JP2009216424A - Magnet position measuring method and magnetic field measuring instrument - Google Patents

Magnet position measuring method and magnetic field measuring instrument Download PDF

Info

Publication number
JP2009216424A
JP2009216424A JP2008057701A JP2008057701A JP2009216424A JP 2009216424 A JP2009216424 A JP 2009216424A JP 2008057701 A JP2008057701 A JP 2008057701A JP 2008057701 A JP2008057701 A JP 2008057701A JP 2009216424 A JP2009216424 A JP 2009216424A
Authority
JP
Japan
Prior art keywords
magnetic field
magnet
field strength
axis
axis direction
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2008057701A
Other languages
Japanese (ja)
Other versions
JP4990194B2 (en
Inventor
Osamu Ozaki
修 尾崎
Kenichi Inoue
憲一 井上
Ryoichi Hirose
量一 広瀬
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Kobe Steel Ltd
Japan Superconductor Technology Inc
Original Assignee
Kobe Steel Ltd
Japan Superconductor Technology Inc
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Kobe Steel Ltd, Japan Superconductor Technology Inc filed Critical Kobe Steel Ltd
Priority to JP2008057701A priority Critical patent/JP4990194B2/en
Publication of JP2009216424A publication Critical patent/JP2009216424A/en
Application granted granted Critical
Publication of JP4990194B2 publication Critical patent/JP4990194B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Landscapes

  • Measurement Of Length, Angles, Or The Like Using Electric Or Magnetic Means (AREA)

Abstract

<P>PROBLEM TO BE SOLVED: To provide a magnet position measuring method capable of accurately measuring a position of a magnet. <P>SOLUTION: This magnet position measuring method is a method of finding deviation amounts of superconducting magnets 1A, 1B from a prescribed position, in an Si single crystal growing-up device 100 provided with the pair of substantially cylindrical superconducting magnets 1A, 1B arranged in the prescribed position in order to generate a proper magnetic field in an objective area. The magnet position measuring method includes a process for operating the Si single crystal growing-up device 100, for measuring magnetic field intensities of the superconducting magnets 1A, 1B, and for acquiring observed data thereof, and a process for finding an unknown, based on the observed data of the magnetic field intensities and simulation data of the magnetic field intensities obtained by a quadratic function of the magnetic field intensities including the unknown defined as the deviation amounts of the superconducting magnets 1A, 1B from the prescribed position. <P>COPYRIGHT: (C)2009,JPO&INPIT

Description

本発明は、略円筒状(コイル状)の磁石の位置を測定するための磁石位置測定方法、および、当該方法に用いられる磁場測定装置に関する。   The present invention relates to a magnet position measuring method for measuring the position of a substantially cylindrical (coiled) magnet, and a magnetic field measuring apparatus used in the method.

従来、強磁場を発生可能な超電導マグネット等のコイル状の磁石が知られている。そして、このような磁石を備えた磁石装置は、例えばSi単結晶の製造に利用されている(特許文献1参照)。   Conventionally, a coiled magnet such as a superconducting magnet capable of generating a strong magnetic field is known. And the magnet apparatus provided with such a magnet is utilized for manufacture of Si single crystal, for example (refer to patent documents 1).

Si単結晶を製造する方法としては、坩堝内の溶融Siに磁界を印加しながら単結晶種結晶に結晶成長させる方法(MCZ法)が一般に知られている。この方法では、溶融Siの熱対流が電磁制動によって抑制されるため、高品質のSi単結晶を製造可能である。   As a method for producing a Si single crystal, a method of growing a single crystal seed crystal while applying a magnetic field to molten Si in a crucible (MCZ method) is generally known. In this method, since thermal convection of molten Si is suppressed by electromagnetic braking, a high-quality Si single crystal can be manufactured.

そして、近年、産業用として直径約300mmの大型のSi単結晶の需要が増えている。このような大型のSi単結晶を製造するには、それに見合った直径1m程度の坩堝が必要となる。また、この場合、溶融Siの熱対流を抑制するためには、0.3(T)以上の磁場強度が必要である。このように、直径1mの空間に上記のような強磁場を発生する装置として、例えば超電導マグネットを備えた磁石装置が好適となっている。
特許第2790549号
In recent years, the demand for large Si single crystals having a diameter of about 300 mm for industrial use has increased. In order to manufacture such a large Si single crystal, a crucible having a diameter of about 1 m is required. In this case, a magnetic field strength of 0.3 (T) or more is necessary to suppress the thermal convection of molten Si. As described above, for example, a magnet device including a superconducting magnet is suitable as a device that generates the above-described strong magnetic field in a space having a diameter of 1 m.
Japanese Patent No. 2790549

ところで、磁石の位置は、製造誤差に起因して磁石装置ごとにばらつきがある。特に、上述のSi単結晶の品質は、磁場分布に大きく影響される。従って、装置ごとのSi単結晶の品質を揃えるためには、超電導マグネット(磁石)のSi単結晶育成部(対象領域)に対する位置がなるべく設計通りであることが望ましい。これにより、従来から、磁石の位置、すなわち設計位置からのずれ量を正確に測定したいという要望があった。   By the way, the position of a magnet has dispersion | variation for every magnet apparatus resulting from a manufacturing error. In particular, the quality of the Si single crystal described above is greatly influenced by the magnetic field distribution. Therefore, in order to uniformize the quality of the Si single crystal for each apparatus, it is desirable that the position of the superconducting magnet (magnet) with respect to the Si single crystal growing portion (target region) is as designed as possible. As a result, there has been a desire to accurately measure the amount of deviation from the position of the magnet, that is, the design position.

なお、上記特許文献1のような装置では、超電導マグネットは、一般に、真空容器内に収納された構成になっている。真空容器には、Si単結晶確認用の覗き窓が設けられているが、真空容器の覗き窓以外の部分は、高強度、非磁性、安価等の観点から非磁性ステンレス等の不透明な材料からなるため、装置外部からの目視による磁石位置の正確な把握は極めて困難である。   In the apparatus as described in Patent Document 1, the superconducting magnet is generally stored in a vacuum vessel. The vacuum vessel is provided with a viewing window for Si single crystal confirmation, but the portion other than the viewing window of the vacuum vessel is made of an opaque material such as non-magnetic stainless steel from the viewpoint of high strength, non-magnetism, low cost, etc. Therefore, it is extremely difficult to accurately grasp the magnet position by visual inspection from the outside of the apparatus.

本発明は、上記のような要望に応えるためになされたものであり、磁石の位置を正確に測定することが可能な磁石位置測定方法および磁場測定装置を提供することを目的とする。   The present invention has been made to meet the above demands, and an object of the present invention is to provide a magnet position measuring method and a magnetic field measuring apparatus capable of accurately measuring the position of a magnet.

上記目的を達成するために、本発明の一態様にかかる磁石位置測定方法は、対象領域に磁場を発生するように所定位置に配設される略円筒状の磁石を備えた磁石装置における前記磁石の前記所定位置からのずれ量を求める磁石位置測定方法であって、前記磁石装置を作動させて、前記磁石の磁場強度を測定し、その実測データを取得する工程と、前記磁場強度の実測データに基づいて、前記磁石の磁場強度を表す関数式を求める工程とを備え、前記磁場強度の関数式は、前記磁石が前記所定位置に配されているときの当該磁石の磁場中心を座標原点とするとともに、その所定位置の磁石の軸心に沿う方向をx軸方向、このx軸方向と直交し、かつ互いに直交する方向をy軸方向およびz軸方向としてxyz直交座標系を設定し、前記磁石のx軸方向、y軸方向およびz軸方向の位置ずれ量としての未知数をそれぞれdx、dyおよびdzとするとともに、磁石のy軸およびz軸を中心とする角度ずれ量としての未知数をそれぞれγおよびαとしたときに、dx、dy、dz、γ、αを含むx、yおよびzの2次関数式で表されることを特徴とする。   In order to achieve the above object, a magnet position measuring method according to one aspect of the present invention includes a magnet in a magnet device including a substantially cylindrical magnet disposed at a predetermined position so as to generate a magnetic field in a target region. A magnet position measuring method for obtaining a deviation amount of the magnet from the predetermined position, the step of operating the magnet device to measure the magnetic field strength of the magnet and obtaining the measured data, and the measured data of the magnetic field strength. And calculating a functional expression representing the magnetic field strength of the magnet based on the magnetic field strength, the functional expression of the magnetic field strength being the coordinate origin as the magnetic field center of the magnet when the magnet is disposed at the predetermined position. In addition, an xyz orthogonal coordinate system is set with the direction along the axis of the magnet at the predetermined position as the x-axis direction, the direction orthogonal to the x-axis direction and the directions orthogonal to each other as the y-axis direction and the z-axis direction, Magnet x Unknowns as positional deviation amounts in the direction, y-axis direction and z-axis direction are dx, dy and dz, respectively, and unknowns as angular deviation amounts around the y-axis and z-axis of the magnet are γ and α, respectively. It is characterized by being expressed by a quadratic function expression of x, y, and z including dx, dy, dz, γ, α.

この磁石位置測定方法では、上記のように、磁場強度を実際に測定して得られた実測データに基づいて、磁石の所定位置からのずれ量として規定された未知数を含む磁石の磁場強度の関数式を求めるようにしたので、例えば外部から磁石を視認しにくい装置構成であっても当該磁石の位置を正確に測定することができる。   In this magnet position measurement method, as described above, based on the actual measurement data obtained by actually measuring the magnetic field strength, the function of the magnetic field strength of the magnet including the unknown defined as the amount of deviation from the predetermined position of the magnet. Since the equation is obtained, for example, the position of the magnet can be accurately measured even in an apparatus configuration in which it is difficult to visually recognize the magnet from the outside.

また、略円筒状の磁石に対して上記のようにxyz直交座標系を設定した場合、当該磁石は、xy平面、yz平面およびzx平面に対して対称で、かつ、x軸に対して回転対称となる。このことから、磁石の磁場強度をx、yおよびzの偶関数で表すことができる。そして、本発明では、0次を除いて最も低次の2次関数式で磁場強度を表すようにしたので、未知数を容易に求めることができる。   Further, when the xyz orthogonal coordinate system is set as described above for a substantially cylindrical magnet, the magnet is symmetric with respect to the xy plane, the yz plane, and the zx plane, and is rotationally symmetric with respect to the x axis. It becomes. From this, the magnetic field strength of the magnet can be expressed by an even function of x, y, and z. In the present invention, since the magnetic field strength is expressed by the lowest-order quadratic function expression excluding the zeroth order, the unknown can be easily obtained.

上記の磁石位置測定方法において、前記2次関数式は、前記磁石の中心磁場強度をBとしたときに、以下の式(1)で表される。 In the above magnet position measurement method, the quadratic function equation is expressed by the following equation (1) when the central magnetic field strength of the magnet is B 0 .

B=B+a[(x+αy−γz)−dx]+b[(y−αx)−dy]
+c[(z+γx)−dz] ・・・式(1)
これら上記の磁石位置測定方法において、好ましくは、前記磁場強度のデータは、複数位置における磁場強度のデータであり、前記関数式を求める工程は、最小2乗法によって前記磁場強度の実測データから前記関数式を求める工程を含んでいる。
B = B 0 + a [(x + αy−γz) −dx] 2 + b [(y−αx) −dy] 2
+ C [(z + γx) −dz] 2 Formula (1)
In the above-described magnet position measurement methods, preferably, the magnetic field strength data is magnetic field strength data at a plurality of positions, and the step of obtaining the function formula is performed by using the function from the measured magnetic field strength data by the least square method. A step of obtaining an expression.

上記のような最小2乗法を利用すれば、磁石のずれ量である未知数を精度良く求めることができるので、磁石位置をより正確に測定することができる。   If the least square method as described above is used, an unknown quantity that is a displacement amount of the magnet can be obtained with high accuracy, so that the magnet position can be measured more accurately.

これら上記の磁石位置測定方法において、好ましくは、前記磁石は、略同形の一対の超電導マグネットを、同軸に、かつ軸方向に所定間隔を隔てるように配してなるスプリットペア型の超電導マグネットである。   In these magnet position measuring methods, preferably, the magnet is a split-pair superconducting magnet in which a pair of substantially identical superconducting magnets are arranged coaxially and at a predetermined interval in the axial direction. .

このようにすれば、スプリットペア型の超電導マグネットの位置を正確に測定することができるようになる。   In this way, the position of the split pair type superconducting magnet can be accurately measured.

また、本発明の他の一態様にかかる磁場測定装置は、これら上記いずれかの磁石位置測定方法に用いるための磁場測定装置であって、磁場強度を測定するための複数のプローブと、前記複数のプローブを保持するプローブ保持部と、このプローブ保持部を移動させる駆動部とを備え、前記駆動部により前記プローブ保持部を移動させながら磁場強度を測定することを特徴とする。   A magnetic field measurement apparatus according to another aspect of the present invention is a magnetic field measurement apparatus for use in any of the above-described magnet position measurement methods, and includes a plurality of probes for measuring magnetic field strength, and the plurality of the plurality of probes. A probe holding unit for holding the probe and a drive unit for moving the probe holding unit, and measuring the magnetic field intensity while moving the probe holding unit by the drive unit.

この磁場測定装置では、複数のプローブを保持するプローブ保持部を駆動部により移動させながら磁場強度を測定することによって、磁場強度を複数位置で同時に測定することができるので、例えば磁場強度を一箇所ずつ測定する場合に比べて、実測データの取得が容易になる。これにより、磁場強度を実際に測定して得られた実測データに基づいて、磁石の所定位置からのずれ量として規定された未知数を含む磁石の磁場強度の関数式を容易に求めることができるので、例えば外部から磁石を視認しにくい装置構成であっても当該磁石の位置を正確に測定しやすくなる。   In this magnetic field measuring apparatus, the magnetic field strength can be measured simultaneously at a plurality of positions by measuring the magnetic field strength while moving the probe holding unit that holds a plurality of probes by the driving unit. Compared to the case where measurement is performed one by one, acquisition of actual measurement data becomes easier. As a result, based on the actual measurement data obtained by actually measuring the magnetic field strength, it is possible to easily obtain the functional expression of the magnetic field strength of the magnet including the unknown defined as the amount of deviation from the predetermined position of the magnet. For example, even in a device configuration in which it is difficult to visually recognize a magnet from the outside, it becomes easy to accurately measure the position of the magnet.

上記の磁場測定装置において、好ましくは、前記プローブ保持部は、前記複数のプローブをx軸、y軸およびz軸のうちのいずれか2つを含む平面に平行な所定平面上にマトリクス状に並べた状態で保持し、前記駆動部は、前記プローブ保持部を前記所定平面と略直交する方向に移動させるように構成されている。   In the above-described magnetic field measurement apparatus, preferably, the probe holding unit arranges the plurality of probes in a matrix on a predetermined plane parallel to a plane including any two of the x-axis, the y-axis, and the z-axis. The drive unit is configured to move the probe holding unit in a direction substantially orthogonal to the predetermined plane.

このように構成すれば、磁場強度の測定位置が空間に一様に分布するようになるので、得られた実測データが空間的に偏りの少ないものとすることができる。これにより、実測データに基づいて求めた磁石のずれ量の信頼性を高めることができる。   With this configuration, the measurement positions of the magnetic field strength are uniformly distributed in the space, so that the actual measurement data obtained can be spatially less biased. Thereby, the reliability of the deviation | shift amount of the magnet calculated | required based on measured data can be improved.

上記の磁場測定装置において、好ましくは、前記プローブ保持部は、前記所定平面に沿う保持面部を有し、前記保持面部には、前記プローブをそれぞれ保持する複数の凹部がマトリクス状に設けられている。   In the above magnetic field measurement apparatus, preferably, the probe holding portion has a holding surface portion that extends along the predetermined plane, and the holding surface portion is provided with a plurality of recesses for holding the probes in a matrix. .

このように構成すれば、測定中にプローブの位置がずれるのを防ぐことができるので、実測データを正確に取得することができる。   If comprised in this way, it can prevent that the position of a probe shifts | deviates during a measurement, Therefore Actual measurement data can be acquired correctly.

本発明の磁石位置測定方法によれば、例えば外部から磁石を視認しにくい装置構成であっても当該磁石の位置を正確に測定することができる。   According to the magnet position measuring method of the present invention, the position of the magnet can be accurately measured even in an apparatus configuration in which it is difficult to visually recognize the magnet from the outside.

また、本発明の磁場測定装置によれば、磁場強度を一箇所ずつ測定する場合に比べて、実測データの取得が容易になる。これにより、本発明の磁石位置測定方法によって磁石のずれ量を容易に求めることができるので、例えば外部から磁石を視認しにくい装置構成であっても当該磁石の位置を正確に測定しやすくなる。   In addition, according to the magnetic field measurement apparatus of the present invention, it is easier to obtain actual measurement data than when measuring the magnetic field strength one by one. As a result, the amount of magnet displacement can be easily determined by the magnet position measuring method of the present invention, so that the position of the magnet can be accurately measured even in an apparatus configuration in which it is difficult to visually recognize the magnet from the outside.

以下、本発明の実施形態を図面に基づいて説明する。   Hereinafter, embodiments of the present invention will be described with reference to the drawings.

図1は、本発明の一実施形態によるSi単結晶育成装置の全体構成を示した正面断面図である。また、図2は、図1に示したSi単結晶育成装置の磁場強度測定時の状態を示した正面断面図である。また、図3は、磁場測定ジグの保持板および移動機構の構成を示した斜視図であり、図4は、図3に示した保持板のプローブ用穴とプローブとの関係を説明するための部分拡大斜視図である。また、図5は、磁場強度の測定位置を説明するための斜視図である。   FIG. 1 is a front sectional view showing the overall configuration of a Si single crystal growing apparatus according to an embodiment of the present invention. FIG. 2 is a front cross-sectional view showing a state at the time of measuring the magnetic field strength of the Si single crystal growing apparatus shown in FIG. 3 is a perspective view showing the configuration of the holding plate and the moving mechanism of the magnetic field measurement jig, and FIG. 4 is a diagram for explaining the relationship between the probe hole and the probe of the holding plate shown in FIG. It is a partial expansion perspective view. FIG. 5 is a perspective view for explaining the measurement position of the magnetic field strength.

まず、図1を参照して、本実施形態のSi単結晶育成装置100の全体構成について説明する。なお、Si単結晶育成装置100は、本発明の「磁石装置」の一例である。   First, with reference to FIG. 1, the whole structure of the Si single crystal growth apparatus 100 of this embodiment is demonstrated. The Si single crystal growing apparatus 100 is an example of the “magnet apparatus” in the present invention.

Si単結晶育成装置100は、一対の略円筒状の超電導マグネット1A,1Bと、それらの間に設けられる坩堝2とを備えている。超電導マグネット1A,1Bは、超電導線材がコイル状に巻回されて構成されている。坩堝2には、溶融Si3Aが収容されている。なお、超電導マグネット1A,1Bは、本発明の「磁石」の一例である。   The Si single crystal growing apparatus 100 includes a pair of substantially cylindrical superconducting magnets 1A and 1B, and a crucible 2 provided therebetween. Superconducting magnets 1A and 1B are formed by winding a superconducting wire in a coil shape. The crucible 2 contains molten Si3A. The superconducting magnets 1A and 1B are examples of the “magnet” of the present invention.

一対の超電導マグネット1A,1Bは、略同サイズ(同形)であり、同軸に、かつ軸方向に所定間隔を隔てるように設けられるスプリットペア型の超電導マグネットである。   The pair of superconducting magnets 1A and 1B are split pair type superconducting magnets that have substantially the same size (same shape) and are provided coaxially and at a predetermined interval in the axial direction.

また、このSi単結晶育成装置100は、超電導マグネット1A,1Bを軸方向が略水平となるように横方向に並設してなる横磁界方式である。なお、本発明は、その他の縦磁界方式や、カスプ磁界方式のものにも適用可能である。   The Si single crystal growing apparatus 100 is a transverse magnetic field system in which superconducting magnets 1A and 1B are arranged side by side in the lateral direction so that the axial direction is substantially horizontal. The present invention can also be applied to other longitudinal magnetic field systems and cusp magnetic field systems.

超電導マグネット1A,1Bは、平面視で略コの字状の真空容器4内に収容されており、坩堝2は、上記真空容器4とは別の真空容器5内に収容されている。真空容器5には、Si単結晶確認用の覗き窓(図示せず)が設けられているが、真空容器4や真空容器5の覗き窓以外の部分は、高強度、非磁性、安価等の観点から非磁性ステンレス等の不透明な材料により構成されている。従って、超電導マグネット1A,1Bを容器外部から視認するのは極めて困難であり、外観視で超電導マグネットの位置を正確に把握するのはほぼ不可能となっている。   Superconducting magnets 1 </ b> A and 1 </ b> B are housed in a substantially U-shaped vacuum container 4 in plan view, and crucible 2 is housed in a vacuum container 5 separate from the vacuum container 4. The vacuum vessel 5 is provided with a viewing window (not shown) for confirming the Si single crystal, but the portions other than the viewing window of the vacuum vessel 4 and the vacuum vessel 5 are of high strength, non-magnetic, inexpensive, etc. From the viewpoint, it is made of an opaque material such as nonmagnetic stainless steel. Therefore, it is extremely difficult to visually recognize the superconducting magnets 1A and 1B from the outside of the container, and it is almost impossible to accurately grasp the position of the superconducting magnet from the appearance.

坩堝2は、移動機構6によって支持されている。また、坩堝2の側方には、抵抗加熱方式、赤外線集中加熱方式、あるいは高周波誘導加熱方式等のヒータ10が設置されている。   The crucible 2 is supported by the moving mechanism 6. Further, a heater 10 such as a resistance heating method, an infrared intensive heating method, or a high frequency induction heating method is installed on the side of the crucible 2.

移動機構6は、坩堝2を載置するための載置台61と、この載置台61を回転および昇降させるための駆動部62とで構成されている。   The moving mechanism 6 includes a mounting table 61 for mounting the crucible 2 and a drive unit 62 for rotating and lifting the mounting table 61.

本実施形態では、坩堝2内の溶融Si3Aの液面中心がSi単結晶育成部7となっており、当該Si単結晶育成部7にはSi単結晶育成用の種結晶が配されている。Si単結晶育成の初期状態では、Si単結晶育成部7と一対の超電導マグネット1A,1Bの磁場中心とが略一致するように、超電導マグネット1A,1Bおよび坩堝2が相対的に位置決めされて配されている。なお、上記相対位置の条件を満たす超電導マグネット1A,1Bの配置位置が本発明の「所定位置」である。   In the present embodiment, the center of the liquid surface of the molten Si3A in the crucible 2 is the Si single crystal growth part 7, and a seed crystal for Si single crystal growth is arranged in the Si single crystal growth part 7. In the initial state of Si single crystal growth, the superconducting magnets 1A and 1B and the crucible 2 are relatively positioned and arranged so that the Si single crystal growing part 7 and the magnetic field centers of the pair of superconducting magnets 1A and 1B substantially coincide. Has been. The arrangement position of the superconducting magnets 1A and 1B satisfying the above-mentioned relative position is the “predetermined position” of the present invention.

また、図2に示すように、本実施形態では、上記所定位置に配された超電導マグネット1A,1Bの磁場中心(すなわちSi単結晶育成部7)を座標原点とするとともに、その所定位置の超電導マグネット1A,1Bの軸心に沿う方向をx軸方向(図2では左右方向で、右方向が+x方向)、このx軸方向と直交し、かつ互いに直交する方向をy軸方向(図2では紙面に直交する方向で、奥方向が+y方向)およびz軸方向(図2では上下方向で、上方向が+z方向)として、xyz直交座標系が設定されている。   As shown in FIG. 2, in the present embodiment, the magnetic field centers of the superconducting magnets 1A and 1B arranged at the predetermined positions (that is, the Si single crystal growing part 7) are used as coordinate origins, and the superconductivity at the predetermined positions is used. The direction along the axis of the magnets 1A and 1B is the x-axis direction (left and right direction in FIG. 2, the right direction is the + x direction), and the direction perpendicular to the x-axis direction and perpendicular to each other is the y-axis direction (in FIG. 2). An xyz orthogonal coordinate system is set as a direction perpendicular to the paper surface, the back direction being the + y direction, and the z-axis direction (the vertical direction in FIG. 2 and the upward direction is the + z direction).

そして、移動機構6は、坩堝2がゆっくりと回転されつつ下降されるように構成されており、これによって種結晶と同じ方位配列を有する略円柱状のSi単結晶3Bが育成されるようになっている。   The moving mechanism 6 is configured so that the crucible 2 is lowered while being slowly rotated, whereby a substantially cylindrical Si single crystal 3B having the same orientation array as the seed crystal is grown. ing.

また、本実施形態のSi単結晶育成装置100では、溶融Si3Aに超電導マグネット1A,1Bによる磁場を印加しながらSi単結晶3Bを育成する構成であるので、溶融Si3Aの熱対流が電磁制動によって抑制される。これにより、高品質のSi単結晶3Bを製造可能となっている。   In addition, since the Si single crystal growth apparatus 100 of this embodiment is configured to grow the Si single crystal 3B while applying a magnetic field by the superconducting magnets 1A and 1B to the molten Si 3A, the thermal convection of the molten Si 3A is suppressed by electromagnetic braking. Is done. Thereby, high-quality Si single crystal 3B can be manufactured.

ところで、本実施形態のSi単結晶育成装置100では、上述のように、真空容器4が不透明材料で構成されているため、超電導マグネット1A,1Bの位置を外観視で把握するのがほぼ不可能となっている。しかし、超電導マグネット1A,1BのSi単結晶育成部7に対する相対位置が設定通り、すなわち、超電導マグネット1A,1Bの磁場中心がSi単結晶育成部7と略一致することが、Si単結晶3Bの品質向上にとって重要であるので、超電導マグネット1A,1Bの位置を正確に把握し、必要に応じてその配置位置を調整することが望まれている。   By the way, in the Si single crystal growth apparatus 100 of the present embodiment, as described above, since the vacuum vessel 4 is made of an opaque material, it is almost impossible to grasp the positions of the superconducting magnets 1A and 1B from an external view. It has become. However, the relative positions of the superconducting magnets 1A and 1B with respect to the Si single crystal growing part 7 are as set, that is, the magnetic field centers of the superconducting magnets 1A and 1B substantially coincide with the Si single crystal growing part 7. Since it is important for quality improvement, it is desired to accurately grasp the positions of the superconducting magnets 1A and 1B and adjust their arrangement positions as necessary.

ここで、本実施形態のSi単結晶育成装置100は、図2に示すように、磁場測定ジグ8を備える構成となっており、後記に詳細に説明するが、Si単結晶育成の前に磁場測定ジグ8により超電導マグネット1A,1Bの磁場を測定し、これによって超電導マグネット1A,1Bの上記所定位置からのずれ量を求めるようになっている。   Here, as shown in FIG. 2, the Si single crystal growth apparatus 100 of the present embodiment has a configuration including a magnetic field measurement jig 8, which will be described in detail later. The magnetic field of the superconducting magnets 1A and 1B is measured by the measuring jig 8, and thereby the amount of deviation of the superconducting magnets 1A and 1B from the predetermined position is obtained.

磁場測定ジグ8は、図3および図4に示すように、磁場強度を測定するための複数のプローブ81(図4参照)と、これらのプローブ81を保持する保持板82とを有している。保持板82の上面は、xy平面に平行となっており、各プローブ81がそれぞれ挿入されて位置決めされる複数のプローブ用穴82aが設けられている。プローブ用穴82aは、その穴の断面形状がプローブ81の断面形状よりもわずかに大きく設定されており、これによってプローブ81を移動不能に保持するようになっている。なお、プローブ用穴82aは、本発明の「凹部」の一例である。また、保持板82の上面は、本発明の「保持面部」に相当する。このように保持板82のプローブ用穴82aに保持された複数のプローブ81は、xy平面に沿うようにマトリクス状に並んだ状態となる。   As shown in FIGS. 3 and 4, the magnetic field measurement jig 8 has a plurality of probes 81 (see FIG. 4) for measuring the magnetic field strength and a holding plate 82 that holds these probes 81. . The upper surface of the holding plate 82 is parallel to the xy plane, and is provided with a plurality of probe holes 82a into which the probes 81 are inserted and positioned. The probe hole 82a is set to have a cross-sectional shape slightly larger than the cross-sectional shape of the probe 81, so that the probe 81 is held immovably. The probe hole 82a is an example of the “concave portion” in the present invention. The upper surface of the holding plate 82 corresponds to the “holding surface portion” of the present invention. Thus, the plurality of probes 81 held in the probe holes 82a of the holding plate 82 are arranged in a matrix form along the xy plane.

また、保持板82は、図3に示すように、前記移動機構6に支持されており、当該移動機構6によって、回転することなくz軸方向(上下方向)に移動される。そして、上下方向の複数位置で保持板82が停止されるように設定されており、停止される毎に各プローブ81によって磁場強度の測定が行われる。これにより、プローブ81による磁場強度の測定位置P(図5参照)が空間に一様に分布するようになるので、空間的に偏りの少ない磁場強度の実測データが取得されるようになる。また、保持板82は、Si単結晶を育成すべく坩堝2を載置台61に載置するより前に、載置台61にセットされる。なお、本実施形態では、磁場測定ジグ8と移動機構6とによって、本発明の「磁場測定装置」が構成されている。   As shown in FIG. 3, the holding plate 82 is supported by the moving mechanism 6, and is moved in the z-axis direction (vertical direction) by the moving mechanism 6 without rotating. The holding plate 82 is set to be stopped at a plurality of positions in the vertical direction, and each time the probe is stopped, the magnetic field strength is measured. As a result, the measurement positions P (see FIG. 5) of the magnetic field strength by the probe 81 are uniformly distributed in the space, so that actual measurement data of the magnetic field strength with little spatial deviation is acquired. The holding plate 82 is set on the mounting table 61 before the crucible 2 is mounted on the mounting table 61 in order to grow the Si single crystal. In the present embodiment, the magnetic field measurement jig 8 and the moving mechanism 6 constitute the “magnetic field measurement device” of the present invention.

次に、図6を参照して、Si単結晶育成装置100の制御系の構成について説明する。   Next, the configuration of the control system of the Si single crystal growth apparatus 100 will be described with reference to FIG.

Si単結晶育成装置100に具備されている制御装置9は、図6に示すように、演算処理部としてのCPU(Central Processing Unit)91と、ROM(Read Only Memory),RAM(Random Access Memory),HDD(Hard Disk Drive)等からなるメモリとしての記憶部92と、移動機構6の駆動制御を行うための移動機構制御部93と、プローブ81の制御を行うプローブ制御部94とで構成されている。   As shown in FIG. 6, the control device 9 provided in the Si single crystal growth apparatus 100 includes a CPU (Central Processing Unit) 91 as an arithmetic processing unit, a ROM (Read Only Memory), and a RAM (Random Access Memory). , An HDD (Hard Disk Drive) or the like as a memory, a moving mechanism control unit 93 for controlling the driving of the moving mechanism 6, and a probe control unit 94 for controlling the probe 81. Yes.

CPU91は、機能的に、データ取得部91aと、ずれ量演算部91bとを有している。データ取得部91aは、磁場強度の実測データを各プローブ81から取得する機能を有している。ずれ量演算部91bは、磁場強度の実測データと後述のシミュレーションデータとから、超電導マグネット1A,1Bの所定位置からのずれ量を求める演算を実行するための機能を有している。   The CPU 91 functionally includes a data acquisition unit 91a and a deviation amount calculation unit 91b. The data acquisition unit 91a has a function of acquiring measured data of magnetic field strength from each probe 81. The deviation amount calculation unit 91b has a function for executing a calculation for obtaining deviation amounts from the predetermined positions of the superconducting magnets 1A and 1B from the measured data of the magnetic field strength and the simulation data described later.

次に、図7のフローチャートを参照しながら、本実施形態による磁石位置測定方法について説明する。   Next, the magnet position measuring method according to the present embodiment will be described with reference to the flowchart of FIG.

まず、ステップS1において、載置台61に載置された磁場測定ジグ8によって超電導マグネット1A,1Bの磁場強度が測定される。この磁場測定動作は、制御装置9の移動機構制御部93(図6参照)に、移動機構6により磁場測定ジグ8をz軸方向に移動させるとともに上下方向の所定位置で停止させる制御を行わせ、さらに、プローブ制御部94に、各プローブ81により磁場強度を測定する制御を行わせることによってなされる。これによって、図5に示すように、超電導マグネット1A,1Bの磁場空間の複数の測定位置Pで3次元的に磁場強度が測定される。   First, in step S1, the magnetic field strength of the superconducting magnets 1A and 1B is measured by the magnetic field measuring jig 8 placed on the placing table 61. In this magnetic field measurement operation, the movement mechanism control unit 93 (see FIG. 6) of the control device 9 performs control to move the magnetic field measurement jig 8 in the z-axis direction and stop it at a predetermined position in the vertical direction by the movement mechanism 6. Further, this is done by causing the probe control section 94 to perform control for measuring the magnetic field intensity by each probe 81. As a result, as shown in FIG. 5, the magnetic field strength is measured three-dimensionally at a plurality of measurement positions P in the magnetic field space of the superconducting magnets 1A and 1B.

そして、ステップS2において、CPU91のデータ取得部91a(図6参照)により、各測定位置Pの磁場強度が磁場分布(磁場強度)の実測データとして取得される。   In step S2, the magnetic field strength at each measurement position P is acquired as measured data of the magnetic field distribution (magnetic field strength) by the data acquisition unit 91a (see FIG. 6) of the CPU 91.

そして、ステップS3において、ずれ量演算部91bにより、モデル関数のフィッティング処理が行われ、超電導マグネット1A,1Bの上記所定位置からのずれ量が求められる。詳細には、磁場測定ジグ8によって得られた磁場強度の実測データと、超電導マグネット1A,1Bの所定位置からのずれ量として規定された未知数を含む磁場強度のモデル関数から得られる磁場強度のシミュレーションデータとを用いて、当該モデル関数のフィッティング処理を行い、これによってモデル関数に含まれる未知数、すなわち超電導マグネット1A,1Bの所定位置からのずれ量を決定するものである。   In step S3, the deviation amount calculation unit 91b performs a model function fitting process to obtain deviation amounts of the superconducting magnets 1A and 1B from the predetermined position. Specifically, the simulation of the magnetic field strength obtained from the measured data of the magnetic field strength obtained by the magnetic field measuring jig 8 and the model function of the magnetic field strength including the unknowns defined as the deviation amounts from the predetermined positions of the superconducting magnets 1A and 1B. The data is used to perform the fitting process of the model function, thereby determining the unknown contained in the model function, that is, the amount of deviation from the predetermined position of the superconducting magnets 1A and 1B.

そして、本実施形態では、前述のように設定したxyz直交座標系において、超電導マグネット1A,1Bのx軸方向、y軸方向およびz軸方向の位置ずれ量としての未知数をそれぞれdx、dyおよびdzとするとともに、超電導マグネット1A,1Bのy軸およびz軸を中心とする角度ずれ量としての未知数をそれぞれγおよびαとしたときに、上記モデル関数として、以下のように表される2次関数式(11)が用いられる。   In the present embodiment, in the xyz orthogonal coordinate system set as described above, the unknowns as the displacement amounts of the superconducting magnets 1A and 1B in the x-axis direction, the y-axis direction, and the z-axis direction are respectively expressed as dx, dy, and dz. In addition, when the unknowns as the angular deviation amounts around the y-axis and z-axis of the superconducting magnets 1A and 1B are γ and α, respectively, a quadratic function expressed as follows as the above model function: Equation (11) is used.

B=B+a[(x+αy−γz)−dx]+b[(y−αx)−dy]+c[(z+γx)−dz] ・・・式(11)
ここで、式(11)の導出過程について簡単に説明する。
B = B 0 + a [(x + αy−γz) −dx] 2 + b [(y−αx) −dy] 2 + c [(z + γx) −dz] 2 Formula (11)
Here, the process of deriving Equation (11) will be briefly described.

所定位置に設けられた超電導マグネット1A,1Bは、本実施形態のxyz直交座標系では、xy平面、yz平面およびzx平面に対して対称となるとともに、x軸に対して回転対称となる。   The superconducting magnets 1A and 1B provided at predetermined positions are symmetric with respect to the xy plane, the yz plane, and the zx plane and are rotationally symmetric with respect to the x axis in the xyz orthogonal coordinate system of the present embodiment.

この対称性より、磁場強度は、x、yおよびzの偶関数で表すことができる。そして、磁場強度が定数になる0次成分だけの多項式を除いて、次数が最小となる多項式は、2次成分までを含んだものであり、以下の式(21)で表される。なお、Bは中心磁場強度、a、bおよびcは超電導マグネットの形状によって決まる係数である。 Due to this symmetry, the magnetic field strength can be expressed by an even function of x, y, and z. Then, except for the polynomial of only the 0th order component in which the magnetic field strength is constant, the polynomial having the minimum order includes up to the second order component, and is expressed by the following formula (21). B 0 is the central magnetic field strength, and a, b, and c are coefficients determined by the shape of the superconducting magnet.

B=B+ax+by+cz ・・・式(21)
ここで、超電導マグネット1A,1Bが上記所定位置からx軸方向、y軸方向およびz軸方向にそれぞれdx、dyおよびdzだけ位置ずれしており、x軸、y軸およびz軸に関してそれぞれβ、γおよびαラジアンだけ回転ずれしていると仮定すると、座標点(x,y,z)における磁場強度は、以下の式(22)のように表すことができる。
B = B 0 + ax 2 + by 2 + cz 2 Formula (21)
Here, the superconducting magnets 1A and 1B are displaced from the predetermined position by dx, dy, and dz in the x-axis direction, the y-axis direction, and the z-axis direction, respectively, and β, Assuming that the rotation is shifted by γ and α radians, the magnetic field strength at the coordinate point (x, y, z) can be expressed as the following equation (22).

B=B
+a[(xcosαcosγ+ysinα−zsinγcosα)−dx]
+b[(ycosβcosα+zsinβ−xsinαcosβ)−dy]
+c[(zcosγcosβ+xsinγ−ysinβcosγ)−dz]
・・・式(22)
磁場強度の分布がx軸に対して回転対称であることから、式(22)においてβを0とすると、式(22´)のように表すことができる。
B = B 0
+ A [(xcosαcosγ + ysinα-zsinγcosα) -dx] 2
+ B [(ycosβcosα + zsinβ-xsinαcosβ) -dy] 2
+ C [(zcosγcosβ + xsinγ-ysinβcosγ) -dz] 2
... Formula (22)
Since the distribution of the magnetic field strength is rotationally symmetric with respect to the x-axis, when β is 0 in Expression (22), it can be expressed as Expression (22 ′).

B=B
+a[(xcosαcosγ+ysinα−zsinγcosα)−dx]
+b[(ycosα−xsinα)−dy]
+c[(zcosγ+xsinγ)−dz]
・・・式(22´)
さらに、γおよびαが1よりも十分に小さいと考えられるので、以下の2つの近似式(23)を用いて、数式(22´)を変形すると、磁場強度の関数式として上記式(11)が導出される。
B = B 0
+ A [(xcosαcosγ + ysinα-zsinγcosα) -dx] 2
+ B [(ycosα-xsinα) -dy] 2
+ C [(zcosγ + xsinγ) −dz] 2
... Formula (22 ')
Furthermore, since γ and α are considered to be sufficiently smaller than 1, when the following two approximate expressions (23) are used to transform the expression (22 ′), the above expression (11) is obtained as a function expression of the magnetic field strength. Is derived.

sinθ〜θ,cosθ〜1(ただし、絶対値θ<<1)・・・式(23)
なお、シミュレーションデータは、予め記憶部92に記憶されているデータテーブルから抽出されるものであってもよいし、リアルタイムで演算処理により求められるものであってもよい。
sin θ˜θ, cos θ˜1 (where absolute value θ << 1) (23)
Note that the simulation data may be extracted from a data table stored in the storage unit 92 in advance, or may be obtained by arithmetic processing in real time.

そして、磁場測定ジグ8による磁場強度の実測データ、および、モデル関数(式(11))から求められる磁場強度のシミュレーションデータの相対応する位置の磁場強度の差分を各位置において求め、その求められた各差分を2乗して合算した値が最小となるように、いわゆる最小2乗法によって、a,b,c,B,α,γ,dx,dy,dzを決定する。 Then, the magnetic field strength difference between the corresponding positions in the magnetic field strength actual measurement data obtained by the magnetic field measurement jig 8 and the magnetic field strength simulation data obtained from the model function (Equation (11)) is obtained at each position, and this is obtained. Then, a, b, c, B 0 , α, γ, dx, dy, dz are determined by a so-called least square method so that the sum of each difference is squared and the sum is minimized.

このようにして、超電導マグネット1A,1Bの位置(所定位置からのずれ量)を正確に測定することができる。   In this way, the positions of superconducting magnets 1A and 1B (the amount of deviation from a predetermined position) can be accurately measured.

そして、以上の結果を基に、例えば真空容器4ごと超電導マグネット1A,1Bの位置を調整することで、超電導マグネット1A,1BとSi単結晶育成部7の位置を設計通りにすることができる。なお、本実施形態では、超電導マグネット1A,1Bの位置調整は、手動作で行ってもよいし、真空容器4を移動させる機構を組み込んでおき、ずれ量に合わせて自動調整するようなものであってもよい。   Based on the above results, for example, by adjusting the positions of the superconducting magnets 1A and 1B together with the vacuum container 4, the positions of the superconducting magnets 1A and 1B and the Si single crystal growing part 7 can be made as designed. In the present embodiment, the position adjustment of the superconducting magnets 1A and 1B may be performed manually, or a mechanism for moving the vacuum vessel 4 is incorporated and automatically adjusted according to the amount of deviation. There may be.

本実施形態では、上記のように、磁場強度を実際に測定して得られた実測データに基づいて、一対の超電導マグネット1A,1Bの所定位置からのずれ量として規定された未知数を含む超電導マグネット1A,1Bの磁場強度の関数式を求めるようにしたので、例えば外部から超電導マグネット1A,1Bを視認しにくい装置構成であっても当該超電導マグネット1A,1Bの位置を正確に測定することができる。   In the present embodiment, as described above, based on the actual measurement data obtained by actually measuring the magnetic field strength, the superconducting magnet including an unknown quantity defined as the amount of deviation from the predetermined position of the pair of superconducting magnets 1A and 1B. Since the function formulas of the magnetic field strengths of 1A and 1B are obtained, the position of the superconducting magnets 1A and 1B can be accurately measured even if, for example, it is difficult to visually recognize the superconducting magnets 1A and 1B from the outside. .

また、一対の略円筒状の超電導マグネット1A,1Bに対して上記のようにxyz直交座標系を設定した場合、当該超電導マグネット1A,1Bは、xy平面、yz平面およびzx平面に対して対称で、かつ、x軸に対して回転対称となる。このことから、超電導マグネット1A,1Bの磁場強度をx、yおよびzの偶関数で表すことができる。そして、本実施形態では、上記のように、0次を除いて最も低次の2次関数式で磁場強度を表すようにしたので、未知数を容易に求めることができる。   When the xyz orthogonal coordinate system is set as described above for the pair of substantially cylindrical superconducting magnets 1A and 1B, the superconducting magnets 1A and 1B are symmetrical with respect to the xy plane, the yz plane, and the zx plane. And rotationally symmetric with respect to the x-axis. From this, the magnetic field intensity of the superconducting magnets 1A and 1B can be expressed by an even function of x, y, and z. In the present embodiment, as described above, the magnetic field strength is expressed by the lowest-order quadratic function expression excluding the 0th order, so that the unknown can be easily obtained.

また、本実施形態では、上記のように、実測データおよびシミュレーションデータの相対応する位置の磁場強度の差分を各位置において求め、各差分を2乗して合算した値が最小となるように未知数を決定する最小2乗法を利用することによって、超電導マグネット1A,1Bのずれ量である未知数を精度良く求めることができるので、超電導マグネット1A,1Bの位置をより正確に測定することができる。   In the present embodiment, as described above, the difference between the magnetic field strengths at the positions corresponding to the actual measurement data and the simulation data is obtained at each position, and the unknowns are obtained so that the sum of the squares of the differences is minimized. By using the least square method for determining the above, it is possible to accurately obtain an unknown quantity that is a deviation amount of the superconducting magnets 1A and 1B, so that the positions of the superconducting magnets 1A and 1B can be measured more accurately.

また、本実施形態では、上記のように、複数のプローブ81を保持する保持板82を駆動部62により移動させながら磁場強度を測定するようにしたので、磁場強度を複数位置で同時に測定することができる。これにより、例えば磁場強度を一箇所ずつ測定する場合に比べて、実測データの取得が容易になる。従って、磁場強度を実際に測定して得られた実測データに基づいて、超電導マグネット1A,1Bの所定位置からのずれ量として規定された未知数を含む超電導マグネット1A,1Bの磁場強度の関数式を容易に求めることができるので、例えば外部から超電導マグネット1A,1Bを視認しにくい装置構成であっても当該超電導マグネット1A,1Bの位置を正確に測定しやすくなる。   Further, in the present embodiment, as described above, the magnetic field strength is measured while moving the holding plate 82 that holds the plurality of probes 81 by the driving unit 62, so that the magnetic field strength is measured at a plurality of positions simultaneously. Can do. This makes it easier to obtain measured data, for example, compared to when measuring the magnetic field strength one place at a time. Therefore, based on the actual measurement data obtained by actually measuring the magnetic field strength, a functional expression of the magnetic field strength of the superconducting magnets 1A and 1B including an unknown number defined as the amount of deviation from the predetermined position of the superconducting magnets 1A and 1B is obtained. Since it can obtain | require easily, even if it is an apparatus structure which is hard to visually recognize superconducting magnet 1A, 1B from the outside, it becomes easy to measure the position of the said superconducting magnet 1A, 1B correctly.

また、本実施形態では、上記のように、保持板82により複数のプローブ81をxy平面上にマトリクス状に並べた状態で保持し、その保持板82を駆動部62によってz軸方向に移動させるように構成したので、磁場強度の測定位置が空間に一様に分布するようになる。これにより、得られた実測データが空間的に偏りの少ないものとすることができるので、実測データに基づいて求めた超電導マグネットのずれ量の信頼性を高めることができる。   In the present embodiment, as described above, the plurality of probes 81 are held in a matrix on the xy plane by the holding plate 82, and the holding plate 82 is moved in the z-axis direction by the drive unit 62. Since it comprised in this way, the measurement position of a magnetic field intensity comes to distribute uniformly in space. As a result, the obtained actual measurement data can be made less spatially biased, so that the reliability of the deviation amount of the superconducting magnet obtained based on the actual measurement data can be improved.

また、本実施形態では、上記のように、保持板82の上面に、プローブ81をそれぞれ保持する複数のプローブ用穴82aをマトリクス状に設けたので、測定中にプローブ81の位置がずれるのを防ぐことができる。これにより、実測データを正確に取得することができる。
(実施例)
以下、上記実施形態の磁石位置測定方法による効果を確認するために実施した一実験について説明する。
In the present embodiment, as described above, since the plurality of probe holes 82a for holding the probes 81 are provided in a matrix on the upper surface of the holding plate 82, the position of the probe 81 is shifted during measurement. Can be prevented. Thereby, actual measurement data can be acquired correctly.
(Example)
Hereinafter, an experiment carried out to confirm the effect of the magnet position measurement method of the above embodiment will be described.

この実験では、使用する磁場測定ジグ8を非磁性のアルミニウムで作製した。   In this experiment, the magnetic field measurement jig 8 to be used was made of nonmagnetic aluminum.

そして、図5を参照して、保持板82に設けられたプローブ81(Lakeshore製3軸ホール素子、型番MMZ−2502−UHを使用)を固定するためのプローブ用穴82aの数は、x軸方向に100mm間隔で9個、y軸方向にも同じく100mm間隔で9個となっている。すなわち、保持板82のプローブ用穴82aの総数は81個である。   Referring to FIG. 5, the number of probe holes 82a for fixing the probe 81 (Lakeshole triaxial Hall element, model number MMZ-2502-UH) provided on the holding plate 82 is the x-axis. Nine at 100 mm intervals in the direction and 9 at 100 mm intervals in the y-axis direction. That is, the total number of probe holes 82a in the holding plate 82 is 81.

この保持板82を載置した載置台61を、駆動部62によって機械的に上下方向(z軸方向)に昇降させながら適宜停止させ、磁場強度を測定した。z軸方向の停止位置は、−185mm、−100mm、0mm、100mm、185mmの5箇所であり、各箇所においてそれぞれ81点で測定したので、全測定位置Pは405個である。そして、この実測データと、モデル関数から得られたシミュレーションデータとから、超電導マグネット1A,1Bの所定位置からのずれ量を計算する。その結果、a,b,c,B,α,γ,dx,dy,dzは以下の表1に示す値となった。 The mounting table 61 on which the holding plate 82 was mounted was stopped as appropriate while being mechanically moved up and down (z-axis direction) by the drive unit 62, and the magnetic field strength was measured. There are five stop positions in the z-axis direction of −185 mm, −100 mm, 0 mm, 100 mm, and 185 mm, and measurement is performed at 81 points at each position, so that the total measurement positions P are 405. And the deviation | shift amount from the predetermined position of superconducting magnet 1A, 1B is calculated from this measurement data and the simulation data obtained from the model function. As a result, a, b, c, B 0 , α, γ, dx, dy, dz were values shown in Table 1 below.

Figure 2009216424
Figure 2009216424

この表から、本例では、超電導マグネット1A,1Bが、所定位置に対して、x軸方向に+1.2mm、y軸方向に−4.56mm、z軸方向に+1.96mmだけ位置ずれしており、y軸回りに−0.17度(−0.030ラジアン)、z軸回りに+0.16度(+0.028ラジアン)だけ回転ずれしていることが判明した。なお、軸回りの回転方向は、軸のプラス側を向いて時計回り方向を正(+)方向とした。   From this table, in this example, the superconducting magnets 1A and 1B are displaced from the predetermined position by +1.2 mm in the x-axis direction, -4.56 mm in the y-axis direction, and +1.96 mm in the z-axis direction. It was found that the rotation was shifted by −0.17 degrees (−0.030 radians) around the y axis and by +0.16 degrees (+0.028 radians) around the z axis. The rotation direction around the axis was the positive (+) direction with the clockwise direction facing the plus side of the axis.

そして、上記ずれ量を補正すべく、超電導マグネット1A,1Bの位置を真空容器4ごと調整した。この時、坩堝2はz軸に対して回転対称な形状をしているため、超電導マグネット1A,1Bのz軸回りの回転ずれは調整しなかった。そして、ずれ量を補正した後の装置では、Si単結晶3Bの品質が向上したことが確認された。   And the position of superconducting magnet 1A, 1B was adjusted with the vacuum vessel 4 in order to correct | amend the said deviation | shift amount. At this time, since the crucible 2 has a rotationally symmetric shape with respect to the z-axis, the rotational deviation around the z-axis of the superconducting magnets 1A and 1B was not adjusted. It was confirmed that the quality of the Si single crystal 3B was improved in the apparatus after correcting the deviation amount.

また、上記のような補正方法を用いれば、Si単結晶育成装置毎のSi単結晶の品質のばらつきを十分に抑えることが可能になる。   Further, if the correction method as described above is used, it is possible to sufficiently suppress variations in the quality of the Si single crystal for each Si single crystal growing apparatus.

なお、上記実施形態では、坩堝2を回転昇降させる駆動部62を、保持板82を昇降させる機構にも利用する例について示したが、保持板82を昇降させる機構を別途設ける構成であってもよい。この場合、坩堝2を固定式にして、Si単結晶育成用の種結晶を坩堝2に対して引き上げる方式をとることもできる。   In the above embodiment, the example in which the drive unit 62 that rotates and lifts the crucible 2 is also used for a mechanism that lifts and lowers the holding plate 82 is shown. However, even if a mechanism that lifts and lowers the holding plate 82 is separately provided. Good. In this case, the crucible 2 may be fixed and the Si single crystal growth seed crystal may be pulled up with respect to the crucible 2.

また、スプリットペア型の超電導マグネット1A,1Bを備えたSi単結晶育成装置100に本発明を適用したが、これに限らず、単一のコイル状の超電導マグネットを備えた磁石装置における超電導マグネットの位置を測定する場合や、超電導マグネット以外の略円筒状の磁石を備えた磁石装置における磁石位置を測定する場合にも本発明を適用することができる。   In addition, the present invention is applied to the Si single crystal growing apparatus 100 including the split pair type superconducting magnets 1A and 1B. However, the present invention is not limited thereto, and the superconducting magnet in the magnet apparatus including a single coiled superconducting magnet is not limited thereto. The present invention can also be applied when measuring the position, or when measuring the magnet position in a magnet device including a substantially cylindrical magnet other than the superconducting magnet.

本発明の一実施形態によるSi単結晶育成装置の全体構成を示した正面断面図である。It is the front sectional view showing the whole Si single crystal growth device composition by one embodiment of the present invention. 図1に示したSi単結晶育成装置の磁場強度測定時の状態を示した正面断面図である。It is front sectional drawing which showed the state at the time of the magnetic field strength measurement of the Si single crystal growth apparatus shown in FIG. 磁場測定ジグの保持板および移動機構の構成を示した斜視図である。It is the perspective view which showed the structure of the holding plate and movement mechanism of a magnetic field measurement jig. 図3に示した保持板のプローブ用穴とプローブとの関係を説明するための部分拡大斜視図である。FIG. 4 is a partially enlarged perspective view for explaining a relationship between a probe hole of the holding plate shown in FIG. 3 and a probe. 磁場強度の測定位置を説明するための斜視図である。It is a perspective view for demonstrating the measurement position of magnetic field intensity. Si単結晶育成装置の制御系の構成を示したブロック図である。It is the block diagram which showed the structure of the control system of Si single crystal growth apparatus. 磁石位置確認動作を説明するためのフローチャートである。It is a flowchart for demonstrating a magnet position confirmation operation | movement.

符号の説明Explanation of symbols

1A,1B 超電導マグネット(磁石)
6 移動機構(磁場測定装置)
8 磁場測定ジグ(磁場測定装置)
62 駆動部
81 プローブ
82 保持板(プローブ保持部)
82a プローブ用穴(凹部)
100 Si単結晶育成装置(磁石装置)
1A, 1B Superconducting magnet (magnet)
6 Movement mechanism (magnetic field measuring device)
8 Magnetic field measurement jig (magnetic field measurement device)
62 Drive unit 81 Probe 82 Holding plate (probe holding unit)
82a Probe hole (recess)
100 Si single crystal growth device (magnet device)

Claims (7)

対象領域に磁場を発生するように所定位置に配設される略円筒状の磁石を備えた磁石装置における前記磁石の前記所定位置からのずれ量を求める磁石位置測定方法であって、
前記磁石装置を作動させて、前記磁石の磁場強度を測定し、その実測データを取得する工程と、
前記磁場強度の実測データに基づいて、前記磁石の磁場強度を表す関数式を求める工程とを備え、
前記磁場強度の関数式は、前記磁石が前記所定位置に配されているときの当該磁石の磁場中心を座標原点とするとともに、その所定位置の磁石の軸心に沿う方向をx軸方向、このx軸方向と直交し、かつ互いに直交する方向をy軸方向およびz軸方向としてxyz直交座標系を設定し、前記磁石のx軸方向、y軸方向およびz軸方向の位置ずれ量としての未知数をそれぞれdx、dyおよびdzとするとともに、磁石のy軸およびz軸を中心とする角度ずれ量としての未知数をそれぞれγおよびαとしたときに、dx、dy、dz、γ、αを含むx、yおよびzの2次関数式で表されることを特徴とする磁石位置測定方法。
A magnet position measuring method for obtaining a deviation amount of the magnet from the predetermined position in a magnet device including a substantially cylindrical magnet disposed at a predetermined position so as to generate a magnetic field in a target region,
Activating the magnet device, measuring the magnetic field strength of the magnet, and obtaining the actual measurement data;
Obtaining a functional equation representing the magnetic field strength of the magnet based on the measured data of the magnetic field strength,
The functional formula of the magnetic field strength is that the center of the magnetic field of the magnet when the magnet is arranged at the predetermined position is a coordinate origin, and the direction along the axis of the magnet at the predetermined position is the x-axis direction, An xyz orthogonal coordinate system is set with the directions orthogonal to the x-axis direction and orthogonal to each other as the y-axis direction and the z-axis direction, and an unknown quantity as a positional deviation amount of the magnet in the x-axis direction, the y-axis direction, and the z-axis direction X, including dx, dy, dz, γ, and α, where dx, dy, and dz are the unknowns, and γ and α are the unknowns as angular deviation amounts about the y-axis and z-axis of the magnet, respectively. , Y and z are expressed by quadratic function equations.
前記2次関数式は、前記磁石の中心磁場強度をBとしたときに、以下の式(1)で表されることを特徴とする請求項1に記載の磁石位置測定方法。
B=B+a[(x+αy−γz)−dx]+b[(y−αx)−dy]
+c[(z+γx)−dz] ・・・式(1)
2. The magnet position measuring method according to claim 1, wherein the quadratic function formula is represented by the following formula (1) when a central magnetic field strength of the magnet is B 0 .
B = B 0 + a [(x + αy−γz) −dx] 2 + b [(y−αx) −dy] 2
+ C [(z + γx) −dz] 2 Formula (1)
前記磁場強度のデータは、複数位置における磁場強度のデータであり、
前記関数式を求める工程は、最小2乗法によって前記磁場強度の実測データから前記関数式を求める工程を含むことを特徴とする請求項1または2に記載の磁石位置測定方法。
The magnetic field strength data is magnetic field strength data at a plurality of positions,
3. The magnet position measuring method according to claim 1, wherein the step of obtaining the function formula includes the step of obtaining the function formula from the measured data of the magnetic field intensity by a least square method.
前記磁石は、略同形の一対の超電導マグネットを、同軸に、かつ軸方向に所定間隔を隔てるように配してなるスプリットペア型の超電導マグネットであることを特徴とする請求項1〜3のいずれか一項に記載の磁石位置測定方法。   The magnet according to any one of claims 1 to 3, wherein the magnet is a split-pair superconducting magnet in which a pair of superconducting magnets having substantially the same shape are arranged coaxially and at a predetermined interval in the axial direction. The magnet position measuring method according to claim 1. 請求項1〜4のいずれか一項に記載の磁石位置測定方法に用いるための磁場測定装置であって、
磁場強度を測定するための複数のプローブと、前記複数のプローブを保持するプローブ保持部と、このプローブ保持部を移動させる駆動部とを備え、
前記駆動部により前記プローブ保持部を移動させながら磁場強度を測定することを特徴とする磁場測定装置。
A magnetic field measuring apparatus for use in the magnet position measuring method according to any one of claims 1 to 4,
A plurality of probes for measuring magnetic field strength, a probe holding unit that holds the plurality of probes, and a drive unit that moves the probe holding unit,
A magnetic field measuring apparatus for measuring a magnetic field intensity while moving the probe holding unit by the driving unit.
前記プローブ保持部は、前記複数のプローブをx軸、y軸およびz軸のうちのいずれか2つを含む平面に平行な所定平面上にマトリクス状に並べた状態で保持し、
前記駆動部は、前記プローブ保持部を前記所定平面と略直交する方向に移動させることを特徴とする請求項5に記載の磁場測定装置。
The probe holding unit holds the plurality of probes in a matrix on a predetermined plane parallel to a plane including any two of the x-axis, y-axis, and z-axis,
The magnetic field measuring apparatus according to claim 5, wherein the driving unit moves the probe holding unit in a direction substantially orthogonal to the predetermined plane.
前記プローブ保持部は、前記所定平面に沿う保持面部を有し、
前記保持面部には、前記プローブをそれぞれ保持する複数の凹部がマトリクス状に設けられていることを特徴とする請求項6に記載の磁場測定装置。
The probe holding part has a holding surface part along the predetermined plane,
The magnetic field measuring apparatus according to claim 6, wherein the holding surface portion is provided with a plurality of recesses for holding the probes in a matrix.
JP2008057701A 2008-03-07 2008-03-07 Magnet position measurement method Active JP4990194B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2008057701A JP4990194B2 (en) 2008-03-07 2008-03-07 Magnet position measurement method

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2008057701A JP4990194B2 (en) 2008-03-07 2008-03-07 Magnet position measurement method

Publications (2)

Publication Number Publication Date
JP2009216424A true JP2009216424A (en) 2009-09-24
JP4990194B2 JP4990194B2 (en) 2012-08-01

Family

ID=41188452

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2008057701A Active JP4990194B2 (en) 2008-03-07 2008-03-07 Magnet position measurement method

Country Status (1)

Country Link
JP (1) JP4990194B2 (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN104392078A (en) * 2014-12-15 2015-03-04 大连海事大学 Three-dimensional virtue training system for low-altitude solar autodyne testing

Citations (52)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5827307A (en) * 1981-08-11 1983-02-18 Toshiba Corp Generator of highly uniform magnetic field
JPS5827308A (en) * 1981-08-11 1983-02-18 Toshiba Corp Generator of magnetic field
JPS5925726A (en) * 1982-07-31 1984-02-09 株式会社島津製作所 Diagnostic observation apparatus
JPS5946545A (en) * 1982-09-07 1984-03-15 Utsunomiya Daigaku Method for generating characteristic magnetic field in nuclear magnetic resonance image method
JPS59133474A (en) * 1982-12-22 1984-07-31 シ−メンス,アクチエンゲゼルシヤフト Multichannel measuring device for changing weak magnetic field and its manufacture
JPS59195595A (en) * 1983-04-15 1984-11-06 Sony Corp Apparatus for crystal growth
JPS60189905A (en) * 1984-03-09 1985-09-27 Mitsubishi Electric Corp High uniformity magnetic-field generator
JPS6180808A (en) * 1984-09-27 1986-04-24 Yokogawa Hokushin Electric Corp Coil for generating stationary magnetic field
JPS61100644A (en) * 1984-10-24 1986-05-19 Hitachi Ltd Electromagnet for generating uniform magnetic field
JPS6278185A (en) * 1985-09-30 1987-04-10 Toshiba Corp Single crystal growth and apparatus therefor
JPS62256789A (en) * 1986-04-30 1987-11-09 Toshiba Ceramics Co Ltd Device for growing single crystal
JPS6316604A (en) * 1986-07-09 1988-01-23 Toshiba Corp Coil equipment
JPS6360189A (en) * 1986-08-28 1988-03-16 Toshiba Corp Production of semiconductor single crystal
JPH0192676A (en) * 1987-06-17 1989-04-11 Texas Instr Inc <Ti> Scalar magnetometer having vector function and compensation of rotation
JPH01220806A (en) * 1988-02-29 1989-09-04 Shimadzu Corp Inclined magnetic field coil
JPH02222846A (en) * 1988-11-10 1990-09-05 Fuji Electric Co Ltd Measurement of magnetic field
JPH0349736A (en) * 1989-07-17 1991-03-04 Hitachi Medical Corp Inclined magnetic field coil for nuclear magnetic resonance imaging device
JPH03165741A (en) * 1989-11-25 1991-07-17 Toshiba Corp Automatic magnetic field correcting method for magnetic resonance spectroscopic imaging and device
JPH0450681A (en) * 1990-06-13 1992-02-19 Fujitsu Ltd Squid sensor
JPH0473805U (en) * 1990-11-05 1992-06-29
JPH04190598A (en) * 1990-11-22 1992-07-08 Fujitsu Ltd Magnetic field measuring method for electromagnet for particle accelerating device
JPH04276594A (en) * 1991-03-02 1992-10-01 Mitsui Mining & Smelting Co Ltd Superconductive magnetic shield device
JPH04310884A (en) * 1991-04-09 1992-11-02 Mitsubishi Electric Corp Superconducting magnetometer
JPH04361526A (en) * 1991-06-10 1992-12-15 Mitsubishi Electric Corp Superconducting magnet device for crystal pullingup device
JPH0542119A (en) * 1991-08-12 1993-02-23 Fujitsu Ltd Biomagnetism measuring instrument
JPH05281366A (en) * 1992-04-01 1993-10-29 Nippon Telegr & Teleph Corp <Ntt> Device for displaying position of metallic body buried in concrete
JPH0638943A (en) * 1991-11-01 1994-02-15 Univ California Magnetic resonance imaging system and method
JPH06219886A (en) * 1993-01-28 1994-08-09 Mitsubishi Materials Shilicon Corp Device for pulling up single crystal
US5396208A (en) * 1990-06-08 1995-03-07 U.S. Philips Corporation Magnet system for magnetic resonance imaging
JPH07299049A (en) * 1994-05-02 1995-11-14 Applied Superconetics Inc Method to passively install shim in hollow cylindrical magnet
JPH107486A (en) * 1996-06-20 1998-01-13 Mitsubishi Electric Corp Single crystal production apparatus of magnetic field impression type
JPH10139599A (en) * 1996-11-14 1998-05-26 Toshiba Corp Superconducting magnet for single crystal pulling-up device
JPH1114671A (en) * 1997-06-23 1999-01-22 Nec Corp Current-estimating device
JPH11322486A (en) * 1998-05-13 1999-11-24 Mitsubishi Electric Corp Equipment for magnetic field-applied single crystal production
JP2000055994A (en) * 1998-08-03 2000-02-25 Nippon Telegr & Teleph Corp <Ntt> Magnetic field detector
JP2000221250A (en) * 1999-02-02 2000-08-11 Nec Corp Magnetic-field probe
JP2000292111A (en) * 1999-04-01 2000-10-20 Japan Science & Technology Corp Apparatus and method for measuring attitude and position
JP2001074852A (en) * 1999-09-06 2001-03-23 Japan Science & Technology Corp Image display device using magnetic sensor
JP2001104264A (en) * 1998-04-28 2001-04-17 Hitachi Ltd Biological magneic filed measurement equipment
JP2002081904A (en) * 2000-09-07 2002-03-22 Shimadzu Corp Head motion tracker and method for correcting its measured value
JP2002296238A (en) * 2001-03-30 2002-10-09 Iwate Prefecture Squid magnetic imaging device
JP2004051475A (en) * 2002-05-31 2004-02-19 Toshiba Corp Single crystal puller, superconductive magnet, and method for pulling up single crystal
JP2005003503A (en) * 2003-06-11 2005-01-06 Foresutekku:Kk Magnetic-shielding method using induction coil
JP2005270482A (en) * 2004-03-26 2005-10-06 Hitachi High-Technologies Corp Biomagnetic field measuring apparatus and horizontal position setting method for biomagnetic field measurement
JP2006026391A (en) * 2004-06-14 2006-02-02 Olympus Corp Position detecting system and guidance system for medical device
JP2006094984A (en) * 2004-09-29 2006-04-13 Hitachi High-Technologies Corp Biomagnetic field measuring apparatus
JP2006327874A (en) * 2005-05-26 2006-12-07 Toshiba Ceramics Co Ltd Method for production of silicon single crystal
JP2006340937A (en) * 2005-06-10 2006-12-21 Hitachi High-Technologies Corp Magnetic field measuring device
JP2007022825A (en) * 2005-07-13 2007-02-01 Shin Etsu Handotai Co Ltd Method for manufacturing single crystal
WO2007043458A1 (en) * 2005-10-06 2007-04-19 Olympus Corporation Position detection system
JP2008014699A (en) * 2006-07-04 2008-01-24 Tokyo Institute Of Technology Film thickness measuring method and film thickness measuring device in electrolysis processing
JP2008045899A (en) * 2006-08-11 2008-02-28 Utsunomiya Univ Magnetic field distribution measuring apparatus

Patent Citations (53)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5827307A (en) * 1981-08-11 1983-02-18 Toshiba Corp Generator of highly uniform magnetic field
JPS5827308A (en) * 1981-08-11 1983-02-18 Toshiba Corp Generator of magnetic field
JPS5925726A (en) * 1982-07-31 1984-02-09 株式会社島津製作所 Diagnostic observation apparatus
JPS5946545A (en) * 1982-09-07 1984-03-15 Utsunomiya Daigaku Method for generating characteristic magnetic field in nuclear magnetic resonance image method
JPS59133474A (en) * 1982-12-22 1984-07-31 シ−メンス,アクチエンゲゼルシヤフト Multichannel measuring device for changing weak magnetic field and its manufacture
JPS59195595A (en) * 1983-04-15 1984-11-06 Sony Corp Apparatus for crystal growth
JPS60189905A (en) * 1984-03-09 1985-09-27 Mitsubishi Electric Corp High uniformity magnetic-field generator
JPS6180808A (en) * 1984-09-27 1986-04-24 Yokogawa Hokushin Electric Corp Coil for generating stationary magnetic field
JPS61100644A (en) * 1984-10-24 1986-05-19 Hitachi Ltd Electromagnet for generating uniform magnetic field
JPS6278185A (en) * 1985-09-30 1987-04-10 Toshiba Corp Single crystal growth and apparatus therefor
JPS62256789A (en) * 1986-04-30 1987-11-09 Toshiba Ceramics Co Ltd Device for growing single crystal
JPS6316604A (en) * 1986-07-09 1988-01-23 Toshiba Corp Coil equipment
JPS6360189A (en) * 1986-08-28 1988-03-16 Toshiba Corp Production of semiconductor single crystal
JPH0192676A (en) * 1987-06-17 1989-04-11 Texas Instr Inc <Ti> Scalar magnetometer having vector function and compensation of rotation
JPH01220806A (en) * 1988-02-29 1989-09-04 Shimadzu Corp Inclined magnetic field coil
JPH02222846A (en) * 1988-11-10 1990-09-05 Fuji Electric Co Ltd Measurement of magnetic field
JPH0349736A (en) * 1989-07-17 1991-03-04 Hitachi Medical Corp Inclined magnetic field coil for nuclear magnetic resonance imaging device
JPH03165741A (en) * 1989-11-25 1991-07-17 Toshiba Corp Automatic magnetic field correcting method for magnetic resonance spectroscopic imaging and device
US5396208A (en) * 1990-06-08 1995-03-07 U.S. Philips Corporation Magnet system for magnetic resonance imaging
JPH0450681A (en) * 1990-06-13 1992-02-19 Fujitsu Ltd Squid sensor
JPH0473805U (en) * 1990-11-05 1992-06-29
JPH04190598A (en) * 1990-11-22 1992-07-08 Fujitsu Ltd Magnetic field measuring method for electromagnet for particle accelerating device
JPH04276594A (en) * 1991-03-02 1992-10-01 Mitsui Mining & Smelting Co Ltd Superconductive magnetic shield device
JPH04310884A (en) * 1991-04-09 1992-11-02 Mitsubishi Electric Corp Superconducting magnetometer
JPH04361526A (en) * 1991-06-10 1992-12-15 Mitsubishi Electric Corp Superconducting magnet device for crystal pullingup device
JP2790549B2 (en) * 1991-06-10 1998-08-27 三菱電機株式会社 Superconducting magnet device for crystal pulling device
JPH0542119A (en) * 1991-08-12 1993-02-23 Fujitsu Ltd Biomagnetism measuring instrument
JPH0638943A (en) * 1991-11-01 1994-02-15 Univ California Magnetic resonance imaging system and method
JPH05281366A (en) * 1992-04-01 1993-10-29 Nippon Telegr & Teleph Corp <Ntt> Device for displaying position of metallic body buried in concrete
JPH06219886A (en) * 1993-01-28 1994-08-09 Mitsubishi Materials Shilicon Corp Device for pulling up single crystal
JPH07299049A (en) * 1994-05-02 1995-11-14 Applied Superconetics Inc Method to passively install shim in hollow cylindrical magnet
JPH107486A (en) * 1996-06-20 1998-01-13 Mitsubishi Electric Corp Single crystal production apparatus of magnetic field impression type
JPH10139599A (en) * 1996-11-14 1998-05-26 Toshiba Corp Superconducting magnet for single crystal pulling-up device
JPH1114671A (en) * 1997-06-23 1999-01-22 Nec Corp Current-estimating device
JP2001104264A (en) * 1998-04-28 2001-04-17 Hitachi Ltd Biological magneic filed measurement equipment
JPH11322486A (en) * 1998-05-13 1999-11-24 Mitsubishi Electric Corp Equipment for magnetic field-applied single crystal production
JP2000055994A (en) * 1998-08-03 2000-02-25 Nippon Telegr & Teleph Corp <Ntt> Magnetic field detector
JP2000221250A (en) * 1999-02-02 2000-08-11 Nec Corp Magnetic-field probe
JP2000292111A (en) * 1999-04-01 2000-10-20 Japan Science & Technology Corp Apparatus and method for measuring attitude and position
JP2001074852A (en) * 1999-09-06 2001-03-23 Japan Science & Technology Corp Image display device using magnetic sensor
JP2002081904A (en) * 2000-09-07 2002-03-22 Shimadzu Corp Head motion tracker and method for correcting its measured value
JP2002296238A (en) * 2001-03-30 2002-10-09 Iwate Prefecture Squid magnetic imaging device
JP2004051475A (en) * 2002-05-31 2004-02-19 Toshiba Corp Single crystal puller, superconductive magnet, and method for pulling up single crystal
JP2005003503A (en) * 2003-06-11 2005-01-06 Foresutekku:Kk Magnetic-shielding method using induction coil
JP2005270482A (en) * 2004-03-26 2005-10-06 Hitachi High-Technologies Corp Biomagnetic field measuring apparatus and horizontal position setting method for biomagnetic field measurement
JP2006026391A (en) * 2004-06-14 2006-02-02 Olympus Corp Position detecting system and guidance system for medical device
JP2006094984A (en) * 2004-09-29 2006-04-13 Hitachi High-Technologies Corp Biomagnetic field measuring apparatus
JP2006327874A (en) * 2005-05-26 2006-12-07 Toshiba Ceramics Co Ltd Method for production of silicon single crystal
JP2006340937A (en) * 2005-06-10 2006-12-21 Hitachi High-Technologies Corp Magnetic field measuring device
JP2007022825A (en) * 2005-07-13 2007-02-01 Shin Etsu Handotai Co Ltd Method for manufacturing single crystal
WO2007043458A1 (en) * 2005-10-06 2007-04-19 Olympus Corporation Position detection system
JP2008014699A (en) * 2006-07-04 2008-01-24 Tokyo Institute Of Technology Film thickness measuring method and film thickness measuring device in electrolysis processing
JP2008045899A (en) * 2006-08-11 2008-02-28 Utsunomiya Univ Magnetic field distribution measuring apparatus

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN104392078A (en) * 2014-12-15 2015-03-04 大连海事大学 Three-dimensional virtue training system for low-altitude solar autodyne testing
CN104392078B (en) * 2014-12-15 2017-09-26 大连海事大学 A kind of low clearance sun surveys the three-dimensional training system of autodyne

Also Published As

Publication number Publication date
JP4990194B2 (en) 2012-08-01

Similar Documents

Publication Publication Date Title
US7088099B2 (en) Correction of magnetic resonance images
AU2017203614B2 (en) Active resistive shimming for mri devices
KR100694952B1 (en) Temperature compensated nmr magnet and method of operation therefor
JP6234619B2 (en) Magnetic field measuring method and magnetic field measuring apparatus
CN110849403B (en) Calibration method of directional sensor
CN109870153A (en) A kind of magnetometer orthogonality calibration test method and calibration test device
CN108027413B (en) Method for calibrating a Magnetic Resonance Imaging (MRI) phantom
JP2017008347A (en) Plating device adjustment method and measuring device
JP2008292259A (en) Two-dimensional lattice calibrating device, two-dimensional lattice calibrating method, two-dimensional lattice calibrating program and recording medium
JP4990194B2 (en) Magnet position measurement method
CN108872909A (en) The gradient coil position calibration method and device of magnetic resonance system
JPH0747023B2 (en) Inspection device using nuclear magnetic resonance
McDowell Adjustable passive shims for dipole NMR magnets
Zikmund et al. Calibration of the 3-d coil system's orthogonality
US6351125B1 (en) Method of homogenizing magnetic fields
JP5177379B2 (en) Magnetic resonance imaging system
JP5291583B2 (en) Magnetic field distribution measuring method, magnetic field distribution measuring jig, magnet apparatus, and magnetic resonance imaging apparatus
CN111624531B (en) Component calculation method for TMR three-axis integrated magnetic sensor
US4812765A (en) Method of adjusting the homogeneity correctors of the magnetic field created by a magnet
JP4392941B2 (en) Magnetic resonance imaging system
JP4319035B2 (en) Magnetic resonance imaging system
US10429461B2 (en) Magnetic resonance imaging device and timing misalignment detection method thereof
van Niekerk et al. A method for measuring orientation within a magnetic resonance imaging scanner using gravity and the static magnetic field (VectOrient)
KR20170051441A (en) Single crystal production method
CN114675226B (en) Method, system, chip and device for measuring mounting matrix of three-axis magnetometer

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20101117

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20111027

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20111220

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20120216

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20120403

A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20120501

R150 Certificate of patent or registration of utility model

Ref document number: 4990194

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

Free format text: JAPANESE INTERMEDIATE CODE: R150

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20150511

Year of fee payment: 3

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250