動が激しくなり、個体−液界面境界層6の厚さの位置的および時間的変動が激しく、成長中結晶の微視的再溶解が顕著となり、成長した単結晶7中には転位ループ、積層欠陥等が発生する。しかもこの欠陥部分は、不規則な個体−液界面境界層6の変動により単結晶引き上げ方向に対して不均一に発生する。
さらに、高温の融液1(例えば1500℃程度)が接するルツボ2内面より融液1中に溶解している不純物9がこの熱対流8に搬送され、融液1の内部全体にわたって分散する。この不純物9が核となり単結晶7中に転位ループや欠陥、成長縞等が発生して単結晶7の品質を劣化させている。このため、この様な単結晶7からLSIのウエハを製造すると、欠陥部分を含んだウエハは電気的特性が劣化しているため、使用不可能であり、従って歩留まりが悪くなる。
【0007】
今後、単結晶7は益々大直径化してゆくが、上記のグラスホフ数の式からもわかるようにルツボ2の直径が増大すればする程、グラスホフ数も増大し、融液1の熱対流8は一層激しさを増し、単結晶7の品質も劣化の一途をたどることになる。そこで、熱対流8を抑制し熱的・化学的に平衡状態に近い成長条件にて単結晶引き上げを行うために、融液1に直流磁界を印加する手法が提案されている。
図10は、従来の磁界印加式単結晶製造装置の構成図である。図に示すように、単結晶引き上げ方向と直交する方向である矢印11の方向で、融液1中に一様磁界が印加されるように、ルツボ2の外周に磁石10を配置する。単結晶7の融液1は一般に電気伝導度σを有する導電体である。電気伝導度を有する流体が熱対流8により運動する際、磁界印加方向11と平行でない方向に運動している流体は、レンツの法則により磁気的抵抗力を受ける。この為熱対流8の運動は阻止される。一般に、磁界が印加されたときの磁気抵抗力すなわち磁気粘性係数νcfiは、
【0008】
νcfi=(μHD)σ/ρ
ここで、μ;融液の透磁率
H;磁場強さ
D;ルツボ直径
σ;融液の電気伝導度
ρ;融液の密度
【0009】
となり、磁場強さが増大すると磁気粘性係数νcfiが増大し、先に示したグラスホフ数NGrの式中のνが増大することとなりグラスホフ数は急速に減少し、ある磁場強さによってグラスホフ数を臨界値より小さくすることができる。これにより、融液1の熱対流は完全に抑制される。この様にして磁界を印加することにより熱対流8が抑制されるので上記した単結晶7中の不純物含有、転位ループの発生、欠陥、成長縞の発生が無くなり、しかも単結晶引き上げ方向に均一な品質の単結晶7が得られ、単結晶7の品質および歩留まりが向上する。
【0010】
上記のような特性を有する磁界印加式単結晶製造装置として、近年、カスプ磁界を印加する方法が提案されている。このカスプ磁界は、ルツボ内融液に軸対象な水平磁界を発生させ、高品質な単結晶を引き上げるのに最適な磁界である。
図11は、例えば特開昭61−222984号公報に記載された、カスプ磁界印加による従来の磁界印加式単結晶製造装置の構成図である。なお、図における1〜4、6および7は図9および図10で示したものと同様である。
図に示すように、ルツボ2の上方には上部コイル12が、下方には下部コイル13が、相互に同極同士が対向するように配置される。また、上部コイル12は、ルツボ2軸と平行に設置されたガイド体14に、上下方向に移動可能に取り付けられ、下部コイル13は固定端に固定される。この様な磁石配置により、ルツボ2内の融液1中に磁界印加方向15で示すカスプ磁界を発生する。
【0011】
この様なカスプ磁界を利用する際、単結晶7を引き上げて行くに伴い、融液1面の低下および融液1量の減少が生じ、これに伴い最適な磁界分布も変わるものである。この為、上部コイル12を上下方向に移動させることにより、ルツボ2内の原料融液1に印加するカスプ磁界を常に最適に保ち、高品質な単結晶を製造するものである。
【0012】
また、カスプ磁界印加による従来の磁界印加式単結晶製造装置の別例として、上部コイル12および下部コイル13の双方を固定し、少なくとも一方のコイル12、13の励磁電流を可変にすることによりコイル12、13の起磁力を調整して、ルツボ2内の原料融液1に印加するカスプ磁界を常に最適に保つ様にしたものも示されている。
【0013】
【発明が解決しようとする課題】
従来のカスプ磁界印加による磁界印加式単結晶製造装置は、以上の様に構成されているため、単結晶引き上げに伴って変動する融液1の状態に合わせて、コイル12の移動、あるいはコイル12、13の励磁電流を可変にして、常に最適なカスプ磁界を印加するものであった。
しかしながら、コイル12を移動させるには、機械的な位置調整機構が必要であり、装置自体が複雑で高価になってしまう、また、単結晶引き上げに用いる上記の様なカスプ磁界は比較的強力な磁力が必要とされ、コイル12の移動は、そのような強力な磁力に逆らって正確な位置変動が要求されるものであり、カスプ磁界を最適に保つことは容易ではなかった。
また、コイル12、13の励磁電流を可変にすることによりコイル12、13の起磁力を調整するには、それぞれのコイル12、13に大きな通電用電源が必要で、電源コストが高く装置が高価になるものであった。
【0014】
この発明は、上記のような問題点を解消するために成されたものであって、単結晶引き上げ時にルツボ内の原料融液に印加するカスプ磁界を常に最適になるように容易に調整可能で、高品質な単結晶が製造でき、かつ安価で簡便な、磁界印加式単結晶製造装置を提供することを目的とする。
【0015】
【課題を解決するための手段】
この発明に係わる請求項1記載の磁界印加式単結晶製造装置は、ルツボ内の原料融液に種結晶を挿入し、この種結晶を引き上げることにより単結晶を生成する単結晶引き上げ部と、上記ルツボ内の原料融液に、該ルツボ軸に対して等軸対称的かつ放射状のカスプ磁界を与える磁界発生部とを備え、上記磁界発生部が、上記ルツボ周囲の上下に相対向して配置され、直列に結線された一対の主コイルと、該主コイルと同軸で配置され、その励磁電流の方向および大きさが可変で該主コイルより小さい起磁力を有する1個の副コイルとで構成されたものである。
【0016】
この発明に係わる請求項2記載の磁界印加式単結晶製造装置は、請求項1において、主コイル間の距離を該主コイルの直径の半分程度とし、副コイルの起磁力が上記主コイルの起磁力の0.3倍を越えないものである。
【0017】
この発明に係わる請求項3記載の磁界印加式単結晶製造装置は、請求項1または2において、一対の主コイルおよび副コイルが超電導コイルから成り、上記副コイルが上記一対の主コイル間の中央に配置されたものである。
【0018】
この発明に係わる請求項4記載の磁界印加式単結晶製造装置は、請求項1〜3のいずれかにおいて、一対の主コイルおよび副コイルが極低温状態に保持される超電導コイルから成り、上記副コイルの電流リードと、上記主コイルの電流リードとを一部共通化して発熱量を低減したものである。
【0019】
この発明に係わる請求項5記載の磁界印加式単結晶製造装置は、請求項1〜4のいずれかにおいて、副コイルが一対の主コイル間の中央に配置され、上記主コイルおよび上記副コイルの外周を磁気シールドで覆ったものである。
【0020】
この発明に係わる請求項6記載の磁界印加式単結晶製造装置は、請求項5において、一対の主コイルおよび副コイルが超電導コイルから成り、磁気シールドを上記超電導コイルを収納する真空容器の一部としたものである。
【0021】
この発明に係わる請求項7記載の磁界印加式単結晶製造装置は、請求項5または6において、磁気シールドに、外部との接続のための第1の切り欠き部と、電磁力の平衡を保つ第2の切り欠き部とを設け、上記第1および第2の切り欠き部が、上下対称性および軸の周りに複数回の回転対称性を有して配置されたものである。
【0022】
【発明の実施の形態】
実施の形態1.
以下、この発明の実施の形態1を図について詳細に説明する。
図1は、この発明の実施の形態1による磁界印加式単結晶製造装置の構成図である。図において16はルツボ、17はルツボ16内に充填された単結晶の原料融液(以下、融液17と称す)、18はルツボ16を加熱するヒータ、19は融液17中に挿入される種結晶、20は融液17面である固体−液界面境界層、21は生成された単結晶であり、これら16〜21および図示しない単結晶引き上げ駆動機構により単結晶引き上げ部が構成される。また、22a、22bは相互に同極同士が対向するようにルツボ16周囲の上下に配置された一対の主コイル、23は主コイル22a、22b間で、一方の主コイル22aに隣接して配置された副コイルであり、これらのコイル22a、22b、23により磁界発生部を構成する。
また、24は上記主コイル22a、22bおよび副コイル23によりルツボ16内の融液17に印加されたカスプ磁界の印加方向を示すもので、25は磁界0の点である。26はヒータの加熱によって誘起される融液17の液体的運動である熱対流である。
【0023】
図2は、主コイル22a、22bおよび副コイル23と電源との結線を示した図である。図に示すように、一対の主コイル22a、22bは直列に結線されて1個の主コイル用電源27に結線される。一方副コイル23は極性切り換え器29を介して副コイル用電源28に結線され、両極性でかつ通電量も可変に構成される。この主コイル22a、22bは例えば約100kAの起磁力を発生させ、副コイル23は、±約10kAの起磁力を発生させるものとする。
一対の主コイル22a、22bは、逆方向に通電されて相互に同極同士が対向する様に励磁され、別途励磁される副コイル23において、励磁電流の方向および大きさを調整することにより、カスプ磁界の磁界0の点25の上下方向位置を調整する。
【0024】
次に動作について説明する。
ルツボ16はヒータ18により加熱され、ルツボ16内に充填された単結晶原料は常に融液17状態に保たれている。この融液17中に種結晶19を挿入し、引き上げ駆動機構により種結晶19をある一定速度にて引き上げていくと、固体−液界面境界層20にて結晶が成長し、単結晶21が生成される。また、主コイル22a、22bおよび副コイル23により、磁界印加方向24で示す様に、ルツボ16軸に対して等軸対称的かつ放射状のカスプ磁界を、ルツボ16内の融液17中に発生させる。図1では、磁界0の点25は融液17面である固体−液界面境界層20上に設定されている。
この単結晶21の引き上げ生成時に、単結晶21を引き上げて行くに伴い、融液17面の低下および融液17量の減少が生じ、これに伴い最適な磁界分布も変わるものである。この為、副コイル23の励磁電流を調整することにより、単結晶21引き上げに伴い磁界0の点25を降下させて、ルツボ16内の融液17に印加するカスプ磁界を常に最適に保つ。この場合、副コイル23の励磁電流を調整することにより、磁界0の点25を±約25mmの範囲で上下に位置変動させることができる。
【0025】
この様にしてルツボ16内の融液17に常に最適なカスプ磁界を印加することにより熱対流26が効果的に抑制され、単結晶21中の不純物含有、転位ループの発生、欠陥、成長縞の発生が無くなり、しかも単結晶引き上げ方向に均一な高品質の単結晶7が得られる。
【0026】
この実施の形態では、直列に結線された一対の主コイル22a、22bと、それより小さい起磁力を有する副コイル23とでカスプ磁界を発生させ、副コイル23の励磁電流の方向および大きさを調整して、単結晶21引き上げ生成時に常にカスプ磁界を最適に保つようにした。この為、従来のコイル12を磁力に逆らって移動させるもののように、機械的な位置調整機構は不要であり、装置が安価で簡便にでき、かつ最適なカスプ磁界を電気的に容易に調整して保つことができて、高品質な単結晶が製造できる。
また、一対の主コイル22a、22bは直列に結線されているため、主コイル22a、22b用の大きな通電用電源は1個で済み、別途設けられた副コイル23用の電源は、主コイル22a、22bよりも小さな電源容量でよいため、電源コストが低減でき、装置価格がさらに低減できる。
【0027】
なお、上記実施の形態では、副コイル23を主コイル22a、22b間で、一方の主コイル22aに隣接して配置したが、副コイル23の位置はこれに限るものではなく、主コイル22a、22b間のどの位置でも、また主コイル22a、22bの外側の近接した位置でも、同様な効果が得られる。
【0028】
実施の形態2.
上記実施の形態1において、一対の主コイル22a、22b間の距離は、通常該主コイル22a、22bの直径の半分程度であり、その場合、副コイル23の起磁力は主コイル22a、22bのものの0.3倍を越えないもので十分である。
例えば、一対の主コイル22a、22bが、直径約2.2m、間隔約1.1mの場合、副コイル23の起磁力と磁界0の点25の位置変動との関係を図3に示す。図に示すように、副コイル23の起磁力が主コイル22a、22bの±30%で、磁界0の点25を±0.2mの範囲で位置変動させることができる。
この様に、一対の主コイル22a、22b間の距離を該主コイル22a、22bの直径の半分程度とし、副コイル23の起磁力が主コイル22a、22bのものの0.3倍あれば、磁界0の点25を主コイル22a、22bの直径の±10%程度の範囲で位置調整することができ、この調整範囲はルツボ16に対して十分である。このため、副コイル23の起磁力を主コイル22a、22bのものの0.3倍を越えないものにすることにより、電源コストを効果的に低減して、磁界0の点25の位置調整によるカスプ磁界の最適化が図れる。
【0029】
実施の形態3.
図4は、この発明の実施の形態3による磁界印加式単結晶製造装置の構成図である。図に示すように、主コイル30a、30bおよび副コイル31を超電導コイルで構成し、超電導副コイル31を一対の超電導主コイル30a、30b間の中央に配設する。超電導主コイル30a、30bおよび超電導副コイル31と電源との結線は、実施の形態1で示した図2のものと同様である。
一般に、超電導コイルにおいては、短時間でコイルの励磁状態が消滅するクエンチという現象が発生する場合がある。この実施の形態では、超電導主コイル30a、30bは直列に結線され、同極同士が対抗するように配置されている。このため、超電導主コイル30a、30bのいずれかでクエンチが発生すると双方の超電導主コイル30a、30bで励磁状態が消滅するが、超電導主コイル30a、30b間の中央に配設された超電導副コイル31には、2つの超電導主コイル30a、30bからの相反する誘導起電力が働き相殺されるため、超電導副コイル31に誘導起電力が発生しない。また、逆に超電導副コイル31にクエンチが発生しても、超電導主コイル30a、30bに誘導起電力が発生しない。
通常、クエンチ時に発生する誘導起電力からコイルを保護するため、抵抗やダイオードなどの保護回路を挿入するものであるが、この実施の形態では、クエンチ時に誘導起電力が発生するのが防止できるため、保護回路が簡略化できる。
【0030】
実施の形態4.
図5は、この発明の実施の形態4による磁界印加式単結晶製造装置の結線図である。超電導コイル30a、30b、31は、真空容器内で、液体ヘリウム等で極低温状態に保持される保冷容器等に収納され、常温中に布設された電流リード32により、室温領域に配置された電源28、29に接続される。図に示すように、超電導副コイル31の電流リード32と、超電導主コイル30a、30bの電流リード32とを一部共通化して発熱量を低減することにより、電流リード32から極低温領域への熱侵入を低減でき、超電導コイル30a、30b、31を信頼性良く超電導状態に保持できる。
【0031】
実施の形態5.
図6は、この発明の実施の形態5による磁界印加式単結晶製造装置の構成図である。図に示すように、超電導副コイル31は一対の超電導主コイル30a、30b間の中央に配置される。また、これらの超電導コイル30a、30b、31は真空容器33に収納され、その収納容器33の外周に、例えば鉄等の強磁性体から成る磁気シールド34を設ける。これにより、漏れ磁場が低減できる。
また、超電導主コイル30a、30bにクエンチが発生しても、一対の超電導主コイル30a、30bは直列に結線されているため、励磁電流の変動は同一であり、磁気シールド34と超電導主コイル30a、30bとの間の電磁力の平衡状態が保たれる。さらに超電導副コイル31は磁気シールド34の上下方向の中央に設置されているため、超電導副コイル31の励磁電流の変化やクエンチが発生した場合も、不平衡電磁力が働かず、磁気シールド34と超電導副コイル31との間の電磁力の平衡状態が保たれる。この為、超電導コイル30a、30b、31の支持が容易になり、電磁力支持構造が簡便になる。
【0032】
なお、上記実施の形態では、超電導コイル30a、30b、31を用いたが、常電導コイルを用いて、常電導副コイルを一対の常電導主コイル間の中央に配置し、これらの常電導コイルの外周に、磁気シールド34を設けても良く、電磁力の平衡状態が保持できて、漏れ磁場が低減できる。
【0033】
実施の形態6.
図7は、この発明の実施の形態6による磁界印加式単結晶製造装置の構成図である。上記実施の形態5において、超電導コイル30a、30b、31を用い、図に示すように、磁気シールド34を真空容器33の外周部に一部共用して利用したものである。
これにより、磁気シールド34と真空容器33とを一部共用でき、装置を小型化でき、コスト低減も図れる。
【0034】
実施の形態7.
図8は、この発明の実施の形態7による磁界印加式単結晶製造装置の構成図である。磁気シールド34には、真空排気口、計測線の引き出し、電流リードの引き出し等のため、切り欠き部を設けることがある。図に示すように、上記実施の形態5または6における磁気シールド34に、計測線35の引き出し、および真空弁36を設けるために、第1の切り欠き部として、計測線用切り欠き部37aおよび真空弁用切り欠き部37bを設け、これらの切り欠き部37a、37bに対して、上下対称性を有する位置と、軸の周りに例えば4回回転対称性を有する位置とに、第2の切り欠き部として、対称配置切り欠き部38a、38bを設ける。また、切り欠き部37、38には、それぞれ真空封止用蓋39を設ける。
これにより、不平衡電磁力が低減でき、超電導コイル30a、30b、31と磁気シールド34との間に発生する電磁力の平衡状態が保たれて、超電導コイル30a、30b、31の支持が容易になり、電磁力支持構造が簡便になる。
【0035】
なお、対称配置切り欠き部38a、38bは、上下対称性を有する位置と、軸の周りに例えば4回回転対称性を有する位置とに設けたが、回転対称性については4回に限るものではなく、磁気シールド34の周方向に等間隔に配置されるものであればよい。
【0036】
【発明の効果】
以上のように、この発明に係わる請求項1記載の磁界印加式単結晶製造装置は、ルツボ内の原料融液に種結晶を挿入し、この種結晶を引き上げることにより単結晶を生成する単結晶引き上げ部と、上記ルツボ内の原料融液に、該ルツボ軸に対して等軸対称的かつ放射状のカスプ磁界を与える磁界発生部とを備え、上記磁界発生部が、上記ルツボ周囲の上下に相対向して配置され、直列に結線された一対の主コイルと、該主コイルと同軸で配置され、その励磁電流の方向および大きさが可変で該主コイルより小さい起磁力を有する1個の副コイルとで構成されたため、最適なカスプ磁界を電気的に容易に調整して保つことができて、高品質な単結晶が製造でき、また、電源コストが低減でき安価で簡便な装置構成が提供できる。
【0037】
またこの発明に係わる請求項2記載の磁界印加式単結晶製造装置は、請求項1において、主コイル間の距離を該主コイルの直径の半分程度とし、副コイルの起磁力が上記主コイルの起磁力の0.3倍を越えないものとしたため、高品質な単結晶が製造でき、かつ電源コストを効果的に低減できる。
【0038】
またこの発明に係わる請求項3記載の磁界印加式単結晶製造装置は、請求項1または2において、一対の主コイルおよび副コイルが超電導コイルから成り、上記副コイルが上記一対の主コイル間の中央に配置されたため、クエンチ時に誘導起電力が発生するのが防止できるため、保護回路が簡略化できる。
【0039】
またこの発明に係わる請求項4記載の磁界印加式単結晶製造装置は、請求項1〜3のいずれかにおいて、一対の主コイルおよび副コイルが極低温状態に保持される超電導コイルから成り、上記副コイルの電流リードと、上記主コイルの電流リードとを一部共通化して発熱量を低減したため、電流リードから極低温領域への熱侵入を低減でき、超電導コイルを信頼性良く超電導状態に保持できる。
【0040】
またこの発明に係わる請求項5記載の磁界印加式単結晶製造装置は、請求項1〜4のいずれかにおいて、副コイルが一対の主コイル間の中央に配置され、上記主コイルおよび上記副コイルの外周を磁気シールドで覆ったため、磁気シールドとコイルとの間の電磁力の平衡状態が保時できて、コイルの電磁力支持構造が簡便にできてコスト低減が図れ、漏れ磁場を低減することができる。
【0041】
またこの発明に係わる請求項6記載の磁界印加式単結晶製造装置は、請求項5において、一対の主コイルおよび副コイルが超電導コイルから成り、磁気シールドを上記超電導コイルを収納する真空容器の一部としたため、装置を小型化でき、コスト低減が図れて、漏れ磁場を低減することができる。
【0042】
またこの発明に係わる請求項7記載の磁界印加式単結晶製造装置は、請求項5または6において、磁気シールドに、外部との接続のための第1の切り欠き部と、電磁力の平衡を保つ第2の切り欠き部とを設け、上記第1および第2の切り欠き部が、上下対称性および軸の周りに複数回の回転対称性を有して配置されたため、コイルと磁気シールドとの間に発生する電磁力の平衡状態が保時できて、コイルの電磁力支持構造が簡便な安価な装置構成が提供できる。
【図面の簡単な説明】
【図1】この発明の実施の形態1による磁界印加式単結晶製造装置の構成図である。
【図2】この発明の実施の形態1による磁界印加式単結晶製造装置の結線図である。
【図3】この発明の実施の形態2による磁界印加式単結晶製造装置の降下を説明する図である。
【図4】この発明の実施の形態3による磁界印加式単結晶製造装置の構成図である。
【図5】この発明の実施の形態4による磁界印加式単結晶製造装置の結線図である。
【図6】この発明の実施の形態5による磁界印加式単結晶製造装置の構成図である。
【図7】この発明の実施の形態6による磁界印加式単結晶製造装置の構成図である。
【図8】この発明の実施の形態7による磁界印加式単結晶製造装置の構成図である。
【図9】従来の単結晶製造装置の構成図である。
【図10】従来の磁界印加式単結晶製造装置の構成図である。
【図11】従来の別例による磁界印加式単結晶製造装置の構成図である。
【符号の説明】
16 ルツボ、17 原料融液、19 種結晶、21 単結晶、
22a,22b 主コイル、23 副コイル、24 カスプ磁界印加方向、
29 極性切り替え器、30a,30b 超電導主コイル、
31 超電導副コイル、32 電流リード、33 真空容器、
34 磁気シールド、37a 第1の切り欠き部としての計測線用切り欠き部、37b 第1の切り欠き部としての真空弁用切り欠き部、
38a,38b 第2の切り欠き部としての対称配置切り欠き部。
[0001]
TECHNICAL FIELD OF THE INVENTION
The present invention relates to an apparatus for producing, for example, a silicon single crystal used as a semiconductor material, and more particularly to a magnetic field applying type single crystal producing apparatus provided with a magnetic field generator for applying a magnetic field to a crystal raw material melt.
[0002]
[Prior art]
FIG. 9 is a configuration diagram of a conventional single crystal manufacturing apparatus described in, for example, a CZ method (Czochralski method) described in Japanese Patent Publication No. 3-63030.
As shown in the figure, a crucible 2 filled with a single crystal raw material melt 1 (hereinafter, referred to as melt 1) is heated by a heater 3, and the single crystal material is always kept in a molten state. When the seed crystal 4 is inserted into the melt 1 and the seed crystal 4 is pulled up at a certain speed by the pulling drive mechanism 5, the crystal grows in the solid-liquid interface boundary layer 6 and the single crystal 7 Is generated.
At this time, the liquid motion of the melt 1 induced by the heating of the heater 3, that is, the heat convection 8 is generated.
[0003]
The cause of the generation of the heat convection 8 is explained as follows. That is, the thermal convection 8 generally occurs when the balance between the buoyancy due to the thermal expansion of the fluid and the viscous force of the fluid is broken. The dimensionless quantity representing the balance between the buoyancy and the viscous force is the Grashof number NGrIt is.
[0004]
NGr= g ・ α ・ △ T ・ R3/ Ν2
Where g: gravity acceleration
α: coefficient of thermal expansion of the melt
ΔT: Crucible radial temperature difference
R; crucible radius
ν: kinematic viscosity coefficient of the melt
[0005]
In general, the Grashof number NGrExceeds a critical value determined by the geometric dimensions of the melt 1, thermal boundary conditions, and the like, a thermal convection 8 occurs in the melt 1. Usually NGr> 106, The convection 8 of the melt 1 becomes turbulent,Gr> 109Then it is in a disturbed state. Under the current melt conditions for pulling a single crystal having a diameter of 7.62 to 10.16 cm (3 to 4 inches), NGr> 109The melt 1 is in a disturbed state, and the surface of the melt, that is, the solid-liquid interface boundary layer 6 is in a wavy state.
[0006]
When the heat convection 8 in such a disturbed state exists, temperature fluctuation in the melt 1, particularly in the solid-liquid interface boundary layer 6 becomes severe, and the thickness and the position and time of the solid-liquid interface boundary layer 6 become large. The fluctuation is severe, and the microscopic remelting of the growing crystal becomes remarkable, and dislocation loops, stacking faults, and the like occur in the grown single crystal 7. In addition, this defective portion is generated non-uniformly in the single crystal pulling direction due to irregular fluctuations of the solid-liquid interface boundary layer 6.
Further, impurities 9 dissolved in the melt 1 are conveyed to the heat convection 8 from the inner surface of the crucible 2 with which the high-temperature melt 1 (for example, about 1500 ° C.) is in contact, and dispersed throughout the melt 1. The impurities 9 serve as nuclei, causing dislocation loops, defects, growth stripes, and the like in the single crystal 7 to degrade the quality of the single crystal 7. For this reason, when an LSI wafer is manufactured from such a single crystal 7, the wafer including the defective portion cannot be used because the electrical characteristics are deteriorated, and the yield is deteriorated.
[0007]
In the future, the diameter of the single crystal 7 will gradually increase, but as can be seen from the above equation of Grashof number, as the diameter of the crucible 2 increases, the number of Grashof increases, and the heat convection 8 of the melt 1 increases. The intensity is further increased, and the quality of the single crystal 7 continues to deteriorate. Therefore, a method of applying a DC magnetic field to the melt 1 has been proposed in order to suppress the thermal convection 8 and perform single crystal pulling under growth conditions close to a thermally and chemically equilibrium state.
FIG. 10 is a configuration diagram of a conventional magnetic field application type single crystal manufacturing apparatus. As shown in the drawing, the magnet 10 is arranged on the outer periphery of the crucible 2 so that a uniform magnetic field is applied to the melt 1 in the direction of arrow 11 which is a direction orthogonal to the single crystal pulling direction. The melt 1 of the single crystal 7 is generally a conductor having electric conductivity σ. When a fluid having electrical conductivity moves by thermal convection 8, the fluid moving in a direction not parallel to the magnetic field application direction 11 receives a magnetoresistive force according to Lenz's law. Therefore, the motion of the heat convection 8 is stopped. In general, the magnetoresistance when a magnetic field is applied, that is, the magnetic viscosity coefficient νcfiIs
[0008]
νcfi= (ΜHD)2σ / ρ
Here, μ; permeability of the melt
H: magnetic field strength
D: Crucible diameter
σ: electric conductivity of the melt
ρ; density of melt
[0009]
When the magnetic field strength increases, the magnetic viscosity coefficient νcfiAnd the Grashof number N shown aboveGrBecomes larger, and the Grashof number decreases rapidly, and the Grashof number can be made smaller than the critical value by a certain magnetic field strength. Thereby, the heat convection of the melt 1 is completely suppressed. By applying the magnetic field in this way, the thermal convection 8 is suppressed, so that the above-mentioned impurity contained in the single crystal 7, the occurrence of dislocation loops, the occurrence of defects, and the occurrence of growth stripes are eliminated, and the uniformity in the single crystal pulling direction is uniform. A single crystal 7 of high quality is obtained, and the quality and yield of the single crystal 7 are improved.
[0010]
In recent years, a method of applying a cusp magnetic field has been proposed as a magnetic field application type single crystal manufacturing apparatus having the above characteristics. The cusp magnetic field is a magnetic field that is optimal for generating a high-quality single crystal by generating a horizontal magnetic field that is symmetrical with respect to the melt in the crucible.
FIG. 11 is a configuration diagram of a conventional magnetic field application type single crystal manufacturing apparatus using a cusp magnetic field described in, for example, JP-A-61-222984. In addition, 1-4, 6 and 7 in a figure are the same as that shown in FIG. 9 and FIG.
As shown in the figure, an upper coil 12 is disposed above the crucible 2 and a lower coil 13 is disposed below the crucible 2 so that the same poles are opposed to each other. The upper coil 12 is attached to a guide body 14 installed in parallel with the two axes of the crucible so as to be movable in the vertical direction, and the lower coil 13 is fixed to a fixed end. With such a magnet arrangement, a cusp magnetic field indicated by the magnetic field application direction 15 is generated in the melt 1 in the crucible 2.
[0011]
When such a cusp magnetic field is used, as the single crystal 7 is pulled up, the surface of the melt 1 decreases and the amount of the melt 1 decreases, and the optimum magnetic field distribution changes accordingly. For this reason, by moving the upper coil 12 in the vertical direction, the cusp magnetic field applied to the raw material melt 1 in the crucible 2 is always kept optimal, and a high-quality single crystal is manufactured.
[0012]
Further, as another example of a conventional magnetic field application type single crystal manufacturing apparatus by applying a cusp magnetic field, both the upper coil 12 and the lower coil 13 are fixed and the exciting current of at least one of the coils 12 and 13 is made variable. There is also shown one in which the magnetomotive forces of 12, 13 are adjusted so that the cusp magnetic field applied to the raw material melt 1 in the crucible 2 is always kept optimal.
[0013]
[Problems to be solved by the invention]
Since the conventional magnetic field applying type single crystal manufacturing apparatus by applying a cusp magnetic field is configured as described above, the coil 12 is moved or the coil 12 is moved in accordance with the state of the melt 1 which fluctuates as the single crystal is pulled up. , 13 are variable, and an optimum cusp magnetic field is always applied.
However, moving the coil 12 requires a mechanical position adjusting mechanism, which makes the device itself complicated and expensive, and the cusp magnetic field used for pulling a single crystal as described above is relatively strong. A magnetic force was required, and the movement of the coil 12 required precise position fluctuation against such a strong magnetic force, and it was not easy to keep the cusp magnetic field at an optimum.
Further, in order to adjust the magnetomotive force of the coils 12 and 13 by making the exciting currents of the coils 12 and 13 variable, a large power supply for the coils 12 and 13 is required, and the power supply cost is high and the apparatus is expensive. Was to become.
[0014]
The present invention has been made in order to solve the above problems, and can easily adjust a cusp magnetic field applied to a raw material melt in a crucible at the time of pulling a single crystal so as to always be optimal. It is an object of the present invention to provide an inexpensive and simple magnetic field applying type single crystal manufacturing apparatus capable of manufacturing a high quality single crystal.
[0015]
[Means for Solving the Problems]
A magnetic field application type single crystal manufacturing apparatus according to claim 1 of the present invention includes a single crystal pulling unit that generates a single crystal by inserting a seed crystal into a raw material melt in a crucible and pulling the seed crystal. A magnetic field generating unit for applying a radial cusp magnetic field to the raw material melt in the crucible, which is equiaxially symmetric with respect to the crucible axis, wherein the magnetic field generating units are disposed oppositely above and below the crucible. , A pair of main coils connected in series, and one sub-coil arranged coaxially with the main coil, the direction and magnitude of the exciting current thereof being variable and having a smaller magnetomotive force than the main coil. It is a thing.
[0016]
According to a second aspect of the present invention, there is provided a magnetic field applying type single crystal manufacturing apparatus as set forth in the first aspect, wherein a distance between the main coils is set to about half of a diameter of the main coil, and a magnetomotive force of the sub coil is generated by the main coil. It does not exceed 0.3 times the magnetic force.
[0017]
According to a third aspect of the present invention, there is provided a magnetic field applying type single crystal manufacturing apparatus according to the first or second aspect, wherein the pair of main coils and the sub-coil are formed of a superconducting coil, and the sub-coil is a center between the pair of main coils. It is arranged in.
[0018]
According to a fourth aspect of the present invention, there is provided a magnetic field application type single crystal manufacturing apparatus according to any one of the first to third aspects, wherein the pair of main coils and the sub-coil comprise a superconducting coil maintained at a very low temperature. The current lead of the coil and the current lead of the main coil are partially shared to reduce heat generation.
[0019]
According to a fifth aspect of the present invention, there is provided a magnetic field applying type single crystal manufacturing apparatus according to any one of the first to fourth aspects, wherein the sub-coil is disposed at the center between the pair of main coils, and The outer periphery is covered with a magnetic shield.
[0020]
According to a sixth aspect of the present invention, there is provided a magnetic field applying type single crystal manufacturing apparatus according to the fifth aspect, wherein a pair of the main coil and the sub-coil are formed of a superconducting coil, and a magnetic shield is a part of a vacuum vessel accommodating the superconducting coil. It is what it was.
[0021]
According to a seventh aspect of the present invention, there is provided a magnetic field applying type single crystal manufacturing apparatus according to the fifth or sixth aspect, wherein the magnetic shield is balanced with the first cutout for connection to the outside and the electromagnetic force. A second notch, wherein the first and second notches are arranged with vertical symmetry and rotational symmetry about the axis a plurality of times.
[0022]
BEST MODE FOR CARRYING OUT THE INVENTION
Embodiment 1 FIG.
Hereinafter, a first embodiment of the present invention will be described in detail with reference to the drawings.
FIG. 1 is a configuration diagram of a magnetic field application type single crystal manufacturing apparatus according to Embodiment 1 of the present invention. In the figure, 16 is a crucible, 17 is a single crystal raw material melt filled in the crucible 16 (hereinafter referred to as melt 17), 18 is a heater for heating the crucible 16, and 19 is inserted into the melt 17. A seed crystal, 20 is a solid-liquid interface boundary layer on the surface of the melt 17, and 21 is a generated single crystal. A single crystal pulling section is constituted by these 16-21 and a single crystal pulling drive mechanism (not shown). 22a and 22b are a pair of main coils arranged above and below the crucible 16 so that the same poles are opposed to each other, and 23 is arranged between the main coils 22a and 22b and adjacent to one main coil 22a. The sub-coils are provided, and these coils 22a, 22b, and 23 constitute a magnetic field generating unit.
Reference numeral 24 denotes a direction in which the cusp magnetic field applied to the melt 17 in the crucible 16 by the main coils 22a and 22b and the sub coil 23, and 25 denotes a point where the magnetic field is zero. Numeral 26 denotes thermal convection, which is a liquid motion of the melt 17 induced by heating of the heater.
[0023]
FIG. 2 is a diagram showing connection between the main coils 22a and 22b and the sub coil 23 and the power supply. As shown in the figure, the pair of main coils 22a and 22b are connected in series and connected to one main coil power supply 27. On the other hand, the sub-coil 23 is connected to a sub-coil power supply 28 via a polarity switch 29, and is configured to have both polarities and a variable amount of current. The main coils 22a and 22b generate a magnetomotive force of, for example, about 100 kA, and the sub coil 23 generates a magnetomotive force of about ± 10 kA.
The pair of main coils 22a and 22b are energized in the opposite direction, are excited so that the same poles are opposed to each other, and in the separately excited sub coil 23, by adjusting the direction and magnitude of the exciting current, The vertical position of the point 25 of the magnetic field 0 of the cusp magnetic field is adjusted.
[0024]
Next, the operation will be described.
The crucible 16 is heated by the heater 18, and the single crystal raw material filled in the crucible 16 is always kept in the state of the melt 17. When the seed crystal 19 is inserted into the melt 17 and the seed crystal 19 is pulled up by a pulling drive mechanism at a certain speed, the crystal grows in the solid-liquid interface boundary layer 20 and a single crystal 21 is formed. Is done. Further, as shown by the magnetic field application direction 24, the main coils 22 a and 22 b and the sub-coil 23 generate a radial cusp magnetic field which is equiaxially symmetric with respect to the crucible 16 axis in the melt 17 in the crucible 16. . In FIG. 1, the point 25 of the magnetic field 0 is set on the solid-liquid interface boundary layer 20 which is the surface of the melt 17.
When the single crystal 21 is pulled up, as the single crystal 21 is pulled up, the surface of the melt 17 and the amount of the melt 17 decrease, and the optimum magnetic field distribution changes accordingly. Therefore, by adjusting the exciting current of the sub-coil 23, the point 25 of the magnetic field 0 is lowered as the single crystal 21 is pulled up, and the cusp magnetic field applied to the melt 17 in the crucible 16 is always kept optimal. In this case, by adjusting the exciting current of the sub-coil 23, the position 25 of the magnetic field 0 can be moved up and down within a range of ± about 25 mm.
[0025]
In this way, by always applying the optimal cusp magnetic field to the melt 17 in the crucible 16, the thermal convection 26 is effectively suppressed, and the inclusion of impurities in the single crystal 21, the generation of dislocation loops, the occurrence of defects, and Generation is eliminated, and a high-quality single crystal 7 uniform in the single crystal pulling direction is obtained.
[0026]
In this embodiment, a cusp magnetic field is generated by a pair of main coils 22a and 22b connected in series and a sub coil 23 having a smaller magnetomotive force, and the direction and magnitude of the exciting current of the sub coil 23 are reduced. Adjustment was made so that the cusp magnetic field was always kept optimal when the single crystal 21 was pulled up. For this reason, a mechanical position adjusting mechanism is not necessary unlike the conventional method of moving the coil 12 against magnetic force, and the apparatus can be inexpensive and simple, and the optimal cusp magnetic field can be easily adjusted electrically. And a high quality single crystal can be produced.
Also, since the pair of main coils 22a and 22b are connected in series, only one large power supply for the main coils 22a and 22b is required, and the separately provided power supply for the sub-coil 23 is the main coil 22a. , 22b, the power supply cost can be reduced, and the apparatus cost can be further reduced.
[0027]
In the above embodiment, the sub coil 23 is arranged between the main coils 22a and 22b and adjacent to one main coil 22a. However, the position of the sub coil 23 is not limited to this, and the main coil 22a, A similar effect can be obtained at any position between the coils 22b and at a close position outside the main coils 22a and 22b.
[0028]
Embodiment 2 FIG.
In the first embodiment, the distance between the pair of main coils 22a and 22b is usually about half the diameter of the main coils 22a and 22b. In this case, the magnetomotive force of the sub coil 23 is smaller than that of the main coils 22a and 22b. What does not exceed 0.3 times of the one is sufficient.
For example, when the pair of main coils 22a and 22b have a diameter of about 2.2 m and an interval of about 1.1 m, the relationship between the magnetomotive force of the sub-coil 23 and the positional change of the point 25 of the magnetic field 0 is shown in FIG. As shown in the figure, when the magnetomotive force of the sub coil 23 is ± 30% of that of the main coils 22a and 22b, the point 25 of the magnetic field 0 can be displaced within a range of ± 0.2 m.
As described above, if the distance between the pair of main coils 22a and 22b is about half the diameter of the main coils 22a and 22b and the magnetomotive force of the sub coil 23 is 0.3 times that of the main coils 22a and 22b, the magnetic field The position of the zero point 25 can be adjusted within a range of about ± 10% of the diameter of the main coils 22a and 22b, and this adjustment range is sufficient for the crucible 16. For this reason, by making the magnetomotive force of the sub coil 23 not more than 0.3 times that of the main coils 22a and 22b, the power supply cost can be effectively reduced, and the cusp by adjusting the position of the point 25 of the magnetic field 0 can be effectively reduced. The magnetic field can be optimized.
[0029]
Embodiment 3 FIG.
FIG. 4 is a configuration diagram of a magnetic field application type single crystal manufacturing apparatus according to Embodiment 3 of the present invention. As shown in the figure, the main coils 30a and 30b and the sub coil 31 are constituted by superconducting coils, and the superconducting sub coil 31 is disposed at the center between the pair of superconducting main coils 30a and 30b. The connections between the superconducting main coils 30a and 30b and the superconducting subcoil 31 and the power supply are the same as those in FIG. 2 shown in the first embodiment.
Generally, in a superconducting coil, a phenomenon called quench may occur in which the excited state of the coil disappears in a short time. In this embodiment, the superconducting main coils 30a and 30b are connected in series and arranged so that the same poles oppose each other. Therefore, when a quench occurs in one of the superconducting main coils 30a, 30b, the excitation state disappears in both superconducting main coils 30a, 30b, but the superconducting sub-coil disposed in the center between the superconducting main coils 30a, 30b Since opposing induced electromotive forces from the two superconducting main coils 30a and 30b work and cancel each other, no induced electromotive force is generated in the superconducting auxiliary coil 31. Conversely, even if quench occurs in the superconducting sub-coil 31, no induced electromotive force occurs in the superconducting main coils 30a, 30b.
Normally, a protection circuit such as a resistor or a diode is inserted to protect the coil from the induced electromotive force generated at the time of quenching. However, in this embodiment, generation of the induced electromotive force at the time of quench can be prevented. In addition, the protection circuit can be simplified.
[0030]
Embodiment 4 FIG.
FIG. 5 is a connection diagram of a magnetic field application type single crystal manufacturing apparatus according to Embodiment 4 of the present invention. The superconducting coils 30a, 30b, and 31 are housed in a cold container or the like that is kept in a cryogenic state with liquid helium or the like in a vacuum container, and are provided with a current lead 32 laid at room temperature to be placed in a room temperature room. 28 and 29. As shown in the figure, the current lead 32 of the superconducting sub-coil 31 and the current lead 32 of the superconducting main coils 30a and 30b are partially shared to reduce the amount of heat generated, so that the current lead 32 to the cryogenic temperature region is reduced. The heat penetration can be reduced, and the superconducting coils 30a, 30b, 31 can be reliably maintained in the superconducting state.
[0031]
Embodiment 5 FIG.
FIG. 6 is a configuration diagram of a magnetic field application type single crystal manufacturing apparatus according to Embodiment 5 of the present invention. As shown in the figure, the superconducting sub-coil 31 is disposed at the center between the pair of superconducting main coils 30a and 30b. The superconducting coils 30a, 30b, 31 are housed in a vacuum container 33, and a magnetic shield 34 made of a ferromagnetic material such as iron is provided on the outer periphery of the container 33. Thereby, the leakage magnetic field can be reduced.
Also, even if the quench occurs in the superconducting main coils 30a, 30b, since the pair of superconducting main coils 30a, 30b are connected in series, the fluctuation of the exciting current is the same, and the magnetic shield 34 and the superconducting main coil 30a , 30b are balanced. Further, since the superconducting sub-coil 31 is installed at the center of the magnetic shield 34 in the vertical direction, even when the exciting current of the superconducting sub-coil 31 changes or quench occurs, the unbalanced electromagnetic force does not work, and the The balanced state of the electromagnetic force between the superconducting sub-coil 31 is maintained. Therefore, the superconducting coils 30a, 30b, 31 are easily supported, and the electromagnetic force supporting structure is simplified.
[0032]
In the above embodiment, the superconducting coils 30a, 30b and 31 are used. However, the normal conducting coil is used, and the normal conducting sub-coil is arranged at the center between the pair of normal conducting main coils. A magnetic shield 34 may be provided on the outer periphery of the device, so that a balanced state of the electromagnetic force can be maintained and the leakage magnetic field can be reduced.
[0033]
Embodiment 6 FIG.
FIG. 7 is a configuration diagram of a magnetic field application type single crystal manufacturing apparatus according to Embodiment 6 of the present invention. In the fifth embodiment, the superconducting coils 30a, 30b, and 31 are used, and the magnetic shield 34 is partially used for the outer peripheral portion of the vacuum vessel 33 as shown in FIG.
As a result, the magnetic shield 34 and the vacuum vessel 33 can be partially used in common, and the apparatus can be reduced in size and cost can be reduced.
[0034]
Embodiment 7 FIG.
FIG. 8 is a configuration diagram of a magnetic field application type single crystal manufacturing apparatus according to Embodiment 7 of the present invention. The magnetic shield 34 may be provided with a notch for evacuation of an evacuation port, extraction of a measurement line, extraction of a current lead, and the like. As shown in the figure, in order to draw out the measurement line 35 and to provide the vacuum valve 36 in the magnetic shield 34 in the fifth or sixth embodiment, the measurement line notch 37a and the first notch are used as the first notch. A notch 37b for a vacuum valve is provided, and a second notch is formed between the notches 37a and 37b at a position having vertical symmetry and a position having, for example, four-fold rotational symmetry about an axis. As the notches, symmetrically arranged notches 38a and 38b are provided. In addition, the notch portions 37 and 38 are provided with lids 39 for vacuum sealing, respectively.
Thereby, the unbalanced electromagnetic force can be reduced, and the balanced state of the electromagnetic force generated between the superconducting coils 30a, 30b, 31 and the magnetic shield 34 is maintained, and the superconducting coils 30a, 30b, 31 are easily supported. Therefore, the electromagnetic force supporting structure is simplified.
[0035]
Note that the symmetrically arranged notches 38a and 38b are provided at a position having vertical symmetry and a position having, for example, four times rotational symmetry around the axis. However, the rotational symmetry is not limited to four times. Instead, any material may be used as long as it is arranged at equal intervals in the circumferential direction of the magnetic shield 34.
[0036]
【The invention's effect】
As described above, the magnetic field application type single crystal manufacturing apparatus according to claim 1 according to the present invention provides a single crystal that forms a single crystal by inserting a seed crystal into a raw material melt in a crucible and pulling up the seed crystal. A lifting part, and a magnetic field generating part for applying a radial cusp magnetic field to the raw material melt in the crucible in a radially equiaxed manner with respect to the crucible axis, wherein the magnetic field generating part is vertically positioned around the crucible. A pair of main coils arranged in the same direction and connected in series, and one sub coil arranged coaxially with the main coil, the direction and magnitude of the exciting current being variable and having a magnetomotive force smaller than the main coil. Because it is composed of coils, the optimal cusp magnetic field can be easily adjusted and maintained electrically easily, high-quality single crystals can be manufactured, and power supply costs can be reduced, and an inexpensive and simple device configuration is provided. it can.
[0037]
According to a second aspect of the present invention, there is provided a magnetic field applying type single crystal manufacturing apparatus according to the first aspect, wherein a distance between the main coils is set to about half of a diameter of the main coil, and a magnetomotive force of the sub coil is set to a value of the main coil. Since it does not exceed 0.3 times the magnetomotive force, a high-quality single crystal can be manufactured and the power supply cost can be effectively reduced.
[0038]
According to a third aspect of the present invention, there is provided a magnetic field applying type single crystal manufacturing apparatus according to the first or second aspect, wherein the pair of main coils and the sub coil are formed of a superconducting coil, and the sub coil is disposed between the pair of main coils. Since it is arranged at the center, the generation of induced electromotive force at the time of quenching can be prevented, so that the protection circuit can be simplified.
[0039]
According to a fourth aspect of the present invention, there is provided a magnetic-field-applied single-crystal manufacturing apparatus according to any one of the first to third aspects, wherein the pair of main coils and the sub-coils are each formed of a superconducting coil maintained at an extremely low temperature. Since the current lead of the sub coil and the current lead of the main coil are partially shared to reduce the amount of heat generated, heat penetration from the current lead to the cryogenic region can be reduced, and the superconducting coil can be reliably maintained in the superconducting state. it can.
[0040]
According to a fifth aspect of the present invention, there is provided a magnetic field applying type single crystal manufacturing apparatus according to any one of the first to fourth aspects, wherein the sub coil is disposed at the center between the pair of main coils, and the main coil and the sub coil are arranged. Since the outer circumference of the coil is covered with a magnetic shield, the electromagnetic force between the magnetic shield and the coil can be kept in a balanced state, the structure for supporting the electromagnetic force of the coil can be simplified, the cost can be reduced, and the leakage magnetic field can be reduced. Can be.
[0041]
According to a sixth aspect of the present invention, there is provided a magnetic field applying type single crystal manufacturing apparatus according to the fifth aspect, wherein a pair of the main coil and the sub coil are formed of a superconducting coil, and a magnetic shield is provided in the vacuum container for accommodating the superconducting coil. As a result, the size of the device can be reduced, the cost can be reduced, and the leakage magnetic field can be reduced.
[0042]
According to a seventh aspect of the present invention, there is provided a magnetic field applying type single crystal manufacturing apparatus according to the fifth or sixth aspect, wherein the magnetic shield is provided with a first cutout for connection to the outside, and an electromagnetic force balance. And a second notch for maintaining the coil and the magnetic shield, since the first and second notches are arranged with vertical symmetry and rotational symmetry about the axis a plurality of times. Thus, an equilibrium state of the electromagnetic force generated between the coils can be maintained, and an inexpensive device configuration with a simple electromagnetic force supporting structure for the coil can be provided.
[Brief description of the drawings]
FIG. 1 is a configuration diagram of a magnetic field application type single crystal manufacturing apparatus according to a first embodiment of the present invention.
FIG. 2 is a connection diagram of the magnetic field application type single crystal manufacturing apparatus according to the first embodiment of the present invention.
FIG. 3 is a diagram for explaining a descent of a magnetic field application type single crystal manufacturing apparatus according to a second embodiment of the present invention.
FIG. 4 is a configuration diagram of a magnetic field application type single crystal manufacturing apparatus according to a third embodiment of the present invention.
FIG. 5 is a connection diagram of a magnetic field application type single crystal manufacturing apparatus according to a fourth embodiment of the present invention.
FIG. 6 is a configuration diagram of a magnetic field application type single crystal manufacturing apparatus according to a fifth embodiment of the present invention.
FIG. 7 is a configuration diagram of a magnetic field application type single crystal manufacturing apparatus according to a sixth embodiment of the present invention.
FIG. 8 is a configuration diagram of a magnetic field application type single crystal manufacturing apparatus according to a seventh embodiment of the present invention.
FIG. 9 is a configuration diagram of a conventional single crystal manufacturing apparatus.
FIG. 10 is a configuration diagram of a conventional magnetic field application type single crystal manufacturing apparatus.
FIG. 11 is a configuration diagram of a magnetic field application type single crystal manufacturing apparatus according to another conventional example.
[Explanation of symbols]
16 crucible, 17 raw material melt, 19 seed crystal, 21 single crystal,
22a, 22b main coil, 23 sub coil, 24 cusp magnetic field application direction,
29 polarity switcher, 30a, 30b superconducting main coil,
31 superconducting auxiliary coil, 32 current lead, 33 vacuum vessel,
34 magnetic shield, 37a notch for measurement line as first notch, 37b notch for vacuum valve as first notch,
38a, 38b Symmetrically arranged notches as second notches.

Claims (7)

ルツボ内の原料融液に種結晶を挿入し、この種結晶を引き上げることにより単結晶を生成する単結晶引き上げ部と、上記ルツボ内の原料融液に、該ルツボ軸に対して等軸対称的かつ放射状のカスプ磁界を与える磁界発生部とを備え、上記磁界発生部が、上記ルツボ周囲の上下に相対向して配置され、直列に結線された一対の主コイルと、該主コイルと同軸で配置され、その励磁電流の方向および大きさが可変で該主コイルより小さい起磁力を有する1個の副コイルとで構成されたことを特徴とする磁界印加式単結晶製造装置。A seed crystal is inserted into the raw material melt in the crucible, and a single crystal pulling unit that generates a single crystal by pulling up the seed crystal, and the raw material melt in the crucible is equiaxially symmetric with respect to the crucible axis. And a magnetic field generating unit for applying a radial cusp magnetic field, wherein the magnetic field generating unit is disposed above and below the crucible so as to face each other and connected in series, and a pair of main coils connected in series, and coaxial with the main coil. A magnetic field applying type single crystal manufacturing apparatus, comprising: a single sub-coil arranged so as to be variable in direction and magnitude of an exciting current and having a smaller magnetomotive force than the main coil. 主コイル間の距離を該主コイルの直径の半分程度とし、副コイルの起磁力が上記主コイルの起磁力の0.3倍を越えないものであることを特徴とする請求項1記載の磁界印加式単結晶製造装置。2. The magnetic field according to claim 1, wherein the distance between the main coils is about half the diameter of the main coil, and the magnetomotive force of the sub coil does not exceed 0.3 times the magnetomotive force of the main coil. Applied single crystal manufacturing equipment. 一対の主コイルおよび副コイルが超電導コイルから成り、上記副コイルが上記一対の主コイル間の中央に配置されたことを特徴とする請求項1または2記載の磁界印加式単結晶製造装置。3. A magnetic field applying type single crystal manufacturing apparatus according to claim 1, wherein the pair of main coils and the sub coil are formed of a superconducting coil, and the sub coil is disposed at the center between the pair of main coils. 一対の主コイルおよび副コイルが極低温状態に保持される超電導コイルから成り、上記副コイルの電流リードと、上記主コイルの電流リードとを一部共通化して発熱量を低減したことを特徴とする請求項1〜3のいずれかに記載の磁界印加式単結晶製造装置。A pair of main coil and sub-coil are composed of a superconducting coil that is kept in a cryogenic state, and the current lead of the sub-coil and the current lead of the main coil are partially shared to reduce heat generation. The magnetic field application type single crystal manufacturing apparatus according to claim 1. 副コイルが一対の主コイル間の中央に配置され、上記主コイルおよび上記副コイルの外周を磁気シールドで覆ったことを特徴とする請求項1〜4のいずれかに記載の磁界印加式単結晶製造装置。The magnetic field applying type single crystal according to any one of claims 1 to 4, wherein the sub-coil is disposed at the center between the pair of main coils, and the outer circumference of the main coil and the sub-coil is covered with a magnetic shield. manufacturing device. 一対の主コイルおよび副コイルが超電導コイルから成り、磁気シールドを上記超電導コイルを収納する真空容器の一部としたことを特徴とする請求項5記載の磁界印加式単結晶製造装置。The magnetic field application type single crystal manufacturing apparatus according to claim 5, wherein the pair of main coils and sub-coils are composed of superconducting coils, and the magnetic shield is a part of a vacuum container that houses the superconducting coils. 磁気シールドに、外部との接続のための第1の切り欠き部と、電磁力の平衡を保つ第2の切り欠き部とを設け、上記第1および第2の切り欠き部が、上下対称性および軸の周りに複数回の回転対称性を有して配置されたことを特徴とする請求項5または6記載の磁界印加式単結晶製造装置。The magnetic shield is provided with a first notch for connection to the outside and a second notch for maintaining the balance of electromagnetic force, and the first and second notches are vertically symmetric. 7. The magnetic field applying type single crystal manufacturing apparatus according to claim 5, wherein the magnetic field applying type single crystal manufacturing apparatus is arranged with a plurality of rotational symmetries around the axis.
JP13062398A 1998-05-13 1998-05-13 Magnetic field application type single crystal manufacturing equipment Expired - Fee Related JP3585731B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP13062398A JP3585731B2 (en) 1998-05-13 1998-05-13 Magnetic field application type single crystal manufacturing equipment

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP13062398A JP3585731B2 (en) 1998-05-13 1998-05-13 Magnetic field application type single crystal manufacturing equipment

Publications (2)

Publication Number Publication Date
JPH11322486A JPH11322486A (en) 1999-11-24
JP3585731B2 true JP3585731B2 (en) 2004-11-04

Family

ID=15038671

Family Applications (1)

Application Number Title Priority Date Filing Date
JP13062398A Expired - Fee Related JP3585731B2 (en) 1998-05-13 1998-05-13 Magnetic field application type single crystal manufacturing equipment

Country Status (1)

Country Link
JP (1) JP3585731B2 (en)

Families Citing this family (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2004165538A (en) * 2002-11-15 2004-06-10 Sumitomo Heavy Ind Ltd Superconducting magnet device
JP4990194B2 (en) * 2008-03-07 2012-08-01 株式会社神戸製鋼所 Magnet position measurement method
CN110129890B (en) * 2018-03-30 2021-02-02 杭州慧翔电液技术开发有限公司 Coil structure for magnetically controlled Czochralski single crystal and method for magnetically controlled Czochralski single crystal

Also Published As

Publication number Publication date
JPH11322486A (en) 1999-11-24

Similar Documents

Publication Publication Date Title
JP4095975B2 (en) Method and apparatus for producing silicon single crystal, silicon single crystal and semiconductor wafer cut from the same
JPS6144797A (en) Apparatus for growing single crystal and method for controlling same
JP6436031B2 (en) Single crystal pulling apparatus and single crystal pulling method
US4565671A (en) Single crystal manufacturing apparatus
KR20070013843A (en) Method of manufacturing silicon single crystal
US5769944A (en) Vertical gradient freeze and vertical Bridgman compound semiconductor crystal growth apparatus capable of applying axial magnetic field
JP3585731B2 (en) Magnetic field application type single crystal manufacturing equipment
WO2020225985A1 (en) Single crystal pulling apparatus and single crystal pulling method
US5797990A (en) Apparatus for damping a crystal ingot suspension in a Czochralski crystal puller
US11578423B2 (en) Magnet coil for magnetic czochralski single crystal growth and magnetic czochralski single crystal growth method
JPS6036392A (en) Apparatus for pulling single crystal
US6482261B2 (en) Magnetic field furnace
JP7160006B2 (en) Single crystal pulling apparatus and single crystal pulling method
JPH107486A (en) Single crystal production apparatus of magnetic field impression type
AU2002246865A1 (en) Magnetic field furnace and a method of using the same to manufacture semiconductor substrates
JPH10316488A (en) Magnetic field application type device for producing single crystal
TWI282379B (en) Silicon single-crystal wafer manufacturing method, silicon single-crystal wafer, and epitaxial wafer
JPS6278184A (en) Single crystal growth apparatus
JPH0234915B2 (en)
JPS6278185A (en) Single crystal growth and apparatus therefor
JP7230781B2 (en) Single crystal pulling apparatus and single crystal pulling method
JPS6278183A (en) Single crystal growth and apparatus therefor
JPH10167875A (en) Device for producing single crystal
JPS6270286A (en) Apparatus for producting single crystal
KR100468117B1 (en) Production method for high-quality silicon single crystal

Legal Events

Date Code Title Description
A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20040617

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20040727

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20040804

R150 Certificate of patent (=grant) or registration of utility model

Free format text: JAPANESE INTERMEDIATE CODE: R150

FPAY Renewal fee payment (prs date is renewal date of database)

Free format text: PAYMENT UNTIL: 20070813

Year of fee payment: 3

FPAY Renewal fee payment (prs date is renewal date of database)

Free format text: PAYMENT UNTIL: 20080813

Year of fee payment: 4

FPAY Renewal fee payment (prs date is renewal date of database)

Free format text: PAYMENT UNTIL: 20080813

Year of fee payment: 4

FPAY Renewal fee payment (prs date is renewal date of database)

Free format text: PAYMENT UNTIL: 20090813

Year of fee payment: 5

FPAY Renewal fee payment (prs date is renewal date of database)

Free format text: PAYMENT UNTIL: 20090813

Year of fee payment: 5

FPAY Renewal fee payment (prs date is renewal date of database)

Free format text: PAYMENT UNTIL: 20100813

Year of fee payment: 6

LAPS Cancellation because of no payment of annual fees