JPS6236097A - Production of single crystal and device therefor - Google Patents

Production of single crystal and device therefor

Info

Publication number
JPS6236097A
JPS6236097A JP17394085A JP17394085A JPS6236097A JP S6236097 A JPS6236097 A JP S6236097A JP 17394085 A JP17394085 A JP 17394085A JP 17394085 A JP17394085 A JP 17394085A JP S6236097 A JPS6236097 A JP S6236097A
Authority
JP
Japan
Prior art keywords
melt
crucible
magnetic field
crystal
single crystal
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP17394085A
Other languages
Japanese (ja)
Other versions
JPH0351673B2 (en
Inventor
Osamu Haida
拜田 治
Matao Araya
荒谷 復夫
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
JFE Steel Corp
Original Assignee
Kawasaki Steel Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Kawasaki Steel Corp filed Critical Kawasaki Steel Corp
Priority to JP17394085A priority Critical patent/JPS6236097A/en
Publication of JPS6236097A publication Critical patent/JPS6236097A/en
Publication of JPH0351673B2 publication Critical patent/JPH0351673B2/ja
Granted legal-status Critical Current

Links

Landscapes

  • Crystals, And After-Treatments Of Crystals (AREA)
  • Liquid Deposition Of Substances Of Which Semiconductor Devices Are Composed (AREA)

Abstract

PURPOSE:To reduce the elution of O2 into the melt from a crucible and to obtain the titled single crystal with less variance of the resistance values in the crystal plane and capable of providing a low-O2 silicon wafer which is useful for a power transistor, etc., by pulling up a seed crystal while impressing a progressive magnetic field on the melt in the crucible. CONSTITUTION:A melt 4 of Si, etc., is charged in a crucible 3 and heated by a heater 6. A progressive magnetic field is generated by an upright cylindrical electromagnet 1 provided on the outer periphery of the outer wall 2 of a cham ber and impressed on the melt 4. A seed crystal is pulled up while exerting downward force on the melt 4 to control thermal convection of the melt and a single crystal 5 is grown.

Description

【発明の詳細な説明】 〔産業上の利用分野〕 本発明は、引りげ法によるStやGaAsなどの半導体
あるいは無機化合物などの単結晶の製造方法およびその
装置に関する。
DETAILED DESCRIPTION OF THE INVENTION [Field of Industrial Application] The present invention relates to a method for producing a single crystal of a semiconductor such as St or GaAs or an inorganic compound by a pull-down process, and an apparatus therefor.

〔従来の技術〕[Conventional technology]

引上げ法はチョクラルスキー法とも言われ、大径の単結
晶インゴットが得やすいなどの利点があるためSiやG
aAsなどの単結晶の製造に実用されている。しかしな
がら、酸素不純物濃度が高いこと、ストリエーションと
呼ばれる縞状の欠陥(成長縞)が発生するなどの欠点が
あった。
The pulling method is also called the Czochralski method, and has the advantage of easily producing large-diameter single-crystal ingots.
It is practically used in the production of single crystals such as aAs. However, there were drawbacks such as a high concentration of oxygen impurities and the occurrence of striped defects (growth stripes) called striations.

これらの欠点を解決するため1例えば特公昭58−50
953では、ルツボ中の溶融Siに静磁場を印加し、該
溶融Siの流動を抑制することが提案されている。Si
中の酸素の固液暦衡分配係数は1.25と1より大きい
ので、引、Lげ中の単結晶と接するSi融液の酸素濃度
は、第2図に示すように母液相の濃度より低くなる。従
って、溶融Siの流動を抑制することにより、母液相か
ら、固/液界面に匣ばれる酸素の賃を減らせば。
In order to solve these drawbacks, for example,
No. 953 proposes applying a static magnetic field to molten Si in a crucible to suppress the flow of the molten Si. Si
Since the solid-liquid distribution coefficient of oxygen in the liquid is 1.25, which is larger than 1, the oxygen concentration of the Si melt in contact with the single crystal during the drawing and drawing process is equal to the concentration of the mother liquid phase, as shown in Figure 2. becomes lower. Therefore, by suppressing the flow of molten Si, the amount of oxygen trapped in the solid/liquid interface from the mother liquid phase can be reduced.

単結晶中の酸素濃度が減少する。さらに、溶融Siの流
動を抑制するとルツボに使用する5i02から溶融Sf
への酸素の溶出も減少する。以上、2つの効果により単
結晶インゴット中の酸素濃度が減少すると考えられてい
る。
The oxygen concentration in the single crystal decreases. Furthermore, if the flow of molten Si is suppressed, molten Sf will be reduced from 5i02 used in the crucible.
The elution of oxygen into the water is also reduced. It is believed that the oxygen concentration in the single crystal ingot decreases due to the two effects described above.

一方、特開昭59−131597においては、GaAs
単結晶をチョクラルスキー法で製造する際、静磁場を印
加することによりJ&長編の無い高品質の結晶を得てい
る。
On the other hand, in JP-A-59-131597, GaAs
When producing single crystals using the Czochralski method, high quality crystals free of J&long lengths are obtained by applying a static magnetic field.

さらに、特開昭55−10405ではSi融液に回転磁
界を与え、該Si融液を回転することが提案されている
Furthermore, Japanese Patent Laid-Open No. 55-10405 proposes applying a rotating magnetic field to the Si melt to rotate the Si melt.

Japanese Journal of Appli
ed  Physics。
Japanese Journal of Appli
ed Physics.

vol  19 (1980) p、p、L−33〜3
6に発表された実験結果によると、単結晶インゴットを
、L記St融液の回、転と同一方向に回転すると酸素濃
度は減少し、ざらにルツボをもSi融液の回転と同一方
向に回転すると一層酸素濃度が減少する。単結晶インゴ
ットとルツボの回転方向と同一方向にSi融液を回転さ
せると、Si融液が、単結晶インゴットとルツボに対し
、相対的に静1トしていることになるため、静磁場印加
法と同様の効果が得られるものと考えられる。
vol 19 (1980) p, p, L-33~3
According to the experimental results published in 2006, when a single crystal ingot is rotated in the same direction as the rotation of the L St melt, the oxygen concentration decreases, and roughly speaking, when the crucible is rotated in the same direction as the rotation of the Si melt. As it rotates, the oxygen concentration further decreases. When the Si melt is rotated in the same direction as the rotation direction of the single crystal ingot and the crucible, the Si melt is static relative to the single crystal ingot and the crucible, so it is necessary to apply a static magnetic field. It is thought that the same effect as the law can be obtained.

さて、チョクラルスキー法においては、単結晶インゴッ
トを回転しながら引tげる。この目的の1つは、該イン
ゴット水平面内のドーピング元素濃度を均一にすること
である。第2図に示すように、PやBなどのドーピング
元素は固液分配係数が1より小さいため、酸素とは逆に
固/液界面の濃度がnJ液相濃度より高くなる。このP
やBの固/液界面濃度は、凝固に伴う排出速度と母液相
への拡散速度のかねあいで決まる。
Now, in the Czochralski method, a single crystal ingot is pulled while rotating. One purpose of this is to make the doping element concentration uniform in the horizontal plane of the ingot. As shown in FIG. 2, since doping elements such as P and B have solid-liquid partition coefficients smaller than 1, the concentration at the solid/liquid interface becomes higher than the nJ liquid phase concentration, contrary to oxygen. This P
The solid/liquid interface concentration of and B is determined by the balance between the discharge rate accompanying solidification and the diffusion rate into the mother liquid phase.

結晶を回転しない場合には、第3図に示すような熱対流
10が発生し、この洗浄効果により拡散が促進され、結
晶側面近くは中心部に比べてPやBの界面の濃度が低く
なる。単結晶インゴットを回転すると第4図に示すよう
に結晶中心部にSi融液の上昇流(強制対流11)を生
じ中心部でのPやBの濃度を端部のそれと同程度にする
効果がある。それ故、結晶回転による強制対流によりイ
ンゴット水平面内のドーピング元素濃度が均一化する効
果がある。
If the crystal is not rotated, thermal convection 10 as shown in Figure 3 occurs, and this cleaning effect promotes diffusion, resulting in a lower concentration of P and B at the interface near the sides of the crystal than in the center. . When a single crystal ingot is rotated, as shown in Figure 4, an upward flow of Si melt (forced convection 11) is generated in the center of the crystal, which has the effect of making the concentration of P and B in the center similar to that at the edges. be. Therefore, the forced convection caused by the crystal rotation has the effect of making the doping element concentration uniform in the horizontal plane of the ingot.

SiやGaAs融液に静磁場を印加すると熱対流llの
みでなく、上記のように有用な働きをする強11対流を
も抑制する。また、回転磁場によりSi融液をSi融液
と同方向に回転させる場合も第4図に示す強制対流は弱
められる。この結果、静磁場や回転磁場を印加すると、
インゴツト面内のドーピング元素濃度の分布が不均一性
を増大するという欠点があった。
When a static magnetic field is applied to a Si or GaAs melt, not only thermal convection 11 but also strong 11 convection, which has a useful function as described above, is suppressed. Furthermore, when the Si melt is rotated in the same direction as the Si melt by a rotating magnetic field, the forced convection shown in FIG. 4 is also weakened. As a result, when applying a static or rotating magnetic field,
The disadvantage is that the distribution of doping element concentration within the ingot plane increases non-uniformity.

〔発明が解決しようとする問題点〕[Problem that the invention seeks to solve]

本発明は、単結晶面内のドーピング元素や不純物元素な
どの不均一などの弊害をもたらすことなく、またルツボ
材の5i02からSi融液中へ酸素が溶出するのを低減
することを目的とする。
The present invention aims to reduce the elution of oxygen from the crucible material 5i02 into the Si melt without causing adverse effects such as non-uniformity of doping elements and impurity elements within the single crystal plane. .

〔問題点を解決するための手段〕[Means for solving problems]

本発明者らは、結晶回転による強制対流を減することな
く、熱対流のみを防止する方法につき種々検討した結果
1本発明を知見するに至った。
The present inventors have conducted various studies on methods of preventing only thermal convection without reducing forced convection caused by crystal rotation, and as a result, they have discovered the present invention.

本発明は、ルツボ内融液に進行磁場を印加することによ
り該融液内の熱対流を防止し、これによってルツボ材の
溶出を低減するものであって。
The present invention prevents thermal convection within the melt by applying a traveling magnetic field to the melt within the crucible, thereby reducing elution of the crucible material.

溶融物質から引りげ法にて単結晶を製造する方法におい
て、収容容器内の溶融物質に進行磁場を印加しながら種
結晶を引りげることにより結晶成長を行うことを特徴と
する。
A method for producing a single crystal from a molten material by a pulling method, characterized in that crystal growth is performed by pulling a seed crystal while applying a traveling magnetic field to the molten material in a container.

また本発明の装置は上記方法の実施のために専ら用いる
装置であって、 a)加熱装置を備え溶融物質を収容する単結晶用りげ用
容器、 b)該容器の側壁の外周を取囲んで設けられ容器内の溶
融物質に下向きの進行磁場を印加する手段、 を設けたことを特徴とする単結晶の製造装置である。
Furthermore, the apparatus of the present invention is an apparatus exclusively used for carrying out the above method, which comprises: a) a single crystal cutting container equipped with a heating device and containing a molten substance; b) a container surrounding the outer periphery of the side wall of the container; A device for producing a single crystal, comprising means for applying a downward traveling magnetic field to a molten substance in a container.

進行磁場を印加する手段は、溶融物質収納容器の側壁を
取囲む電磁石と、これに低周波夕涼電波を供給する装置
とから成る。
The means for applying a traveling magnetic field consists of an electromagnet surrounding the side wall of the molten substance container and a device for supplying low frequency evening radio waves to the electromagnet.

〔作用〕[Effect]

主導性の液体に進行磁場を印加すると、誘起電流と磁場
との相互作用により該液体に流動の駆動力を与えること
ができ、この原理は、流体輸送用の電磁ポンプなどに用
いられている。この際、電流が誘起される範囲すなわち
、浸透深さδは次式%式% δ=(1,/πfルσ)I72    ・・・・・・(
1)ここに、終:透磁率 σ:電導率 である。
When a traveling magnetic field is applied to a dominant liquid, the interaction between the induced current and the magnetic field can provide a driving force for the liquid to flow, and this principle is used in electromagnetic pumps for fluid transport and the like. At this time, the range in which the current is induced, that is, the penetration depth δ, is determined by the following formula:% δ=(1,/πfruσ)I72
1) Here, final: magnetic permeability σ: electrical conductivity.

に記進行磁場の振動数fが増大するにつれて浸透深さδ
は減少する。
As the frequency f of the traveling magnetic field increases, the penetration depth δ
decreases.

従って、目的に応じて適切な振動数を選択することによ
り浸透深さδ、言い換えると原動の駆動力の及ぶ範囲を
変えることができる。
Therefore, by selecting an appropriate frequency according to the purpose, the penetration depth δ, in other words, the range of the driving force of the driving force can be changed.

第1図は本発明の装置の構成を示したものであり、ルツ
ボ3の側壁を取囲むように、チェンバ外壁2の外側に進
行磁場発生用の電磁石lを設置する。この電磁石1は立
設円筒形として、ルツボ内Si融液4に軸対称の進行磁
場を与える。
FIG. 1 shows the configuration of the apparatus of the present invention, in which an electromagnet 1 for generating a traveling magnetic field is installed outside the chamber outer wall 2 so as to surround the side wall of the crucible 3. This electromagnet 1 has an upright cylindrical shape and applies an axially symmetrical traveling magnetic field to the Si melt 4 in the crucible.

ルツボ3内のSi融液は、ヒータ6によりルツボ3を介
して熱せられているために、ルツボ側壁近傍のSi融液
の温度が内部より高くなり、この温度差による浮力によ
り第3図、第4図に示す熱対流10が発生する。本発明
は進行磁場により、ルツボ側壁近傍のSi融液に、−h
記浮力に抗する下向きの力をグーえることにより熱対流
10を抑1にする。
Since the Si melt in the crucible 3 is heated by the heater 6 via the crucible 3, the temperature of the Si melt near the side wall of the crucible becomes higher than that inside the crucible, and due to the buoyancy caused by this temperature difference, Heat convection 10 shown in FIG. 4 occurs. The present invention uses a traveling magnetic field to apply -h to the Si melt near the side wall of the crucible.
Thermal convection 10 is suppressed by reducing the downward force that resists the buoyant force.

〔実施例〕〔Example〕

次に本発明の実施例につき詳しく説明する。 Next, embodiments of the present invention will be described in detail.

実施例1 第1図に示す装置を用いてSim結晶の引りげを行った
。この装置はルツボ3内にSiの融液4を収納し、この
融液から巾結品5を引上げる。
Example 1 A Sim crystal was pulled using the apparatus shown in FIG. This device stores a Si melt 4 in a crucible 3, and pulls a width bonded product 5 from the melt.

ルツボ3の外周にヒータ6、その外周に熱シールド7を
備え、これらはチェンバ外壁2で被蕾されている。この
チェンバ外壁2の外周に、ルツボ3の側壁の周囲を取囲
むように電磁石lが設けられる。電磁石lには図示しな
い低周波発振装置から進行磁場を発生する交流゛上流が
供給される。
A heater 6 is provided on the outer periphery of the crucible 3, and a heat shield 7 is provided on the outer periphery of the crucible 3, and these are covered by the outer wall 2 of the chamber. An electromagnet 1 is provided on the outer periphery of the chamber outer wall 2 so as to surround the side wall of the crucible 3. The electromagnet 1 is supplied with an upstream alternating current that generates a traveling magnetic field from a low frequency oscillator (not shown).

本発明の実施例においては、ルツボ内融液に。In the embodiment of the present invention, the melt in the crucible.

ルツボ側壁部で磁場強度100ガウス、周波数100H
zの下向きの進行磁場を印加した。また、比較例におい
ては、同装置を用い、磁場l加をせずに引上げを行った
。実施例、比較例共に、結晶およびルツボの回転数はそ
れぞれ20rpmおよびlOrpm逆向きとした。
Magnetic field strength 100 Gauss, frequency 100H at crucible side wall
A downward traveling magnetic field of z was applied. Furthermore, in a comparative example, the same device was used to perform pulling without applying a magnetic field. In both Examples and Comparative Examples, the rotational speeds of the crystal and crucible were 20 rpm and 1Orpm, respectively, in opposite directions.

単結晶インゴットの頭部付近から切り出して製造したS
iウェハにつき、実施例と比較例の特性比較を行った。
S manufactured by cutting from near the head of a single crystal ingot
For i-wafers, characteristics of Examples and Comparative Examples were compared.

その結果を第1表に示す。The results are shown in Table 1.

実施例は、比較例に比べ酸素濃度が約只に減少した。こ
れは、熱対流の抑制により、ルツボ材のシリカからの酸
素の溶出が減少した効果と考えられる。一方、実施例と
比較例でウェハ面内の抵抗値ばらつきは同じである。
In the example, the oxygen concentration was slightly reduced compared to the comparative example. This is thought to be due to the effect that the elution of oxygen from the silica of the crucible material was reduced due to the suppression of thermal convection. On the other hand, the resistance value variation within the wafer surface is the same between the example and the comparative example.

以上のように本発明により、ウェハ面内のドーピング元
素分布、言い換えると抵抗値分布の不均一性を増すこと
なく、酸素濃度を大幅に低減することができる。
As described above, according to the present invention, the oxygen concentration can be significantly reduced without increasing the non-uniformity of the doping element distribution within the wafer surface, in other words, the resistance value distribution.

実施例2 次に、本発明の実施例につき、磁場の強さを変えた場合
の効果につき説明する。実施例1と同じ装置を用い、印
加する磁場を変えてSi単結晶の引上げを行った。実施
例、比較例共に結晶およびルツボの回転数はそれぞれ2
0rpmおよび10rpm逆向きとした。その後、単結
晶インゴットの頭部付近から切り出して製造したStウ
ニ/\につき酸素濃度を測定したのが第5図である。同
図に示されるごとく磁場の強さが増すにつれ酸素濃度が
低下する。従って、本発明によれば磁場の強さを調節す
ることにより酸素濃度を所望の範囲内にコントロールす
ることができる。
Example 2 Next, the effect of changing the strength of the magnetic field will be described in accordance with an example of the present invention. Using the same apparatus as in Example 1, a Si single crystal was pulled by changing the applied magnetic field. The rotation speed of the crystal and crucible was 2 in both Examples and Comparative Examples.
0 rpm and 10 rpm were set in opposite directions. Thereafter, the oxygen concentration was measured for the St sea urchin/\ which was produced by cutting out the vicinity of the head of the single crystal ingot, as shown in Figure 5. As shown in the figure, as the strength of the magnetic field increases, the oxygen concentration decreases. Therefore, according to the present invention, the oxygen concentration can be controlled within a desired range by adjusting the strength of the magnetic field.

〔発明の効果〕〔Effect of the invention〕

本発明により、パワートランジスタ用などに必要な低酸
素濃度のシリコンウェハを引上げ結晶を用いて製造する
ことができる。また1本発明法による引上げSi結晶は
結晶面内の抵抗値のばらつきが少なく、酸素濃度を制御
した高集積回路用ウェハの製造にも使用することができ
る。
According to the present invention, silicon wafers with low oxygen concentrations necessary for power transistors and the like can be manufactured using pulled crystals. Furthermore, the pulled Si crystal produced by the method of the present invention has little variation in resistance value within the crystal plane, and can be used for manufacturing wafers for highly integrated circuits with controlled oxygen concentration.

本発明はSi以外の結晶の引りげにも適用することがで
きる0例えば、GaAsの引1−げに適用することによ
りルツボ材であるシリカやPBN(パイロリティック窒
化はう素)の溶出を抑制することが可撤である。
The present invention can be applied to crystals other than Si. For example, by applying it to GaAs crystals, the elution of silica and PBN (pyrolytic boron nitride), which are crucible materials, can be suppressed. That is removable.

【図面の簡単な説明】[Brief explanation of the drawing]

第1図は本発明の構成を示す模式断面図、第2図は固/
液界面近くの不純物元素濃度分布を示す模式図、第3図
は結晶を回転しない場合の融液流動を示す模式図、第4
図は結晶を回転する場合の融液流動を示す模式図、第5
図は磁場強さと酸素濃度の関係を示すグラフである。 l・・・電磁石     2・・・チェンバ外壁3・・
・ルツボ     4・・・融液5・・・引上げ単結晶
  6・・・ヒータ7・・・熱シールド   10・・
・熱対流11・・・強制対渣
FIG. 1 is a schematic cross-sectional view showing the structure of the present invention, and FIG.
Figure 3 is a schematic diagram showing the impurity element concentration distribution near the liquid interface. Figure 3 is a schematic diagram showing the melt flow when the crystal is not rotated.
The figure is a schematic diagram showing the melt flow when rotating the crystal.
The figure is a graph showing the relationship between magnetic field strength and oxygen concentration. l...Electromagnet 2...Chamber outer wall 3...
- Crucible 4... Melt 5... Pulled single crystal 6... Heater 7... Heat shield 10...
・Heat convection 11...forced convection

Claims (1)

【特許請求の範囲】 1 溶融物質から引上げ法にて単結晶を製造する方法に
おいて、収容容器内の溶融物質に進行磁場を印加しなが
ら種結晶を引上げることにより結晶成長を行うことを特
徴とする単結晶の製造方法。 2 加熱装置を備え溶融物質を収容する単結晶引上げ用
容器と、該容器の側壁の外周を取囲んで設けられ容器内
の溶融物質に下向きの進行磁場を印加する手段とを設け
たことを特徴とする単結晶の製造装置。
[Claims] 1. A method for producing a single crystal from a molten substance by a pulling method, characterized in that crystal growth is performed by pulling up a seed crystal while applying a traveling magnetic field to the molten substance in a container. A method for producing single crystals. 2. A single-crystal pulling container equipped with a heating device and containing a molten substance, and a means provided around the outer periphery of the side wall of the container for applying a downward traveling magnetic field to the molten substance within the container. Equipment for producing single crystals.
JP17394085A 1985-08-07 1985-08-07 Production of single crystal and device therefor Granted JPS6236097A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP17394085A JPS6236097A (en) 1985-08-07 1985-08-07 Production of single crystal and device therefor

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP17394085A JPS6236097A (en) 1985-08-07 1985-08-07 Production of single crystal and device therefor

Publications (2)

Publication Number Publication Date
JPS6236097A true JPS6236097A (en) 1987-02-17
JPH0351673B2 JPH0351673B2 (en) 1991-08-07

Family

ID=15969882

Family Applications (1)

Application Number Title Priority Date Filing Date
JP17394085A Granted JPS6236097A (en) 1985-08-07 1985-08-07 Production of single crystal and device therefor

Country Status (1)

Country Link
JP (1) JPS6236097A (en)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH02292428A (en) * 1989-04-30 1990-12-03 Kudan Kenchiku Kenkyusho:Kk Cast-in-place-concrete-filled type pc girder
US5038875A (en) * 1988-09-07 1991-08-13 Ishida Scales Mfg. Co. Ltd. Waterproof automatic weighing apparatus
WO2013035498A1 (en) * 2011-09-09 2013-03-14 シャープ株式会社 Method for manufacturing polycrystalline silicon ingot

Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS6036392A (en) * 1983-08-05 1985-02-25 Toshiba Corp Apparatus for pulling single crystal

Patent Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS6036392A (en) * 1983-08-05 1985-02-25 Toshiba Corp Apparatus for pulling single crystal

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5038875A (en) * 1988-09-07 1991-08-13 Ishida Scales Mfg. Co. Ltd. Waterproof automatic weighing apparatus
JPH02292428A (en) * 1989-04-30 1990-12-03 Kudan Kenchiku Kenkyusho:Kk Cast-in-place-concrete-filled type pc girder
WO2013035498A1 (en) * 2011-09-09 2013-03-14 シャープ株式会社 Method for manufacturing polycrystalline silicon ingot
JP2013056812A (en) * 2011-09-09 2013-03-28 Sharp Corp Method for producing polycrystalline silicon ingot

Also Published As

Publication number Publication date
JPH0351673B2 (en) 1991-08-07

Similar Documents

Publication Publication Date Title
JP5269384B2 (en) Semiconductor single crystal manufacturing method using Czochralski method
US4040895A (en) Control of oxygen in silicon crystals
JPH11189495A (en) Silicon single crystal and its production
CA1336061C (en) High-oxygen-content silicon monocrystal substrate for semiconductor devices and production method therefor
JPH11268987A (en) Silicon single crystal and its production
JP2688137B2 (en) Method of pulling silicon single crystal
JPH0212920B2 (en)
JPS61222984A (en) Unit for single crystal production
JPS6236097A (en) Production of single crystal and device therefor
JPS5850953B2 (en) crystal growth method
KR101751789B1 (en) Silicon single crystal ingot and method for growing the same
JP3750440B2 (en) Single crystal pulling method
KR102160172B1 (en) Method and apparatus for growing silicon single crytal ingot
JPS6236096A (en) Production of single crystal and device therefor
JPS6317291A (en) Method for growing crystal and device therefor
JPS5850951B2 (en) Crystal growth method and crystal growth equipment used for this method
JP3018738B2 (en) Single crystal manufacturing equipment
KR100221087B1 (en) Silicon single crystal and its growing method
JPS6317289A (en) Production of semiconductor single crystal
JP2001031494A (en) Production of silicon single crystal wafer
JPH09235192A (en) Single crystal ingot low in oxygen concentration and lifting of single crystal
JPS62123095A (en) Production of gaas single crystal having low dislocation density
JPS62182190A (en) Production of compound semiconductor single crystal
JPH0367996B2 (en)
KR101625431B1 (en) Method for growing a silicon single crystal using czochralski method and silicon single crystal ingot