JPS6360189A - Production of semiconductor single crystal - Google Patents

Production of semiconductor single crystal

Info

Publication number
JPS6360189A
JPS6360189A JP20249586A JP20249586A JPS6360189A JP S6360189 A JPS6360189 A JP S6360189A JP 20249586 A JP20249586 A JP 20249586A JP 20249586 A JP20249586 A JP 20249586A JP S6360189 A JPS6360189 A JP S6360189A
Authority
JP
Japan
Prior art keywords
melt
magnetic field
single crystal
crystal
stirring
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP20249586A
Other languages
Japanese (ja)
Inventor
Hideki Yamazaki
秀樹 山崎
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Toshiba Corp
Original Assignee
Toshiba Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Toshiba Corp filed Critical Toshiba Corp
Priority to JP20249586A priority Critical patent/JPS6360189A/en
Publication of JPS6360189A publication Critical patent/JPS6360189A/en
Pending legal-status Critical Current

Links

Abstract

PURPOSE:To obtain the title single crystal without any crystal defect and further having an excellent concn. distribution by pulling up a single crystal while impressing a stationary magnetic field in the vicinity of the solidified interface of a melt and impressing a shifting magnetic field or rotating magnetic field by a low frequency on the intermediate and lower parts at the time of producing a semiconductor single crystal by a pull method. CONSTITUTION:The semiconductor single crystal 9 is pulled up from the surface of a raw material melt 2 in a crucible 1, and produced. In this case, the stationary magnetic field 4 (generated by passing a DC current through a magnet 3) is impressed in the vicinity of the solidified interface of the melt 2 to control the oscillation around the interface of the melt 2, the shifting magnetic field 6 (by a magnet 5) or the rotating magnetic field by low frequency is impressed on the intermediate and lower parts, and the crystal is pulled up while generating vertical oscillation (an agitation current 7) in the melt 2.

Description

【発明の詳細な説明】 〔発明の目的〕 (産業上の利用分野) 本発明は、シリコンやガリウムヒ素等の半導体単結晶を
引上げより製造する製造方法に閏する。
DETAILED DESCRIPTION OF THE INVENTION [Object of the Invention] (Industrial Application Field) The present invention relates to a manufacturing method for manufacturing a semiconductor single crystal such as silicon or gallium arsenide by pulling it.

(従来の技術) IC,LSI、パワー半導体素子等の基板となるシリコ
ンやガリウムヒ素等の半導体単結晶は現在主にチョクラ
ルスキー法により製造されでいる。
(Prior Art) Semiconductor single crystals such as silicon and gallium arsenide, which serve as substrates for ICs, LSIs, power semiconductor devices, etc., are currently manufactured mainly by the Czochralski method.

チョクラルスキー法による単結晶引き上げにおいてはそ
の半導体原料融液の熱対流による結晶欠陥の発生あるい
は不純物の混入およびその濃度の不均一さ等が問題とな
る。例えば−旦成長した結晶が温度の高い融液の熱対流
により部分的に再溶解してこれが結晶欠陥となり、ある
いはその発生の原因となっている。
When pulling a single crystal using the Czochralski method, there are problems such as the generation of crystal defects due to thermal convection of the semiconductor raw material melt, the inclusion of impurities, and non-uniformity of their concentration. For example, once-grown crystals are partially re-melted by thermal convection of the high-temperature melt, resulting in crystal defects or being the cause of their occurrence.

この問題を解決するための一方法が磁場印加引上(MC
Z)として特公昭58−5093に示されており、それ
によれば例えばシリコン■結晶の製造に際して融液に静
電界を加え熱対流を抑制しようとするものである。
One method to solve this problem is magnetic field application (MC)
Z) is disclosed in Japanese Patent Publication No. 58-5093, which attempts to suppress thermal convection by applying an electrostatic field to the melt during the production of, for example, silicon crystal.

しかしこの方法で単結晶の引き上げを行うと、熱対流が
抑制されるためにi!I素濃度はたしかに低下するが、
逆に撹拌が押えられ濃度分布はむしろ不均一になる傾向
にある。シリコンのみでなくガリウムヒ′S等の単結品
一般については、結晶欠陥のない組成分布の均一な単結
晶を得るためには、その原料である融液の組成を均一に
し、かつ温度を安定させることが必要である。単結晶引
上げの際、単結晶の原料はルツボに入れられ、ルツボの
外側面からヒーターで加熱されて溶解されるが、ルツボ
壁面より加熱された融液は熱対流を生ずる。
However, when pulling a single crystal using this method, thermal convection is suppressed, so i! Although the concentration of I element does decrease,
On the contrary, stirring is suppressed and the concentration distribution tends to become uneven. In order to obtain a single crystal with a uniform composition distribution without crystal defects, not only for silicon but also for general single crystals such as gallium arsenide, it is necessary to make the composition of the raw material melt uniform and to stabilize the temperature. It is necessary. When pulling a single crystal, the raw material for the single crystal is placed in a crucible and heated and melted by a heater from the outer surface of the crucible, but the melt heated from the crucible wall causes thermal convection.

熱対流は融液に部分的な温度差がある場合にこれを均一
化づるように生ずるものであると考えることもでき、熱
対流を生ずることは逆に融液の温度が均一ではなく不安
定な状態であることを示しているといえる。
Thermal convection can be thought of as something that occurs when there is a local temperature difference in the melt to equalize it, but conversely, thermal convection occurs when the temperature of the melt is not uniform and is unstable. This can be said to indicate that the situation is

このため、組成の均一化と温度の均一化、安定化を図る
ための一方法どして、引き上げている単結晶融液を強制
的な撹拌により回転させることが従来行なわれている。
For this reason, one method for uniformizing the composition and uniformizing and stabilizing the temperature has conventionally been to rotate the single-crystal melt being pulled by forced stirring.

しかし、このような単結晶の回転による撹拌のみでは必
ずしも十分でない。これは融液は粘性が小さいが、みか
け上の慣性は大きいため単結晶を回転させ融液表面部を
撹拌しても全体が均一に撹拌される流れとなりにくいた
めである。例えばシリコンあるいはガリウムヒ素の溶融
状態での動粘数はそれぞれ0.4X10 .003X1
0−6m” /Sであり、水のそれはI X 10−6
m” /Sであって、水よりも粘性が小さい。このため
単結晶回転による部分的な撹拌では融液全体が撹拌され
にくい。このように融液全体を均一にかつ十分に撹拌す
るためには回転方向の流れのみでは不十分であり、径方
向や上下方向の撹拌も伴なった全方向撹拌が必要である
However, stirring alone by such rotation of the single crystal is not necessarily sufficient. This is because although the viscosity of the melt is low, the apparent inertia is large, so even if the single crystal is rotated and the surface of the melt is stirred, it is difficult to create a flow that uniformly stirs the entire melt. For example, the kinematic viscosity of silicon or gallium arsenide in the molten state is 0.4×10. 003X1
0-6 m”/S, and that of water is I x 10-6
m"/S, and has a lower viscosity than water. For this reason, it is difficult to stir the entire melt with partial stirring by single crystal rotation. In this way, in order to stir the entire melt uniformly and sufficiently, Flow in the rotational direction alone is insufficient, and omnidirectional stirring including radial and vertical stirring is required.

第3図および第4図は表面部で単結晶9を回転さけた場
合の有限要素法による流体解析の結果を示す説明図であ
って、第3図はルツボ1中に入れられた単結晶原料融液
2の流線を、第4図は融液の流れをそれぞれルツボの半
分につき示している。
3 and 4 are explanatory diagrams showing the results of fluid analysis using the finite element method when the single crystal 9 is prevented from rotating at the surface, and FIG. 3 shows the single crystal raw material placed in the crucible 1. FIG. 4 shows the flow lines of the melt 2 for each half of the crucible.

これらによれば、従来のような単結晶の回転による撹拌
であっても、回転流に遠心力が働き、周方向へ押し拡げ
られる力が生じて径方向成分の流れとなり、この流れは
ルツボ壁に当たり、下方に向かい中央部で上へ向かう流
れの経路を生ずる。このような回転方向の撹拌による径
および上下方向の流れに影響を与える要素としては、融
液の動粘性係数、ルツボの大きさ、計上、融液の深さ、
単結晶の径の大きさ、単結晶の回転速度、熱対流の強さ
等がある。
According to these, even with conventional agitation by rotating a single crystal, centrifugal force acts on the rotating flow, creating a force that expands it in the circumferential direction, resulting in a flow with a radial component, and this flow is caused by the crucible wall. , creating a path for the flow to flow downwards and upwards in the center. Factors that affect the diameter and vertical flow due to rotational stirring include the kinematic viscosity coefficient of the melt, the size of the crucible, the measurement, the depth of the melt,
These include the diameter of the single crystal, the rotation speed of the single crystal, and the strength of thermal convection.

このような多くの要素を最適条件で選択して単結晶の回
転による撹拌をおこなうことは非常に困難である。また
実験によると回転方向の撹拌による径および上下方向の
流れが、全体として安定した流れになるまでに1〜数分
の時間がかかることが判明している。この安定時間内に
条件が変化してしまうこともあり、最適条件を選ぶのみ
ならず、その再現性を保つことも非常に困難となってい
る。
It is extremely difficult to select such many elements under optimal conditions and stir the single crystal by rotation. Furthermore, experiments have shown that it takes one to several minutes for the radial and vertical flow caused by rotational stirring to become a stable flow as a whole. Conditions may change during this stabilization time, making it extremely difficult not only to select optimal conditions but also to maintain their reproducibility.

(発明が解決しようとする問題点) このように従来の半導体単結晶の製造方法では、成長す
る単結晶中に結晶欠陥が発生したり濃度分布が劣化した
りする等の欠点がある。そこで本発明では安定した融液
条件のもとで結晶を成長させることにより、結晶欠陥の
無いしかも濃度分布の良好な単結晶を製造するための半
導体中結晶の製造方法を提供することを目的とする。
(Problems to be Solved by the Invention) As described above, the conventional semiconductor single crystal manufacturing method has drawbacks such as occurrence of crystal defects in the growing single crystal and deterioration of the concentration distribution. Therefore, it is an object of the present invention to provide a method for manufacturing a semiconductor crystal in order to manufacture a single crystal without crystal defects and with a good concentration distribution by growing the crystal under stable melt conditions. do.

〔発明の構成〕[Structure of the invention]

(問題点を解決するための手段) 本発明によれば、ルツボ内の原料融液表面から引き上げ
によって単結晶を得る半導体単結晶の製造方法において
、融液の凝固界面近傍には静磁界を加えて融液の界面近
傍の揺動を抑えつつ中間部および下部には低周波による
移動磁界もしくは回転磁界を加えて融液の内部に上下方
向の揺動を生じさせながら引き上げることを特徴として
いる。
(Means for Solving the Problems) According to the present invention, in a semiconductor single crystal manufacturing method in which a single crystal is obtained by pulling from the surface of a raw material melt in a crucible, a static magnetic field is applied near the solidification interface of the melt. It is characterized by suppressing the fluctuation of the melt near the interface and applying a moving magnetic field or a rotating magnetic field of low frequency to the middle and lower parts, thereby causing vertical fluctuation inside the melt while pulling it up.

(作 用) 融液の中間部および下部に低周波による移fjJ磁界ま
たは回転磁界を加えることにより融液中に電圧が融起さ
れて2次電流が流れ、これと磁界との間で上下方向の力
が発生する。これにより融液が一様に撹拌され結晶の不
純物濃度分布を均一とする。
(Function) By applying a low-frequency shifting magnetic field or rotating magnetic field to the middle and lower parts of the melt, a voltage is generated in the melt and a secondary current flows, and between this and the magnetic field, a voltage is generated in the vertical direction. The force of is generated. This uniformly stirs the melt and makes the impurity concentration distribution of the crystal uniform.

(実施例) 以下本発明の実施例を図面に基づいて詳細に説明する。(Example) Embodiments of the present invention will be described in detail below based on the drawings.

第1図は本発明の一実施例の構成を示す図、第2図は本
発明による移動磁界の磁束密度がルツボ内融液位置でど
のように減衰するかを示づ特性曲線であり、第2図のX
軸位置は第1図のそれと対応している。
FIG. 1 is a diagram showing the configuration of an embodiment of the present invention, and FIG. 2 is a characteristic curve showing how the magnetic flux density of the moving magnetic field according to the present invention is attenuated at the position of the melt in the crucible. X in figure 2
The axis positions correspond to those in FIG.

ルツボ1の内部にある単結晶原料融液2の上部には静磁
界発生用マグネット3を配置し、このマグネット3に直
流を通電することにより静磁界4を融液2の凝固界面近
傍に加える。また融液2の中間部から下部にかけて上下
方向の移動磁界を発生するためにマグネット5を配置す
る。すなわち、ルツボの回りに円筒を配設しその円筒内
面に垂直方向にコアが電磁石を多数配設し、モータのス
テータと同様の構成とすればよい。
A magnet 3 for generating a static magnetic field is arranged above the single crystal raw material melt 2 inside the crucible 1, and a static magnetic field 4 is applied to the vicinity of the solidification interface of the melt 2 by passing direct current through the magnet 3. Further, a magnet 5 is arranged to generate a moving magnetic field in the vertical direction from the middle part to the lower part of the melt 2. That is, a cylinder may be arranged around the crucible, and a large number of electromagnets with cores arranged vertically on the inner surface of the cylinder, and the structure may be similar to that of a stator of a motor.

これにより移動磁界6が発生し、融液2の内部に移動磁
界による撹拌流7が発生する。これにより融液2は十分
に撹拌されその組成は均一になるとともに温度も均一と
なる。なお、印加する電流の周波数は20〜30Hz 
、 磁束密度は800〜3000ガウス程度とすればよ
い。
As a result, a moving magnetic field 6 is generated, and a stirring flow 7 is generated inside the melt 2 due to the moving magnetic field. As a result, the melt 2 is sufficiently stirred to have a uniform composition and a uniform temperature. Note that the frequency of the applied current is 20 to 30 Hz.
The magnetic flux density may be approximately 800 to 3000 Gauss.

マグネット5による移動磁界の移動方向は図中に矢印8
で示す方向である。なお本実施例の場合には、融液2の
内部に」1下方向の撹拌流を発生させるために移!IJ
磁界を発生するようにしているが、円環状電磁石を用い
て回転磁界を与えるようにしても同様の上下方向の撹拌
流が得られる。なおこの場合の周波数は50〜601−
! Z程度が望ましい。
The moving direction of the moving magnetic field by the magnet 5 is indicated by the arrow 8 in the figure.
This is the direction shown by . In the case of this embodiment, in order to generate a downward stirring flow inside the melt 2, a I.J.
Although a magnetic field is generated, a similar vertical stirring flow can also be obtained by applying a rotating magnetic field using an annular electromagnet. In addition, the frequency in this case is 50 to 601-
! Z level is desirable.

一方、融液2の表面では前述したようにマグネット3に
よる静磁界により揺動が押えられているため単結晶9の
引き上げに際して欠陥のない結晶を得ることができる。
On the other hand, on the surface of the melt 2, the fluctuations are suppressed by the static magnetic field generated by the magnet 3, as described above, so that a defect-free crystal can be obtained when pulling the single crystal 9.

このように移動磁界6により融液2が撹拌されるのは、
シリコンやガリウムヒ素等の半導体融液が導電性を有し
てJ3す、移動磁界を加えることにより電圧が継起され
て2次電流が流れ、これと磁界とで移動磁界方向の力が
発生するためである。
The melt 2 is stirred by the moving magnetic field 6 in this way.
When a semiconductor melt such as silicon or gallium arsenide has conductivity, applying a moving magnetic field causes a voltage to flow and a secondary current to flow, and this and the magnetic field generate a force in the direction of the moving magnetic field. It is.

この力について考察すると、まず@液に加わる力Fは次
式で与えられる。
Considering this force, first the force F applied to the liquid is given by the following equation.

F=に−8・τ・f    ・・・・・・・・・・・・
(1)但し、k:定数 B:力を発生する位置での磁束密度 τ:交流マグネットの極ピッチ f:印加電源周波数 である。
F = −8・τ・f ・・・・・・・・・・・・
(1) where k: constant B: magnetic flux density at the position where force is generated τ: pole pitch of AC magnet f: applied power supply frequency.

またマグネット5の表面から距離Zだけ離れた位置での
磁束密度Bは、 π B=B。 (1−β) ex p (−α−−Z)τ ・・・・・・・・・・・・・・・(2)但し、Bo:マ
グネット表面での磁束密度B :融液中での磁束の減衰
係数 α :空間減衰係数 Z :マグネット表面からの距離 である。ここで減衰係数βは移動磁界により融液2中に
継起されて流れる2次電流損により生ずるものであり、 β−k  ′a °r °f (1+に2.) −−(
3)但し、klに2:係数 α:融液の導電率 d:融液の厚さ である。
The magnetic flux density B at a distance Z from the surface of the magnet 5 is π B=B. (1-β) ex p (-α--Z)τ ・・・・・・・・・・・・・・・(2) However, Bo: Magnetic flux density on the magnet surface B: In the melt Attenuation coefficient α of magnetic flux: Spatial attenuation coefficient Z: Distance from the magnet surface. Here, the damping coefficient β is caused by the secondary current loss that is caused by the moving magnetic field and flows into the melt 2, and β−k ′a °r °f (1+ to 2.) −−(
3) However, kl is 2: coefficient α: electrical conductivity of the melt d: thickness of the melt.

ここで(1)式はフレミングの左手の法則と右手の法則
とから容易に導かれる式であり、撹拌力Fは磁束密度B
の2乗と電源周波数fに比例することがわかる。
Here, equation (1) is an equation that can be easily derived from Fleming's left-hand rule and right-hand rule, and the stirring force F is the magnetic flux density B
It can be seen that it is proportional to the square of the power supply frequency f.

また(2) 、 (3)式は理論式の一部を実験式で補
正したものであり、(2)式は磁束密度が融液中に2次
電流が継起されることによる減衰項“〈1−β)nと物
理的距離による減Q項”(exp)′との2つの要因に
より減衰することを示している。
In addition, equations (2) and (3) are a part of the theoretical equations corrected by experimental equations, and equation (2) shows that the magnetic flux density is attenuated by the attenuation term "< It is shown that the attenuation is due to two factors: 1-β)n and a reduced Q term ``(exp)'' due to physical distance.

すなわちビッヂτはマグネットの寸法により決まるもの
であり、一定であるとすると距離に応じて指数関数的に
減衰することがわかる。また(3)式より2次電流によ
る減衰は周波数fに比例することがわかる。これらの結
果から、マグネットの形状〈これによりτが決まる)お
よび配置(これにより2が決まる)と周波数fとにより
減衰が決まるため、周波数fを変えることにより撹拌力
が変わるとともに撹拌深さを選択することができる。
That is, the bit τ is determined by the dimensions of the magnet, and if it is constant, it is found that it decays exponentially with distance. Furthermore, from equation (3) it can be seen that the attenuation due to the secondary current is proportional to the frequency f. From these results, attenuation is determined by the shape of the magnet (this determines τ) and placement (this determines 2) and the frequency f, so changing the frequency f changes the stirring force and selects the stirring depth. can do.

第2図には(2)式および(3)式の関係がグラフとし
て示されている。同図中の破線は融液がない場合を示し
ており、融液中のうず電流により磁束密度が急激に減衰
することがわかる。また周波数fが決まれば磁束密度β
を変えることにより撹拌力を調整できる。したがってマ
グネットに加える周波数でと電流とを設定することによ
り必要とする撹拌力が確実に得られるため、最適な撹拌
を得られるよう調整が可能となる。
FIG. 2 shows the relationship between equations (2) and (3) as a graph. The broken line in the figure shows the case where there is no melt, and it can be seen that the magnetic flux density is rapidly attenuated due to eddy currents in the melt. Also, if the frequency f is determined, the magnetic flux density β
The stirring power can be adjusted by changing. Therefore, by setting the frequency and current applied to the magnet, the required stirring force can be reliably obtained, and adjustment can be made to obtain optimal stirring.

このように本発明は電磁力により直接融液を撹拌するた
め応答も良く、また確実に撹拌がυIt11でき再現性
も高い。また、融液の減少等の変化に合せたダイナミッ
クな撹拌υ制御も可能となる。なお、融液2の上部特に
単結晶の凝固界面では融液2の揺動あるいは温度変動が
あると結晶に欠陥を生ずることから、従来性なわれてい
る磁場印加引上(MCZ)と同様に静磁界4を印加して
いるため、融液2の動きを界面近傍で押えるような11
動力が働き、融液2界而での揺動は押えられ、凝固界面
は安定した状態に保たれる。
As described above, in the present invention, since the melt is directly stirred by electromagnetic force, the response is good, and the stirring can be performed reliably υIt11 with high reproducibility. It also becomes possible to dynamically control stirring υ in accordance with changes such as decrease in melt. Note that if there is any fluctuation of the melt 2 or temperature fluctuation in the upper part of the melt 2, especially at the solidification interface of the single crystal, defects will occur in the crystal, so similar to the conventional magnetic field applied pulling (MCZ) Since the static magnetic field 4 is applied, the movement of the melt 2 is suppressed near the interface.
The power acts, suppressing the oscillations between the two melt and solidifying interfaces, and keeping the solidification interface in a stable state.

したがって、本発明による結晶引上げ方法では、結晶の
成長に最も重要な凝固界面にはiiI流磁界磁界えて融
液の揺動を押え安定した結晶成長条件を保つ。
Therefore, in the crystal pulling method according to the present invention, a iii current magnetic field is applied to the solidification interface, which is most important for crystal growth, to suppress the fluctuation of the melt and maintain stable crystal growth conditions.

一方、融液中間部および下部には移動磁界により上下に
撹拌を起し融液を十分に撹拌して不純物濃度の分布を均
一とするようにしている。移動磁界による電磁力で融液
を直接撹拌することは、撹拌を任意に1lJlすること
ができることを意味し、連応性もありまた再現性にも優
れているといえる。
On the other hand, the middle and lower parts of the melt are stirred up and down by a moving magnetic field to sufficiently stir the melt and make the impurity concentration distribution uniform. Directly stirring the melt with the electromagnetic force generated by the moving magnetic field means that the stirring can be done at any desired level of 1 lJl, and can be said to have good continuity and excellent reproducibility.

また上下方向への撹拌は第2図に示すようにルツボ1の
周囲中心部へ向かうhl拌流が生ずるため、ルツボ1周
囲のヒーターによる加熱が@液全体に均一となるよう撹
拌される。したがって回転方向の撹拌に比べ効果的であ
る。
Further, as shown in FIG. 2, the stirring in the vertical direction generates a hl stirring flow toward the center of the periphery of the crucible 1, so that the heating by the heater around the crucible 1 becomes uniform over the entire liquid. Therefore, it is more effective than stirring in the rotational direction.

なお上述した実施例では、移動磁界を用いているが、こ
の代りに前述した回転磁界を用いた撹拌を行った場合も
同様の効果を得ることができる。
Although the above-mentioned embodiment uses a moving magnetic field, the same effect can be obtained when stirring is performed using the above-mentioned rotating magnetic field instead.

〔発明の効果〕〔Effect of the invention〕

以上実施例に基づいて詳細に説明したように、本発明に
よれば、融液表面に直流による静磁界を与えて結晶の成
長にもっとも重要な凝固界面の状態を安定に保ら欠陥の
ない半導体単結晶をつくるとともに、移動磁界により融
液を十分に撹拌することにより結晶の不純物濃度分布を
均一にすることができる。またffta力を用いて撹拌
を行っているため融液の任意の位置に任意の力を加える
よう制御することができる。このため制御性、連応性、
再現性に優れ、常に最適条件の撹拌を行うことができる
As described above in detail based on the embodiments, according to the present invention, a static magnetic field caused by a direct current is applied to the surface of the melt to keep the state of the solidification interface, which is most important for crystal growth, stable, and a defect-free semiconductor By forming a single crystal and sufficiently stirring the melt using a moving magnetic field, it is possible to make the impurity concentration distribution of the crystal uniform. Furthermore, since stirring is performed using ffta force, it is possible to control the application of arbitrary force to any arbitrary position of the melt. For this reason, controllability, coordination,
It has excellent reproducibility and can always perform stirring under optimal conditions.

【図面の簡単な説明】[Brief explanation of drawings]

第1図は本発明の一実施例の構成を示す図、第2図は移
動磁界の磁束密度のルツボ内融液位置での減衰を示す特
性図、第3図および第4図は従来の方法によるルツボ回
転による融液の流れの有限蟹素法による流体解析結果を
示す図である。 1・・・ルツボ、2・・・単結晶原料融液、3・・・静
磁界発生用マグネット、4・・・静磁界、5・・・移動
磁界発生用マグネット、6・・・移動磁界、7・・・移
動磁界による撹拌流、8・・・移動磁界方向、9・・・
単結晶。 出願人代理人  4Ji   藤  −雄躬2 図 弔3図 躬4図
Fig. 1 is a diagram showing the configuration of an embodiment of the present invention, Fig. 2 is a characteristic diagram showing the attenuation of the magnetic flux density of the moving magnetic field at the melt position in the crucible, and Figs. 3 and 4 are diagrams showing the conventional method. It is a figure which shows the fluid analysis result by the finite element method of the flow of the melt by crucible rotation. DESCRIPTION OF SYMBOLS 1... Crucible, 2... Single-crystal raw material melt, 3... Magnet for static magnetic field generation, 4... Static magnetic field, 5... Magnet for moving magnetic field generation, 6... Moving magnetic field, 7... Stirring flow due to moving magnetic field, 8... Moving magnetic field direction, 9...
Single crystal. Applicant's agent 4Ji Fuji - Yuman 2 Diagram 3 Diagram 4

Claims (1)

【特許請求の範囲】[Claims] ルツボ内の原料融液表面から引上げによって単結晶を得
る半導体単結晶の製造方法において、前記融液の凝固界
面近傍には静磁界を加えて前記融液の界面近傍の揺動を
抑えつつ、中間部および下部には低周波による移動磁界
もしくは回転磁界を加えて前記融液の内部に上下方向の
揺動を生じさせながら引上げることを特徴とする半導体
単結晶の製造方法。
In a method for manufacturing a semiconductor single crystal in which a single crystal is obtained by pulling a single crystal from the surface of a raw material melt in a crucible, a static magnetic field is applied near the solidification interface of the melt to suppress fluctuations near the interface of the melt, while A method for producing a semiconductor single crystal, characterized in that a moving magnetic field or a rotating magnetic field by low frequency is applied to the upper and lower parts of the melt to cause vertical vibration inside the melt while pulling the melt.
JP20249586A 1986-08-28 1986-08-28 Production of semiconductor single crystal Pending JPS6360189A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP20249586A JPS6360189A (en) 1986-08-28 1986-08-28 Production of semiconductor single crystal

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP20249586A JPS6360189A (en) 1986-08-28 1986-08-28 Production of semiconductor single crystal

Publications (1)

Publication Number Publication Date
JPS6360189A true JPS6360189A (en) 1988-03-16

Family

ID=16458435

Family Applications (1)

Application Number Title Priority Date Filing Date
JP20249586A Pending JPS6360189A (en) 1986-08-28 1986-08-28 Production of semiconductor single crystal

Country Status (1)

Country Link
JP (1) JPS6360189A (en)

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS6360193A (en) * 1986-08-29 1988-03-16 Sumitomo Metal Ind Ltd Crystal growth method
EP0781876A1 (en) * 1995-12-29 1997-07-02 Shin-Etsu Handotai Company Limited Method and apparatus for production of single crystal
US6077346A (en) * 1997-12-12 2000-06-20 Nec Corporation Semiconductor single crystal growing apparatus and crystal growing method
JP2009216424A (en) * 2008-03-07 2009-09-24 Kobe Steel Ltd Magnet position measuring method and magnetic field measuring instrument
US7771530B2 (en) 2001-01-18 2010-08-10 Siltronic Ag Process and apparatus for producing a silicon single crystal

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS6360193A (en) * 1986-08-29 1988-03-16 Sumitomo Metal Ind Ltd Crystal growth method
EP0781876A1 (en) * 1995-12-29 1997-07-02 Shin-Etsu Handotai Company Limited Method and apparatus for production of single crystal
US6077346A (en) * 1997-12-12 2000-06-20 Nec Corporation Semiconductor single crystal growing apparatus and crystal growing method
US7771530B2 (en) 2001-01-18 2010-08-10 Siltronic Ag Process and apparatus for producing a silicon single crystal
JP2009216424A (en) * 2008-03-07 2009-09-24 Kobe Steel Ltd Magnet position measuring method and magnetic field measuring instrument

Similar Documents

Publication Publication Date Title
JPS6144797A (en) Apparatus for growing single crystal and method for controlling same
JP2010523459A (en) Method and apparatus for producing a single crystal
JP2007031274A (en) Silicon single crystal ingot and wafer, growing apparatus and method thereof
JP2004196655A (en) Silicon single crystal, semiconductor wafer obtained from the same, and process and apparatus for producing single crystal
JP3086850B2 (en) Method and apparatus for growing single crystal
US5196085A (en) Active magnetic flow control in Czochralski systems
JPS6360189A (en) Production of semiconductor single crystal
JPH05155682A (en) Method for pulling up silicon single crystal
JP2567539B2 (en) FZ method silicon single crystal ingot growth method and apparatus
JP3132412B2 (en) Single crystal pulling method
JP2000044387A (en) Production of silicon single crystal
JPS6036392A (en) Apparatus for pulling single crystal
JP2001089289A (en) Method of pulling single crystal
JPS6081086A (en) Process and apparatus for growing single crystal
TWI282379B (en) Silicon single-crystal wafer manufacturing method, silicon single-crystal wafer, and epitaxial wafer
WO2023243357A1 (en) Method for producing silicon single crystal
JP2001019592A (en) Device for pulling single crystal
JPS6270286A (en) Apparatus for producting single crystal
JP2000109390A (en) Production of single crystal
JP3018738B2 (en) Single crystal manufacturing equipment
JP4513407B2 (en) Method for producing single crystal
JPS6033297A (en) Pulling device for single crystal semiconductor
KR20050047348A (en) A manufacturing method for silicon ingot
JPS62182190A (en) Production of compound semiconductor single crystal
JPS61222985A (en) Production unit for single crystal