JP5291583B2 - Magnetic field distribution measuring method, magnetic field distribution measuring jig, magnet apparatus, and magnetic resonance imaging apparatus - Google Patents

Magnetic field distribution measuring method, magnetic field distribution measuring jig, magnet apparatus, and magnetic resonance imaging apparatus Download PDF

Info

Publication number
JP5291583B2
JP5291583B2 JP2009214099A JP2009214099A JP5291583B2 JP 5291583 B2 JP5291583 B2 JP 5291583B2 JP 2009214099 A JP2009214099 A JP 2009214099A JP 2009214099 A JP2009214099 A JP 2009214099A JP 5291583 B2 JP5291583 B2 JP 5291583B2
Authority
JP
Japan
Prior art keywords
magnetic field
magnetic
field distribution
space
measurement point
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
JP2009214099A
Other languages
Japanese (ja)
Other versions
JP2011062274A (en
Inventor
竜弥 安藤
伸 星野
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Hitachi Healthcare Manufacturing Ltd
Original Assignee
Hitachi Medical Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Hitachi Medical Corp filed Critical Hitachi Medical Corp
Priority to JP2009214099A priority Critical patent/JP5291583B2/en
Publication of JP2011062274A publication Critical patent/JP2011062274A/en
Application granted granted Critical
Publication of JP5291583B2 publication Critical patent/JP5291583B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Landscapes

  • Magnetic Resonance Imaging Apparatus (AREA)

Abstract

<P>PROBLEM TO BE SOLVED: To provide a magnetic field distribution measuring method obtaining highly precise uniformity of the magnetic field space even when the magnetic field space is measured at few measuring points of M1-M4 on the surface. <P>SOLUTION: In a method for measuring a magnetic field distribution in a magnetic field space by a magnetic device, the magnetic device includes a magnetic field generating source for generating a magnetic field in a magnetic field space and a magnetic field uniformity adjusting device wherein a plurality of magnetic materials are nonuniformly mounted to improve the uniformity of the magnetic field in the magnetic field space, and the position where the magnetic materials are mounted in the magnetic field unifromity adjusting device is changed while the magnetic materials obtain the magnetic field distribution formed on the surface of the magnetic field space, and the function of half width at half maximum d&theta; of the magnetic field distribution to the peak position &theta; of the magnetic field distribution is installed, and a plurality of measuring points M1-M4 for measuring the magnetic field mounted on the surface of the magnetic field space have distances d&theta;a, d&theta;b, d&theta;c, and the sizes of distances d&theta;a, d&theta;b, d&theta;c are changed by the positions of measuring points M1-M4 in order to be below the half width of half maximum d&theta; introduced by the function from the peak position &theta; accorded with the positions of measuring points M1-M4. <P>COPYRIGHT: (C)2011,JPO&amp;INPIT

Description

本発明は、磁場発生源と磁場均一度調整装置とを備えた磁石装置での磁場空間の磁場分布測定方法に関し、さらに、その磁場分布測定方法の実施の際に使用する磁場分布測定用治具と、その磁場分布測定方法の計測結果に基づいて調整した磁場均一度調整装置を備えた磁石装置と、この磁石装置を搭載した磁気共鳴撮像装置とに関する。   The present invention relates to a magnetic field distribution measuring method in a magnetic field space in a magnet device having a magnetic field generation source and a magnetic field homogeneity adjusting device, and further, a magnetic field distribution measuring jig used when the magnetic field distribution measuring method is performed. And a magnet device provided with a magnetic field uniformity adjusting device adjusted based on a measurement result of the magnetic field distribution measuring method, and a magnetic resonance imaging device equipped with the magnet device.

磁気共鳴撮像(MRI;Magnetic Resonance Imaging)装置は、均一な静磁場の磁場空間に置かれた被検体に高周波パルスを照射したときに生じる核磁気共鳴現象を利用して被検体の物理的、化学的性質を表す画像を得ることができ、主に、医療用として用いられている。磁気共鳴撮像装置では、被検体が搬入される撮像領域内に均一な静磁場の磁場空間を生成するために、その磁場空間に磁場を発生させる磁場発生源だけでなく、磁場空間内の磁場の均一度を向上させる磁場均一度調整装置をも備えた磁石装置が搭載されている。   A magnetic resonance imaging (MRI) apparatus uses a nuclear magnetic resonance phenomenon that occurs when an object placed in a magnetic field space of a uniform static magnetic field is irradiated with a high-frequency pulse, and the physical and chemical properties of the object. An image representing the physical properties can be obtained and is mainly used for medical purposes. In a magnetic resonance imaging apparatus, in order to generate a uniform static magnetic field space in an imaging region into which a subject is carried, not only a magnetic field generation source that generates a magnetic field in the magnetic field space but also a magnetic field in the magnetic field space. A magnet device equipped with a magnetic field uniformity adjusting device for improving uniformity is mounted.

磁場均一度調整装置では、磁性材を磁場空間の周囲に配置して磁束を移動させる制御により、磁場の均一度を向上させている。このとき、磁場空間の磁場の均一度の計測結果を取得するために、磁場空間内部の磁場の最大値と最小値を取得する必要があるが、これに替えて、磁場空間の表面上の磁場の最大値と最小値を取得することで、磁場空間内部の磁場の均一度が算出できる。これにより、磁場空間の表面上の磁場のみを計測すればよいので、計測点の数を減らせ、計測時間を短縮できる。しかし、磁場空間の表面上の磁場の計測だけでも、計測点の数は多く、その計測にかなりの時間を要していた。例えば、非特許文献1には、球状の磁場空間の中心を原点とし静磁場の方向とのなす角をθとするrθφ座標系において、θ方向の間隔が約7.3度である等間隔に計測点を置くことが開示されている。   In the magnetic field uniformity adjusting device, the magnetic material is arranged around the magnetic field space, and the magnetic field uniformity is improved by controlling the movement of the magnetic flux. At this time, in order to obtain the measurement result of the uniformity of the magnetic field in the magnetic field space, it is necessary to obtain the maximum value and the minimum value of the magnetic field in the magnetic field space. By obtaining the maximum value and the minimum value, the magnetic field uniformity inside the magnetic field space can be calculated. Thereby, since it is only necessary to measure the magnetic field on the surface of the magnetic field space, the number of measurement points can be reduced and the measurement time can be shortened. However, the measurement of the magnetic field on the surface of the magnetic field space has a large number of measurement points, and the measurement takes a considerable amount of time. For example, in Non-Patent Document 1, in an rθφ coordinate system in which the angle between the center of a spherical magnetic field space and the direction of the static magnetic field as θ is θ, the interval in the θ direction is equal to about 7.3 degrees. It is disclosed to place measurement points.

MetroLab社の製品マニュアル"PROBE-ARRAY MFC-3048 / 24 Probes DATA SHEET"MetroLab product manual "PROBE-ARRAY MFC-3048 / 24 Probes DATA SHEET"

磁気共鳴撮像装置の画像の画質を決める要件の一つが、撮像領域内の静磁場の均一度である。撮像領域内の静磁場の均一度は、例えば、撮像領域内の最大の磁場強度と最小の磁場強度との差の、撮像領域内の平均磁場強度に対する比で定義できる。具体的に、撮像領域内の静磁場の均一度としては、撮像対象によって要求される値が異なり、ごく一般的な画像を得る際には30ppm以下の均一度が要求されたり、脂肪部分の受信信号を除去するために3ppm以下の均一度が要求されたりする。   One of the requirements for determining the image quality of the magnetic resonance imaging apparatus is the uniformity of the static magnetic field in the imaging region. The uniformity of the static magnetic field in the imaging region can be defined by, for example, the ratio of the difference between the maximum magnetic field strength in the imaging region and the minimum magnetic field strength to the average magnetic field strength in the imaging region. Specifically, as the uniformity of the static magnetic field in the imaging region, the required value varies depending on the imaging target, and when obtaining a very general image, a uniformity of 30 ppm or less is required, or the fat portion is received. A uniformity of 3 ppm or less is required to remove the signal.

撮像領域(磁場空間)内の静磁場の磁場分布Bはラプラス方程式を満たすから、ラプラス方程式の一般解として式1のように表現できる。

Figure 0005291583
ここでrは撮像領域(磁場空間)の幾何的な中心からの距離、l、mは次数を表す整数、a、bは未知係数であり、θはz軸からの角度(仰角)、φはz軸まわりの回転角度(方位角)であり、Pはルジャンドル陪関数である。磁場空間の表面上の複数の計測点で計測された磁場分布Bをもとに、未知係数a、bを求めることができれば、磁場空間の内側の磁場分布Bはa、bの求まった式1を用いた内挿演算により算出することができる。すなわち、磁場空間の表面上の磁場分布Bさえ測定すれば、その内側の磁場分布Bは内挿演算により算出することができ、その内側の磁場分布Bを直接測定することなしに、磁場空間における磁場の均一度を取得することができる。 Since the magnetic field distribution B of the static magnetic field in the imaging region (magnetic field space) satisfies the Laplace equation, it can be expressed as Equation 1 as a general solution of the Laplace equation.
Figure 0005291583
Here, r is a distance from the geometric center of the imaging region (magnetic field space), l and m are integers representing orders, a and b are unknown coefficients, θ is an angle (elevation angle) from the z axis, and φ is It is a rotation angle (azimuth angle) around the z axis, and P is a Legendre power function. If the unknown coefficients a and b can be obtained on the basis of the magnetic field distribution B measured at a plurality of measurement points on the surface of the magnetic field space, the magnetic field distribution B inside the magnetic field space can be obtained by the formula 1 in which a and b are obtained. Can be calculated by an interpolation operation using. That is, if only the magnetic field distribution B on the surface of the magnetic field space is measured, the inner magnetic field distribution B can be calculated by interpolation, and the inner magnetic field distribution B can be calculated directly in the magnetic field space without directly measuring it. The uniformity of the magnetic field can be acquired.

そして、その磁場の均一度を高精度に算出するには、前記内挿演算の精度を向上させる必要がある。内挿演算の精度向上には、式1における次数l、mをなるべく多く考慮することであり、未知係数a、bの数が増えるから、これらを決定するために計測点の数を増やす必要がある。逆に、計測点の数が少なく、次数l、mを少ししか考慮できない場合、現実に存在する次数l、mの高い磁場分布Bを、低い次数l、mの磁場分布として測定することになるので、いわゆるサンプリング定理におけるエイリアシングが生じ、高精度な内挿演算が実施できなくなる。   In order to calculate the uniformity of the magnetic field with high accuracy, it is necessary to improve the accuracy of the interpolation calculation. In order to improve the accuracy of the interpolation operation, it is necessary to consider as much as possible the orders l and m in Equation 1. Since the number of unknown coefficients a and b increases, it is necessary to increase the number of measurement points in order to determine these. is there. Conversely, when the number of measurement points is small and only a few orders l and m can be taken into account, the magnetic field distribution B with high orders l and m that actually exists is measured as a magnetic field distribution with low orders l and m. Therefore, aliasing in the so-called sampling theorem occurs, and high-precision interpolation cannot be performed.

そこで、本発明の目的は、少ない計測点で磁場空間の表面上を計測しても、磁場空間の高精度な均一度を取得できる磁場分布測定方法、磁場分布測定用治具、磁石装置及び磁気共鳴撮像装置を提供することである。   Accordingly, an object of the present invention is to provide a magnetic field distribution measuring method, a magnetic field distribution measuring jig, a magnet device, and a magnetic device that can obtain high-precision uniformity of the magnetic field space even if the surface of the magnetic field space is measured with a small number of measurement points. A resonance imaging apparatus is provided.

第1の本発明は、磁場空間に磁場を発生させる磁場発生源と、複数の磁性材を不均一に配置し前記磁場空間内の磁場の均一度を向上させる磁場均一度調整装置とを備えた磁石装置での前記磁場空間の磁場分布測定方法において、
前記磁性材の前記磁場均一度調整装置に配置する位置を変えながら、前記磁性材が前記磁場空間の表面に作る磁場分布を取得し、
前記磁場分布のピーク位置に対する前記磁場分布の半値半幅の関数を取得し、
前記磁場空間の表面上に配置し前記磁場を計測する複数の計測点の間隔を、前記計測点を置いた位置に一致する前記ピーク位置から前記関数によって導かれる前記半値半幅以下になるように、前記計測点の位置によって前記間隔の大きさを変えることを特徴としている。
A first aspect of the present invention includes a magnetic field generation source that generates a magnetic field in a magnetic field space, and a magnetic field uniformity adjusting device that non-uniformly arranges a plurality of magnetic materials and improves the uniformity of the magnetic field in the magnetic field space. In the magnetic field distribution measuring method of the magnetic field space in the magnet device,
While changing the position of the magnetic material arranged in the magnetic field uniformity adjusting device, obtain the magnetic field distribution that the magnetic material creates on the surface of the magnetic field space,
Obtain a half-width function of the magnetic field distribution with respect to the peak position of the magnetic field distribution,
The interval between a plurality of measurement points that are arranged on the surface of the magnetic field space and measure the magnetic field is equal to or less than the half-value half width derived by the function from the peak position that coincides with the position where the measurement point is placed. The size of the interval is changed according to the position of the measurement point.

そして、第2の本発明は、第1の本発明の磁場分布測定法により配置された前記計測点で、前記磁場発生源で発生させた磁場を計測した計測結果に基づいて、複数の磁性材を配置した前記磁場均一度調整装置によって、前記磁場空間内の磁場の均一度を向上させている磁石装置であることを特徴としている。   The second aspect of the present invention provides a plurality of magnetic materials based on measurement results obtained by measuring a magnetic field generated by the magnetic field generation source at the measurement points arranged by the magnetic field distribution measurement method of the first aspect of the present invention. The magnetic field uniformity adjusting device in which the magnetic field is arranged to improve the uniformity of the magnetic field in the magnetic field space.

また、第3の本発明は、磁場空間に磁場を発生させる磁場発生源と、複数の磁性材を不均一に配置し前記磁場空間内の磁場の均一度を向上させる磁場均一度調整装置とを備えた磁石装置での前記磁場空間の磁場分布測定用治具において、
前記磁性材の前記磁場均一度調整装置に配置する位置を変えたときに、前記磁性材が前記磁場空間の表面に作る磁場分布を用いて取得した、前記磁場分布のピーク位置に対する前記磁場分布の半値半幅の関数を用いて、前記磁場空間の表面上に配置し前記磁場を計測する複数の計測点の間隔を、前記計測点を置いた位置に一致する前記ピーク位置から前記関数によって導かれる前記半値半幅以下になるように、前記計測点の位置によって前記間隔の大きさを変えている前記計測点に、磁場センサを固定するホルダと、
前記ホルダを、前記磁場空間における磁場の向きに平行な回転軸のまわりに回転させることが出来るように構成された座とを有することを特徴としている。
According to a third aspect of the present invention, there is provided a magnetic field generation source that generates a magnetic field in a magnetic field space, and a magnetic field uniformity adjusting device that non-uniformly arranges a plurality of magnetic materials to improve the uniformity of the magnetic field in the magnetic field space. In the magnetic field distribution measuring jig of the magnetic field space in the magnet device provided,
When the position of the magnetic material to be arranged on the magnetic field uniformity adjusting device is changed, the magnetic material distribution is obtained by using the magnetic field distribution created on the surface of the magnetic field space by the magnetic material. Using a half-value half-width function, the interval between a plurality of measurement points arranged on the surface of the magnetic field space and measuring the magnetic field is derived by the function from the peak position that coincides with the position where the measurement point is placed. A holder for fixing a magnetic field sensor to the measurement point where the size of the interval is changed according to the position of the measurement point so as to be equal to or less than a half value half width;
The holder has a seat configured to be able to rotate around a rotation axis parallel to the direction of the magnetic field in the magnetic field space.

そして、第4の本発明は、第3の本発明の磁場分布測定用治具により設定された前記計測点で前記磁場発生源で発生させた磁場を計測した計測結果に基づいて、複数の磁性材を配置した前記磁場均一度調整装置によって、前記磁場空間内の磁場の均一度を向上させている磁石装置であることを特徴としている。   And 4th this invention is based on the measurement result which measured the magnetic field generated with the said magnetic field generation source in the said measurement point set with the jig | tool for magnetic field distribution measurement of 3rd this invention, and several magnetic It is a magnet device that improves the uniformity of the magnetic field in the magnetic field space by the magnetic field uniformity adjusting device in which a material is arranged.

最後に、第5の本発明は、第2の本発明又は第4の本発明の磁石装置を搭載している磁気共鳴撮像装置であることを特徴としている。   Finally, the fifth aspect of the present invention is a magnetic resonance imaging apparatus equipped with the magnet device of the second aspect of the present invention or the fourth aspect of the present invention.

本発明によれば、少ない計測点で磁場空間の表面上を計測しても、磁場空間の高精度な均一度を取得できる磁場分布測定方法、磁場分布測定用治具、磁石装置及び磁気共鳴撮像装置を提供できる。   According to the present invention, a magnetic field distribution measuring method, a magnetic field distribution measuring jig, a magnet device, and a magnetic resonance imaging capable of acquiring high-precision uniformity of the magnetic field space even if the surface of the magnetic field space is measured with a small number of measurement points. Equipment can be provided.

本発明の第1の実施形態に係る磁石装置の斜視図である。It is a perspective view of the magnet apparatus which concerns on the 1st Embodiment of this invention. 本発明の第1の実施形態に係る磁石装置の縦断面図である。It is a longitudinal cross-sectional view of the magnet apparatus which concerns on the 1st Embodiment of this invention. 本発明の第1の実施形態に係る磁気共鳴撮像装置の概略の構成図である。1 is a schematic configuration diagram of a magnetic resonance imaging apparatus according to a first embodiment of the present invention. 本発明の第1の実施形態に係る磁石装置において、1つの磁性材を磁場均一度調整装置の中心軸上と中心軸上からR離れたそれぞれの場合に、それらの磁性材が均一磁場空間(撮像空間)の表面上に作る磁場分布のグラフである。In the magnet device according to the first embodiment of the present invention, when one magnetic material is separated from the central axis of the magnetic field uniformity adjusting device by RA from the central axis, the magnetic materials are in a uniform magnetic field space. It is a graph of the magnetic field distribution made on the surface of (imaging space). 本発明の第1の実施形態に係る磁石装置において、磁場分布の半値半幅と、磁場分布ピーク位置(磁性材の配置された方向)との関係を示すグラフである。4 is a graph showing a relationship between a half-value half width of a magnetic field distribution and a magnetic field distribution peak position (direction in which a magnetic material is arranged) in the magnet device according to the first embodiment of the present invention. 本発明の第1の実施形態に係る磁石装置において、均一磁場空間の表面上の磁場の計測点の間隔を決める磁場分布測定方法の一例を説明するグラフである。5 is a graph for explaining an example of a magnetic field distribution measurement method for determining an interval between measurement points of a magnetic field on the surface of a uniform magnetic field space in the magnet device according to the first embodiment of the present invention. 本発明の第1の実施形態に係る磁場分布測定方法によって決定した均一磁場空間の表面上の磁場の計測点の配置の一例を二次元的に示す配置図である。It is an arrangement | positioning figure which shows two-dimensionally an example of the arrangement | positioning of the measurement point of the magnetic field on the surface of the uniform magnetic field space determined by the magnetic field distribution measuring method which concerns on the 1st Embodiment of this invention. 本発明の第1の実施形態に係る磁場分布測定方法によって決定した均一磁場空間の表面上の磁場の計測点の配置の一例を三次元的に示す配置図である。It is an arrangement | positioning figure which shows an example of arrangement | positioning of the measurement point of the magnetic field on the surface of the uniform magnetic field space determined by the magnetic field distribution measuring method which concerns on the 1st Embodiment of this invention in three dimensions. 本発明の第1の実施形態に係る磁石装置において、均一磁場空間の表面上の磁場の計測点の間隔を決める磁場分布測定方法の別の一例を説明するグラフである。It is a graph explaining another example of the magnetic field distribution measuring method which determines the space | interval of the measurement point of the magnetic field on the surface of uniform magnetic field space in the magnet apparatus which concerns on the 1st Embodiment of this invention. 本発明の第1の実施形態に係る磁場分布測定用治具の正面図である。It is a front view of the jig for magnetic field distribution measurement concerning a 1st embodiment of the present invention. 本発明の第1の実施形態に係る磁場分布測定用治具を設置した磁石装置の縦断面図である。It is a longitudinal cross-sectional view of the magnet apparatus which installed the jig | tool for magnetic field distribution measurement which concerns on the 1st Embodiment of this invention. 本発明の第2の実施形態に係る磁場分布測定用治具の正面図である。It is a front view of the jig for magnetic field distribution measurement concerning a 2nd embodiment of the present invention. 本発明の第3の実施形態に係る磁石装置の斜視図である。It is a perspective view of the magnet apparatus which concerns on the 3rd Embodiment of this invention. 本発明の第3の実施形態に係る磁場分布測定用治具を設置した磁石装置の縦断面図である。It is a longitudinal cross-sectional view of the magnet apparatus which installed the jig | tool for magnetic field distribution measurement which concerns on the 3rd Embodiment of this invention. 本発明の第4の実施形態に係る磁石装置の斜視図である。It is a perspective view of the magnet apparatus which concerns on the 4th Embodiment of this invention. 本発明の第4の実施形態に係る磁石装置の縦断面図である。It is a longitudinal cross-sectional view of the magnet apparatus which concerns on the 4th Embodiment of this invention. 本発明の第4の実施形態に係る磁気共鳴撮像装置の概略の構成図である。It is a schematic block diagram of the magnetic resonance imaging device which concerns on the 4th Embodiment of this invention. 本発明の第4の実施形態に係る磁石装置において、1つの磁性材を磁場均一度調整装置の赤道面上と赤道面からR離れたそれぞれの場合に、それらの磁性材が均一磁場空間(撮像空間)の表面上に作る磁場分布のグラフである。In the magnet device according to the fourth embodiment of the present invention, in the case where one magnetic material is on the equator plane of the magnetic field uniformity adjusting device and the distance from the equator plane is R A , those magnetic materials are in a uniform magnetic field space ( It is a graph of the magnetic field distribution made on the surface of (imaging space). 本発明の第4の実施形態に係る磁石装置において、均一磁場空間の表面上の磁場の計測点の間隔を決める磁場分布測定方法の一例を説明するグラフである。It is a graph explaining an example of the magnetic field distribution measuring method which determines the space | interval of the measurement point of the magnetic field on the surface of uniform magnetic field space in the magnet apparatus which concerns on the 4th Embodiment of this invention. 本発明の第4の実施形態に係る磁場分布測定方法によって決定した均一磁場空間の表面上の磁場の計測点の配置の一例を二次元的に示す配置図である。It is an arrangement | positioning figure which shows two-dimensionally an example of arrangement | positioning of the measurement point of the magnetic field on the surface of the uniform magnetic field space determined by the magnetic field distribution measuring method which concerns on the 4th Embodiment of this invention. 本発明の第4の実施形態に係る磁場分布測定方法によって決定した均一磁場空間の表面上の磁場の計測点の配置の一例を三次元的に示す配置図である。It is an arrangement | positioning figure which shows an example of arrangement | positioning of the measurement point of the magnetic field on the surface of the uniform magnetic field space determined by the magnetic field distribution measuring method which concerns on the 4th Embodiment of this invention in three dimensions. 本発明の第4の実施形態に係る磁場分布測定用治具を設置した磁石装置の縦断面図である。It is a longitudinal cross-sectional view of the magnet apparatus which installed the jig | tool for magnetic field distribution measurement which concerns on the 4th Embodiment of this invention.

本発明に係る磁気共鳴撮像装置は、装置毎に撮像領域(磁場空間)の大きさや、磁場均一度調整装置(シムトレイ)の位置と大きさ、磁性材(シム)の配置方法、間隔が異なるから、本発明の実施にあたっては、本発明の磁場分布測定方法に従って装置毎に最適な計測点の間隔を定め、これに対応した磁場分布測定用治具を製作する。本発明の磁気共鳴撮像装置は、上下に対向する磁極の間の撮像領域に、静磁場の方向が鉛直で、磁場強度が均一な磁場空間を生成する垂直磁場型と、水平方向を向いた中心軸を持つソレノイド状のコイル群の内側の撮像領域に、静磁場の方向が水平で、磁場強度が均一な磁場空間を生成する水平磁場型と、それらの類型に大別される。そして、本発明の磁気共鳴撮像装置に搭載される本発明の磁石装置も、本発明の磁気共鳴撮像装置の型に応じて、垂直磁場型と、水平磁場型と、それらの類型に大別される。本発明の磁場分布測定方法や磁場分布測定用治具によれば、それらのいずれの型についても最適な計測点の間隔を定めることができる。   In the magnetic resonance imaging apparatus according to the present invention, the size of the imaging region (magnetic field space), the position and size of the magnetic field uniformity adjusting device (shim tray), the arrangement method of the magnetic material (shim), and the interval are different for each apparatus. In carrying out the present invention, the optimum measurement point interval is determined for each apparatus in accordance with the magnetic field distribution measurement method of the present invention, and a magnetic field distribution measurement jig corresponding to this is manufactured. The magnetic resonance imaging apparatus of the present invention includes a vertical magnetic field type that generates a magnetic field space in which the direction of the static magnetic field is vertical and the magnetic field strength is uniform in the imaging region between the magnetic poles that are vertically opposed to each other, and the center that is oriented in the horizontal direction. A horizontal magnetic field type that generates a magnetic field space in which the direction of the static magnetic field is horizontal and the magnetic field intensity is uniform in the imaging region inside the solenoidal coil group having an axis is roughly classified into those types. The magnet device of the present invention mounted on the magnetic resonance imaging apparatus of the present invention is also roughly classified into a vertical magnetic field type, a horizontal magnetic field type, and their types according to the type of the magnetic resonance imaging apparatus of the present invention. The According to the magnetic field distribution measurement method and the magnetic field distribution measurement jig of the present invention, it is possible to determine the optimum interval between measurement points for any of these types.

以下、本発明の実施形態について、磁石装置(磁気共鳴撮像装置)の型に対応させて説明する。   Hereinafter, embodiments of the present invention will be described in correspondence with the types of magnet devices (magnetic resonance imaging devices).

(第1の実施形態)
図1に、本発明の第1の実施形態に係る磁石装置8の斜視図を示す。第1の実施形態の磁石装置8は垂直磁場型の磁石装置である。磁石装置8には、一対の磁極1、2が、2本の連結柱5によって互いに離されて、(均一)磁場空間3を挟むように上下方向(z軸方向)に対向して配置されている。磁極1、2にはそれぞれ、磁場発生源(起磁力源)としての永久磁石6、7と、磁場均一度調整装置15、16としてのシムトレイとが内蔵されている。永久磁石6、7と、磁場均一度調整装置15、16と、連結柱5と、磁場均一度調整装置15と16の間の空隙部11とによって磁気回路10が構成されている。均一磁場空間3は、この空隙部11内に形成されている。均一磁場空間3の外形はどのような形状であっても構わないが、多くの場合、球状あるいは偏平な回転楕円体となり、図1では球状の場合を例示している。均一磁場空間3における磁場の向き4は、上下方向(z軸方向)に一致している。
(First embodiment)
In FIG. 1, the perspective view of the magnet apparatus 8 which concerns on the 1st Embodiment of this invention is shown. The magnet device 8 of the first embodiment is a vertical magnetic field type magnet device. In the magnet device 8, a pair of magnetic poles 1 and 2 are separated from each other by two connecting pillars 5 and are arranged facing each other in the vertical direction (z-axis direction) so as to sandwich the (uniform) magnetic field space 3. Yes. Each of the magnetic poles 1 and 2 incorporates permanent magnets 6 and 7 as magnetic field generation sources (magnetomotive force sources) and shim trays as magnetic field uniformity adjusting devices 15 and 16. The permanent magnets 6 and 7, the magnetic field uniformity adjusting devices 15 and 16, the connecting column 5, and the gap 11 between the magnetic field uniformity adjusting devices 15 and 16 constitute a magnetic circuit 10. The uniform magnetic field space 3 is formed in the gap 11. The outer shape of the uniform magnetic field space 3 may be any shape, but in many cases, it is a spherical or flat spheroid, and FIG. 1 illustrates the case of a spherical shape. The magnetic field direction 4 in the uniform magnetic field space 3 coincides with the vertical direction (z-axis direction).

図2に、本発明の第1の実施形態に係る磁石装置8の縦断面図を示す。磁石装置8の中心軸13に一致するようにz軸を定義している。面対称の関係にある磁極1と2における対称面として赤道面14を定義している。赤道面14は中心軸13(z軸)と直交し、この直交に伴う交点は、磁石中心(磁石対称点)12となっている。この磁石中心12は、均一磁場空間3の外形の球状の中心に略一致している。   In FIG. 2, the longitudinal cross-sectional view of the magnet apparatus 8 which concerns on the 1st Embodiment of this invention is shown. The z axis is defined so as to coincide with the central axis 13 of the magnet device 8. An equatorial plane 14 is defined as a plane of symmetry between the magnetic poles 1 and 2 having a plane symmetry relationship. The equator plane 14 is orthogonal to the central axis 13 (z-axis), and the intersection associated with this orthogonality is the magnet center (magnet symmetry point) 12. The magnet center 12 substantially coincides with the spherical center of the outer shape of the uniform magnetic field space 3.

均一磁場空間3の外形の表面上の任意の点のスイープ計測点M0で、磁場の強度を計測する場合を考えると、スイープ計測点M0の位置は、均一磁場空間3の外形の球状の半径rと、磁石中心12からスイープ計測点M0への方向と中心軸13(z軸)とのなす仰角θと、中心軸13(z軸)周りの角度(方位角)φとによって一意に定めることができる。   Considering the case where the intensity of the magnetic field is measured at a sweep measurement point M0 at an arbitrary point on the outer surface of the uniform magnetic field space 3, the position of the sweep measurement point M0 is the spherical radius r of the outer shape of the uniform magnetic field space 3 And the elevation angle θ formed by the direction from the magnet center 12 to the sweep measurement point M0 and the central axis 13 (z axis) and the angle (azimuth angle) φ around the central axis 13 (z axis). it can.

磁場均一度調整装置(シムトレイ)15、16は、均一磁場空間3を上下に挟むように配置されている。磁場均一度調整装置(シムトレイ)15、16の形状は任意であり、その形状は本発明の本質に影響を及ぼさないが、多くの場合、図2に示すように、赤道面14と共に平行で、かつ、中心軸13を共通の中心軸とする一対の円盤形状をしている。図2では、磁性材(シム)17を磁場均一度調整装置(シムトレイ)15に配置した様子を示している。磁性材(シム)17を磁場均一度調整装置(シムトレイ)15、16に配置することで、均一磁場空間3の磁束を移動させる制御(いわゆるシミング作業)を行い、均一磁場空間3における磁場の均一度を向上できる。磁性材(シム)17には、永久磁石や鉄などを用いることができる。   The magnetic field uniformity adjusting devices (shim trays) 15 and 16 are arranged so as to sandwich the uniform magnetic field space 3 up and down. The shape of the magnetic field uniformity adjusting devices (shim trays) 15 and 16 is arbitrary, and the shape does not affect the essence of the present invention, but in many cases, as shown in FIG. And it has a pair of disk shape which makes the central axis 13 the common central axis. FIG. 2 shows a state in which the magnetic material (shim) 17 is arranged on the magnetic field uniformity adjusting device (shim tray) 15. By arranging the magnetic material (shim) 17 on the magnetic field uniformity adjusting devices (shim trays) 15 and 16, control for moving the magnetic flux in the uniform magnetic field space 3 (so-called shimming operation) is performed, and the magnetic field equalization in the uniform magnetic field space 3 is performed. You can improve once. As the magnetic material (shim) 17, a permanent magnet, iron, or the like can be used.

磁場均一度調整装置(シムトレイ)15、16の円盤上における磁性材(シム)17の位置は、中心軸13(z軸)上のシムトレイ中心24、25を原点とする円盤の半径方向のR座標と、前記z軸周りの角度(方位角)φとによって一意に定めることができる。図2では、磁性材(シム)17を、磁場均一度調整装置(シムトレイ)15上のR=0の位置と、R=Rの位置に配置した場合を示している。 The position of the magnetic material (shim) 17 on the disks of the magnetic field uniformity adjusting devices (shim trays) 15 and 16 is the R coordinate in the radial direction of the disk with the shim tray centers 24 and 25 on the center axis 13 (z axis) as the origin. And an angle (azimuth angle) φ around the z-axis. FIG. 2 shows a case where the magnetic material (shim) 17 is arranged at a position of R = 0 and a position of R = RA on the magnetic field uniformity adjusting device (shim tray) 15.

図3に、本発明の第1の実施形態に係る磁気共鳴撮像装置9の概略図を示す。磁気共鳴撮像装置9は、前記磁石装置8を搭載し、さらに、磁場均一度調整装置(シムトレイ)15、16の赤道面14側に傾斜磁場コイル18、19を配置し、さらに傾斜磁場コイル18、19の赤道面14側にRF送受信コイル20、21が配置されている。そして、磁石装置8の外側には、傾斜磁場コイル18、19やRF送受信コイル20、21を駆動するための駆動装置22や制御装置23が具備されている。   FIG. 3 shows a schematic diagram of the magnetic resonance imaging apparatus 9 according to the first embodiment of the present invention. The magnetic resonance imaging apparatus 9 is equipped with the magnet device 8, further includes gradient magnetic field coils 18 and 19 on the equator plane 14 side of the magnetic field uniformity adjusting devices (shim trays) 15 and 16, and further includes the gradient magnetic field coil 18, RF transmitting / receiving coils 20 and 21 are arranged on the equator plane 14 side of 19. Outside the magnet device 8, there are provided a driving device 22 and a control device 23 for driving the gradient magnetic field coils 18 and 19 and the RF transmitting / receiving coils 20 and 21.

図4に、磁石装置8において、1つの磁性材(シム)17を磁場均一度調整装置(シムトレイ)15のシムトレイ中心24上(R=0)とシムトレイ中心24上からR離れたところ(R=R)のそれぞれに配置した場合に、それらの磁性材17が均一磁場空間(撮像空間)3の表面上に作る磁場分布26と27を示している。これらの磁場分布26、27は、スイープ計測点M0(図2参照)で、磁場強度を計測しながら、スイープ計測点M0をθ方向に移動させることで、計測することができる。移動するスイープ計測点M0には、磁場センサを配置させる。なお、この計測に替えて、シミュレーションにより磁場分布26、27を算出してもよい。また、磁石装置8の中心軸(z軸)13回りの対称性より、これらのθ方向の磁場分布26、27の傾向は、任意の方位角φにおいて成立している。 In FIG. 4, in the magnet device 8, one magnetic material (shim) 17 is separated from RA on the shim tray center 24 (R = 0) and the shim tray center 24 of the magnetic field uniformity adjusting device (shim tray) 15 (R = R A ) shows magnetic field distributions 26 and 27 which are formed on the surface of the uniform magnetic field space (imaging space) 3 by the magnetic material 17 when arranged in each of (R A ). These magnetic field distributions 26 and 27 can be measured by moving the sweep measurement point M0 in the θ direction while measuring the magnetic field intensity at the sweep measurement point M0 (see FIG. 2). A magnetic field sensor is disposed at the moving sweep measurement point M0. Instead of this measurement, the magnetic field distributions 26 and 27 may be calculated by simulation. Further, due to the symmetry around the central axis (z axis) 13 of the magnet device 8, the tendency of the magnetic field distributions 26 and 27 in the θ direction is established at an arbitrary azimuth angle φ.

図4より、R=0の場合、すなわちシム17をシムトレイ中心24に置いた場合の磁場分布26は、R=Rの場合の磁場分布27に対し、ピーク位置θにおけるピーク強度が、ピーク位置θにおけるピーク強度より大きく、かつ、半値半幅dθが、半値半幅dθより狭い、鋭いピークのある磁場分布となっている。 As shown in FIG. 4, the magnetic field distribution 26 when R = 0, that is, when the shim 17 is placed at the shim tray center 24, has a peak intensity at the peak position θ 0 that is higher than the magnetic field distribution 27 when R = R A. The magnetic field distribution has a sharp peak that is larger than the peak intensity at the position θ A and the half-value half-width dθ 0 is narrower than the half-value half-width dθ A.

サンプリング定理が教えるところによれば、これらの磁場分布26、27を正確に知るには、半値半幅dθ、dθ以下の計測点間隔で、磁場分布26、27を計測しなければならない。そして、半値半幅dθ、dθは、ピーク位置θ、θによって、すなわち、シム17をシムトレイ15、16に置いた位置(R)によって、異なる値を取っている。つまり半値半幅dθ、dθは、ピーク位置θ、θやシム17の位置R=0、Rにおける計測点間隔の最大値を示していることになる。なお、ピーク位置θ、θと、シム17の位置R=0、Rとは、物理現象として一対一に対応するので、ピーク位置θ、θは、シム17の位置を表すために、R値の代用としても用いることができる。 According to the teaching of the sampling theorem, in order to know these magnetic field distributions 26 and 27 accurately, the magnetic field distributions 26 and 27 must be measured at measurement point intervals equal to or less than the half-value half widths dθ 0 and dθ A. The half-value half widths dθ 0 and dθ A have different values depending on the peak positions θ 0 and θ A , that is, the positions (R) where the shims 17 are placed on the shim trays 15 and 16. That is, the half widths dθ 0 and dθ A indicate the maximum values of the measurement point intervals at the peak positions θ 0 and θ A and the shim 17 positions R = 0 and R A. Since the peak positions θ 0 and θ A and the positions R = 0 and R A of the shim 17 correspond one-to-one as a physical phenomenon, the peak positions θ 0 and θ A represent the position of the shim 17. It can also be used as a substitute for the R value.

図5に、磁場分布のピーク位置θと、そのピーク位置θにおける均一磁場空間3の表面上の磁場分布の半値半幅dθとの関係のシミュレーション結果を示す。ピーク位置θとして0度から90度までを表示しているが、これは、シム17を上側のシムトレイ15に配置した例であるためである。本第1の実施形態では赤道面14を対称面とする上下対称の体系を例示しているから、下側のシムトレイ16にシム17を配置する例を検討する際には、ピーク位置θとして90度から180度までの範囲となる。そして、ピーク位置θが180度における半値半幅dθは、ピーク位置θが0度における半値半幅dθに略一致することは明らかである。   FIG. 5 shows a simulation result of the relationship between the peak position θ of the magnetic field distribution and the half-value half width dθ of the magnetic field distribution on the surface of the uniform magnetic field space 3 at the peak position θ. The peak position θ is displayed from 0 degree to 90 degrees because the shim 17 is arranged on the upper shim tray 15. Since the first embodiment exemplifies a vertically symmetric system having the equator plane 14 as a symmetry plane, when considering an example in which the shim 17 is arranged on the lower shim tray 16, the peak position θ is 90. The range is from 180 degrees to 180 degrees. It is clear that the half-value half-width dθ when the peak position θ is 180 degrees substantially matches the half-value half-width dθ when the peak position θ is 0 degrees.

図5によれば、ピーク位置θが0度近傍における半値半幅dθmin(=dθ)に対し、ピーク位置θが前記θの半値半幅dθの方が大きくなっており、さらに、90度近傍の半値半幅dθmaxの方が大きくなっていることがわかる。そして、90度近傍の半値半幅dθmaxは、0度近傍の半値半幅dθminの2倍以上で略3倍になっている。すなわち、ピーク位置θが0度から90度間で、ピーク位置θが大きくなればなる程、半値半幅dθも大きくなる増加関数になっていることがわかる。そして、計測点間隔は、サンプリング定理より、半値半幅dθを最大の計測点間隔として、それ以下に設定されるので、半値半幅dθがピーク位置θによって大きさを変えるということは、計測点間隔もピーク位置θによって大きさを変えることができることになる。そして、ピーク位置θに応じて半値半幅dθの許容範囲で、計測点間隔を大きくすることで、磁場分布の測定精度あるいは内挿演算精度を高精度に維持したまま計測点の数を減らすことができる。つまり、計測点間隔を、図5のグラフのカーブにしたがって導かれる半値半幅dθ以下になるように、ピーク位置θ(計測点に相当)に応じて計測点間隔の大きさを変えることにすれば、最適かつ最少の計測点配置により、高精度に磁場分布が測定できる。 According to FIG. 5, with respect to half width at half maximum dθmin (= dθ 0) peak positions theta is at 0 degrees near, and peak positions theta becomes large toward the half width at half maximum d [theta] A of the theta A, further 90 degrees near It can be seen that the half-value half-width dθmax is larger. The half-value half width dθmax near 90 degrees is approximately three times as large as half or more the half-value half width dθmin near 0 degrees. In other words, it can be seen that the peak position θ is between 0 ° and 90 °, and the half-value half-width dθ increases as the peak position θ increases. The measurement point interval is set to be less than or equal to the half-value half-width dθ as the maximum measurement point interval according to the sampling theorem. Therefore, changing the size of the half-value half-width dθ according to the peak position θ The size can be changed by the peak position θ. Then, by increasing the measurement point interval within an allowable range of the half value half width dθ according to the peak position θ, the number of measurement points can be reduced while maintaining the measurement accuracy of the magnetic field distribution or the accuracy of the interpolation calculation with high accuracy. it can. That is, if the size of the measurement point interval is changed according to the peak position θ (corresponding to the measurement point) so that the measurement point interval is equal to or less than the half-value half width dθ derived according to the curve of the graph of FIG. The magnetic field distribution can be measured with high accuracy by the optimum and minimum measurement point arrangement.

図6に、均一磁場空間3の表面上の磁場の計測点M1〜M4の計測点間隔dθa〜dθcを決める磁場分布測定方法の一例を示す。まず、ピーク位置θが0度(θ=0度)の位置に計測点M1を配置する。次に、ピーク位置θが0度(θ=0度)の位置における半値半幅dθa(=dθmin=dθ)を図5、6のグラフから読み取って取得し(あるいは、シミュレーションによって取得してもよい。以下、同様)、この半値半幅dθaを、計測点M1と計測点M2の間の計測点間隔(dθa)とする。具体的には、計測点M1から計測点間隔(dθa)離れた位置に、計測点M2を配置する。なお、図6では、縦軸と横軸のスケールは異なっている。 FIG. 6 shows an example of a magnetic field distribution measurement method for determining the measurement point intervals dθa to dθc of the measurement points M1 to M4 of the magnetic field on the surface of the uniform magnetic field space 3. First, the measurement point M1 is arranged at a position where the peak position θ is 0 degrees (θ = 0 degrees). Next, the half-value half width dθa (= dθmin = dθ 0 ) at the position where the peak position θ is 0 degree (θ = 0 degree) is obtained by reading from the graphs of FIGS. 5 and 6 (or may be obtained by simulation). Hereinafter, this half value half width dθa is defined as a measurement point interval (dθa) between the measurement point M1 and the measurement point M2. Specifically, the measurement point M2 is arranged at a position away from the measurement point M1 by the measurement point interval (dθa). In FIG. 6, the scales of the vertical axis and the horizontal axis are different.

次に、ピーク位置θが計測点M2の位置(θ=dθa)における半値半幅dθbを図5、6のグラフから読み取って取得し、この半値半幅dθbを、計測点M2と計測点M3の間の計測点間隔(dθb)とする。半値半幅dθbは、半値半幅dθaとは読み取った際のピーク位置θが異なる(dθa≠0)ので、異なった値になり(dθb≠dθa)、半値半幅dθaより大きくなる(dθb>dθa)。具体的には、計測点M2から計測点間隔(dθb)離れた位置(θ=dθa+dθb)に、計測点M3を配置する。   Next, the half-value half-width dθb at the peak position θ at the measurement point M2 (θ = dθa) is obtained by reading from the graphs of FIGS. 5 and 6, and this half-value half-width dθb is obtained between the measurement point M2 and the measurement point M3. The measurement point interval (dθb) is used. The half-value half-width dθb is different from the half-value half-width dθa because the peak position θ at the time of reading is different (dθa ≠ 0). Specifically, the measurement point M3 is arranged at a position (θ = dθa + dθb) that is separated from the measurement point M2 by the measurement point interval (dθb).

同様に、ピーク位置θが計測点M3の位置(θ=dθa+dθb)における半値半幅dθcを図5、6のグラフから読み取って取得し、この半値半幅dθcを、計測点M3と計測点M4の間の計測点間隔(dθc)とする。半値半幅dθcは、半値半幅dθa、dθbとは読み取った際のピーク位置θが異なる(dθa+dθb≠0、dθa+dθb≠dθa)ので、異なった値になり(dθc≠dθa、dθc≠dθb)、半値半幅dθa、dθbより大きくなる(dθc>dθb>dθa)。具体的には、計測点M3から計測点間隔(dθc)離れた位置(θ=dθa+dθb+dθc)に、計測点M4を配置する。このように、計測点M1〜M4の配置された位置の差分は、dθa〜dθc(dθc>dθb>dθa)となるので、等差の関係にはなっていない。そして、90度近傍の半値半幅dθmaxは、0度近傍の半値半幅dθminの2倍以上で略3倍になっていることから、計測点間隔もその最小値と最大値とで、最大値を最小値の2倍以上で3倍程度に設定できる。   Similarly, the half-value half-width dθc at the position where the peak position θ is the measurement point M3 (θ = dθa + dθb) is obtained by reading from the graphs of FIGS. 5 and 6, and this half-value half-width dθc is obtained between the measurement point M3 and the measurement point M4. The measurement point interval (dθc) is used. The half-value half-width dθc has a different value (dθc ≠ dθa, dθc ≠ dθb) and the half-value half-width dθa because the peak position θ when read is different from the half-value half-widths dθa and dθb (dθa + dθb ≠ 0, dθa + dθb ≠ dθa). , Dθb (dθc> dθb> dθa). Specifically, the measurement point M4 is arranged at a position (θ = dθa + dθb + dθc) that is separated from the measurement point M3 by the measurement point interval (dθc). As described above, the difference between the positions where the measurement points M1 to M4 are arranged is dθa to dθc (dθc> dθb> dθa), so that there is no equal difference relationship. Since the half-value half width dθmax near 90 degrees is more than twice the half-value half width dθmin near 0 degrees and is almost three times, the measurement point interval is the minimum value and the maximum value, and the maximum value is minimized. It can be set to about 3 times more than twice the value.

図7Aに、均一磁場空間3の表面上に計測点M1〜M4を配置した一例を、二次元的に示す。計測点M1〜M4の配置の作業は、まず、計測点M1〜M4の位置が90度(θ=90度)を超えない範囲で繰り返される。そして、ピーク位置θが90〜180度の範囲は、磁石装置8の赤道面14(図2参照)に対する対称性から、図7Aに示すように設定できる。すなわち、ピーク位置θが180度(θ=180度)の位置に計測点M1を配置する。次に、計測点M1から計測点間隔(dθa)離れた位置(θ=180−dθa)に、計測点M2を配置する。次に、計測点M2から計測点間隔(dθb)離れた位置(θ=180−dθa−dθb)に、計測点M3を配置する。最後に、計測点M3から計測点間隔(dθc)離れた位置(θ=180−dθa−dθb−dθc)に、計測点M4を配置する。   FIG. 7A shows two-dimensionally an example in which the measurement points M1 to M4 are arranged on the surface of the uniform magnetic field space 3. The operation of arranging the measurement points M1 to M4 is first repeated within a range in which the positions of the measurement points M1 to M4 do not exceed 90 degrees (θ = 90 degrees). The range where the peak position θ is 90 to 180 degrees can be set as shown in FIG. 7A from the symmetry with respect to the equator plane 14 (see FIG. 2) of the magnet device 8. That is, the measurement point M1 is arranged at a position where the peak position θ is 180 degrees (θ = 180 degrees). Next, the measurement point M2 is arranged at a position (θ = 180−dθa) away from the measurement point M1 by the measurement point interval (dθa). Next, the measurement point M3 is arranged at a position (θ = 180−dθa−dθb) away from the measurement point M2 by the measurement point interval (dθb). Finally, the measurement point M4 is arranged at a position (θ = 180−dθa−dθb−dθc) that is separated from the measurement point M3 by the measurement point interval (dθc).

図7Bに、均一磁場空間3の表面上に計測点M1〜M4を配置した一例を、三次元的に示す。z軸まわりの計測点間隔dφは、前記で述べてきたサンプリング定理等の原理から、ピーク位置θが90度(θ=90度)での半値半幅dθ90(=dθmax、図6参照)に等しくする(dφ=dθ90)。これによれば、隣り合う計測点M2と計測点M2との計測点間隔より、隣り合う計測点M3と計測点M3との計測点間隔を長くすることができる。同様に、隣り合う計測点M3と計測点M3との計測点間隔より、隣り合う計測点M4と計測点M4との計測点間隔を長くすることができる。そして、計測点M1〜M4を最適に配置でき、計測点M1〜M4の個数を最少にできる。 FIG. 7B shows an example in which measurement points M1 to M4 are arranged on the surface of the uniform magnetic field space 3 in a three-dimensional manner. The measurement point interval dφ around the z-axis is equal to the half-value half width dθ 90 (= dθmax, see FIG. 6) when the peak position θ is 90 degrees (θ = 90 degrees) based on the principle such as the sampling theorem described above. (Dφ = dθ 90 ). According to this, the measurement point interval between the adjacent measurement points M3 and M3 can be made longer than the measurement point interval between the adjacent measurement points M2 and M2. Similarly, the measurement point interval between the adjacent measurement points M4 and M4 can be made longer than the measurement point interval between the adjacent measurement points M3 and M3. The measurement points M1 to M4 can be optimally arranged, and the number of measurement points M1 to M4 can be minimized.

図8に、均一磁場空間3の表面上の磁場の計測点M1〜M5の計測点間隔dθa、dθe(dθe≠dθa、dθe>dθa)を決める磁場分布測定方法の、図6に示した方法とは別の一例を示す。まず、ピーク位置θが0度(θ=0度)の位置に計測点M1を配置する。次に、ピーク位置θが0度(θ=0度)の位置における半値半幅dθa(=dθmin=dθ)を図5、6のグラフから読み取って取得し、この半値半幅dθaを、所定のピーク位置θ(図8では45度)に達しない計測点M1〜M3の計測点間隔とする。具体的には、計測点M1から計測点間隔(dθa)離れた位置(θ=dθa)に、計測点M2を配置し、同様に、計測点M2から計測点間隔(dθa)離れた位置(θ=2×dθa)に、計測点M3を配置する。なお、図8では、縦軸と横軸のスケールは異なっている。 FIG. 8 shows a magnetic field distribution measurement method for determining the measurement point intervals dθa and dθe (dθe ≠ dθa, dθe> dθa) of the magnetic field measurement points M1 to M5 on the surface of the uniform magnetic field space 3 and the method shown in FIG. Shows another example. First, the measurement point M1 is arranged at a position where the peak position θ is 0 degrees (θ = 0 degrees). Next, the half-value half-width dθa (= dθmin = dθ 0 ) at the position where the peak position θ is 0 degree (θ = 0 degree) is obtained by reading from the graphs of FIGS. 5 and 6, and this half-value half-width dθa is obtained as a predetermined peak. The measurement point intervals of the measurement points M1 to M3 that do not reach the position θ (45 degrees in FIG. 8) are set. Specifically, the measurement point M2 is arranged at a position (θ = dθa) that is separated from the measurement point M1 by the measurement point interval (dθa), and similarly, the position (θ that is separated from the measurement point M2 by the measurement point interval (dθa)). = 2 × dθa), the measurement point M3 is arranged. In FIG. 8, the scales of the vertical axis and the horizontal axis are different.

次に、ピーク位置θが45度における半値半幅dθeを図5、6のグラフから読み取って取得し、この半値半幅dθeを、少なくとも一方の計測点M4、M5が、ピーク位置θの45度を超えている計測点M3〜M5の間の計測点間隔とする。具体的には、計測点M3から計測点間隔(dθe)離れた位置(θ=2×dθa+dθe)に、計測点M4を配置し、同様に、計測点M4から計測点間隔(dθe)離れた位置(θ=2×dθa+2×dθe)に、計測点M5を配置する。半値半幅dθeは、半値半幅dθaに等しくなく(dθe≠dθa)、半値半幅dθaより大きくなっている(dθe>dθa)。この例によっても、0〜90度のどのピーク位置θにおいても、計測点間隔は、半値半幅dθを超えていない。このため、内挿演算等の算出の精度を低下させることがない。等しい大きさの計測間隔が繰り返し計算に使われるので、計算を単純化できる。ただ、計測点の個数は図6の場合よりも多くなる。どちらを選択するかは、計測時間との兼ね合いで決定すればよい。いずれにせよ、ピーク位置θが0度(θ=0度)近傍の計測点間隔よりも、90度(θ=90度)近傍の計測点間隔を大きくすることができ、その結果、計測点間隔を等間隔に配置するよりも、計測点M1〜M5の個数を減らすことができる。   Next, the half-value half-width dθe when the peak position θ is 45 degrees is obtained by reading from the graphs of FIGS. 5 and 6, and at least one of the measurement points M4 and M5 exceeds 45 degrees of the peak position θ. An interval between measurement points M3 to M5 is set. Specifically, the measurement point M4 is arranged at a position (θ = 2 × dθa + dθe) away from the measurement point interval (dθe) from the measurement point M3, and similarly, a position away from the measurement point M4 by the measurement point interval (dθe). The measurement point M5 is arranged at (θ = 2 × dθa + 2 × dθe). The half-value half-width dθe is not equal to the half-value half-width dθa (dθe ≠ dθa) and is larger than the half-value half-width dθa (dθe> dθa). Also in this example, the measurement point interval does not exceed the half-value half-width dθ at any peak position θ of 0 to 90 degrees. For this reason, the accuracy of calculation such as interpolation is not reduced. Since equal measurement intervals are used for repeated calculations, the calculation can be simplified. However, the number of measurement points is larger than in the case of FIG. Which one should be selected may be determined in consideration of the measurement time. In any case, the measurement point interval near 90 degrees (θ = 90 degrees) can be made larger than the measurement point interval near peak position θ of 0 degrees (θ = 0 degrees). The number of measurement points M1 to M5 can be reduced rather than arranging them at equal intervals.

図9Aに、本発明の第1の実施形態に係る磁場分布測定用治具32の正面図を示す。磁場分布測定用治具32は、穴31が開けられた非磁性で平板形状のホルダ28と、ホルダ28を中心軸13(z軸)まわりに回転できるように支持する座29と、ホルダ28の穴31に嵌め込まれて保持される磁場センサ30とを有している。ここで、磁場センサ30は磁場強度が測定できるものであれば何でもよいが、磁気共鳴撮像装置9では高精度な測定を要するため、例えば、NMR(Nuclear Magnetic Resonance)センサなどが用いられる。   FIG. 9A shows a front view of the magnetic field distribution measurement jig 32 according to the first embodiment of the present invention. The magnetic field distribution measuring jig 32 includes a non-magnetic, flat plate shaped holder 28 with a hole 31, a seat 29 that supports the holder 28 so as to rotate about the central axis 13 (z axis), And a magnetic field sensor 30 that is fitted and held in the hole 31. Here, the magnetic field sensor 30 may be anything as long as it can measure the magnetic field intensity. However, since the magnetic resonance imaging apparatus 9 requires highly accurate measurement, for example, an NMR (Nuclear Magnetic Resonance) sensor or the like is used.

ホルダ28には、均一磁場空間3の表面の円弧と同じ大きさの円弧に沿った前記計測点M1〜M4のそれぞれの位置に穴31が設けられている。計測点M1〜M4の計測点間隔は、前記磁場分布測定方法で説明した前記計測点間隔dθa〜dθc、dθeと同じになるように設けられている。このため、ホルダ28の隣り合う穴31の間隔は、z軸(θ=0度および180度)近傍よりも、z軸から離れた赤道面14(θ=90度)近傍の方が広くなるという外見的特徴を持っている。このような磁場分布測定用治具32を使うことで、位置θに依存して変動する前記計測点間隔dθa〜dθc、dθeで磁場分布を測定することが可能になる。   The holder 28 is provided with holes 31 at positions of the measurement points M1 to M4 along an arc having the same size as the arc on the surface of the uniform magnetic field space 3. The measurement point intervals of the measurement points M1 to M4 are set to be the same as the measurement point intervals dθa to dθc and dθe described in the magnetic field distribution measurement method. For this reason, the interval between the adjacent holes 31 of the holder 28 is wider in the vicinity of the equator plane 14 (θ = 90 degrees) away from the z axis than in the vicinity of the z axis (θ = 0 degrees and 180 degrees). Has appearance characteristics. By using such a magnetic field distribution measurement jig 32, it is possible to measure the magnetic field distribution at the measurement point intervals dθa to dθc and dθe that vary depending on the position θ.

図9Bに、磁場分布測定時に本発明の第1の実施形態に係る磁場分布測定用治具32を、磁石装置8に設置した様子を示す。磁場分布測定時には、複数の全ての穴31が、均一磁場空間3の表面上に配置されるように、磁場分布測定用治具32を磁石装置8にセッティングする。また、磁性材(シム)17はシムトレイ15、16から取り除いておく。そして、磁場センサ30を、複数の穴31に、順次、嵌めては、磁石装置8に固定された座29でホルダ28を回転させながら、方位角φの間隔dφ(図7B参照)毎に磁場強度を測定する。これにより、全ての計測点M1〜M4に対して測定が行え、高精度な磁場分布、さらには、高精度な均一度を取得することができる。この磁場分布は、シム17によらない磁場発生源(磁極)1、2によって発生させた磁場の磁場分布である。この計測結果に基づいて、1つ又は複数のシム17をシムトレイ15、16に配置し、再度、前記と同様に高精度な均一度を取得する。このようなシム17の配置と高精度な均一度の取得との繰り返しにより、前記磁場空間3内の磁場の均一度を向上させることができる。   FIG. 9B shows a state in which the magnetic field distribution measurement jig 32 according to the first embodiment of the present invention is installed in the magnet device 8 during magnetic field distribution measurement. At the time of magnetic field distribution measurement, the magnetic field distribution measurement jig 32 is set in the magnet device 8 so that all of the plurality of holes 31 are arranged on the surface of the uniform magnetic field space 3. The magnetic material (shim) 17 is removed from the shim trays 15 and 16. Then, the magnetic field sensor 30 is sequentially fitted into the plurality of holes 31, and the magnetic field is generated every interval dφ (see FIG. 7B) of the azimuth angle φ while rotating the holder 28 with the seat 29 fixed to the magnet device 8. Measure strength. Thereby, it can measure with respect to all the measurement points M1-M4, and can acquire a highly accurate magnetic field distribution and also a highly accurate uniformity. This magnetic field distribution is a magnetic field distribution of the magnetic field generated by the magnetic field generation sources (magnetic poles) 1 and 2 that do not depend on the shim 17. Based on the measurement result, one or a plurality of shims 17 are arranged on the shim trays 15 and 16, and high-precision uniformity is obtained again as described above. By repeating the arrangement of the shim 17 and the acquisition of high accuracy uniformity, the uniformity of the magnetic field in the magnetic field space 3 can be improved.

なお、第1の実施形態では、磁石装置8として、磁場発生源(磁極)1、2に永久磁石6、7(図2参照)を採用している例を示したが、これに限らず、永久磁石6、7に替えて、例えば、超電導磁石を採用してもよい。   In the first embodiment, the example in which the permanent magnets 6 and 7 (see FIG. 2) are adopted as the magnetic field generation sources (magnetic poles) 1 and 2 as the magnet device 8 is shown. Instead of the permanent magnets 6 and 7, for example, a superconducting magnet may be adopted.

(第2の実施形態)
図10に、本発明の第2の実施形態に係る磁場分布測定用治具32を示す。第2の実施形態の磁場分布測定用治具32が、第1の実施形態の磁場分布測定用治具32と異なる点は、穴31それぞれに、磁場センサ30が嵌め込まれている点である。穴31から穴31へ磁場センサ30を差し替える必要がなく、磁場分布の測定に際して、z軸回りに1回転のみさせればよく、差し替える度に回転させる必要がない。これにより、磁場分布測定に要する時間を短縮することができる。
(Second Embodiment)
FIG. 10 shows a magnetic field distribution measurement jig 32 according to the second embodiment of the present invention. The magnetic field distribution measurement jig 32 of the second embodiment is different from the magnetic field distribution measurement jig 32 of the first embodiment in that the magnetic field sensor 30 is fitted in each of the holes 31. There is no need to replace the magnetic field sensor 30 from the hole 31 to the hole 31, and when measuring the magnetic field distribution, it is only necessary to make one rotation around the z axis, and there is no need to rotate every time it is replaced. Thereby, the time required for magnetic field distribution measurement can be shortened.

また、第1の実施形態の四角形状のホルダ28に対して、第2の実施形態では、ホルダ33が半月形状になっている点が異なっている。半月形状のホルダ33の外周に沿って、穴31が設けられ、半月形状のホルダ33の外周と、均一磁場空間3の外形とは平行にセッティングされることになる。このため、セッティングを行う者は磁石装置8と磁場分布測定用治具32の位置関係を把握し易いという利点がある。第2の実施形態では半円(半月)形状の場合を例示したが、これに限らず、ホルダ33は、外周が均一磁場空間3の外形に沿い平行な円板であっても、また、球体であってもよいことは明らかである。   Further, the second embodiment is different from the rectangular holder 28 of the first embodiment in that the holder 33 has a half-moon shape. A hole 31 is provided along the outer periphery of the half-moon shaped holder 33, and the outer circumference of the half-moon shaped holder 33 and the outer shape of the uniform magnetic field space 3 are set in parallel. For this reason, there is an advantage that the person who performs the setting can easily grasp the positional relationship between the magnet device 8 and the magnetic field distribution measurement jig 32. In the second embodiment, the case of a semicircular (half-moon) shape is illustrated. However, the present invention is not limited thereto, and the holder 33 may be a circular plate whose outer periphery is parallel to the outer shape of the uniform magnetic field space 3 or a sphere. Obviously it may be.

(第3の実施形態)
図11Aに、本発明の第3の実施形態に係る磁石装置8の斜視図を示す。第3の実施形態の磁石装置8は、第1の実施形態の垂直磁場型の磁石装置8の類型であり、第1の実施形態の垂直磁場型の磁石装置8を横に90度倒したような構造になっている。これに伴い、z軸も90度倒して水平方向に変更している。このため、第3の実施形態の磁石装置8でも、第1の実施形態の磁石装置8と同様の議論ができ、同様の効果を得ることができる。
(Third embodiment)
FIG. 11A shows a perspective view of a magnet device 8 according to a third embodiment of the present invention. The magnet device 8 of the third embodiment is a type of the vertical magnetic field type magnet device 8 of the first embodiment, and seems to have tilted the vertical magnetic field type magnet device 8 of the first embodiment horizontally by 90 degrees. It has a simple structure. Along with this, the z-axis is also tilted 90 degrees and changed in the horizontal direction. For this reason, also in the magnet apparatus 8 of 3rd Embodiment, the discussion similar to the magnet apparatus 8 of 1st Embodiment can be performed, and the same effect can be acquired.

図11Bに、磁場分布測定時に本発明の第3の実施形態に係る磁場分布測定用治具32を、磁石装置8に設置した様子を示す。z軸が水平になったことに伴い、第1の実施形態と同様な効果を得るために、ホルダ28もz軸の回り、すなわち、水平軸の回りに回転させる必要がある。そこで、座29を水平軸であるz軸の回りに回転可能なように変更している。第3の実施形態によっても、第1の実施形態と同様に、最適かつ最少の計測点により高精度な磁場分布を測定することができ、高精度な均一度を算出できる。   FIG. 11B shows a state in which the magnetic field distribution measurement jig 32 according to the third embodiment of the present invention is installed in the magnet device 8 during the magnetic field distribution measurement. As the z-axis becomes horizontal, the holder 28 needs to be rotated around the z-axis, that is, around the horizontal axis in order to obtain the same effect as that of the first embodiment. Therefore, the seat 29 is changed so as to be rotatable about the z axis which is a horizontal axis. Also in the third embodiment, as in the first embodiment, a highly accurate magnetic field distribution can be measured with the optimum and minimum number of measurement points, and a highly accurate uniformity can be calculated.

(第4の実施形態)
図12Aに、本発明の第4の実施形態に係る磁石装置8の斜視図を示す。第4の実施形態の磁石装置8は、水平磁場型の磁石装置であり、z軸は水平方向を向いている。磁石装置8は、中心軸がz軸に一致する円筒形状の真空容器41と、真空容器41の内側の壁に沿って配置され中心軸がz軸に一致する円筒形状の磁場均一度調整装置(シムトレイ)45と、真空容器41の上部に配置された冷凍機46とを有している。
(Fourth embodiment)
FIG. 12A shows a perspective view of a magnet device 8 according to a fourth embodiment of the present invention. The magnet device 8 of the fourth embodiment is a horizontal magnetic field type magnet device, and the z-axis faces the horizontal direction. The magnet device 8 includes a cylindrical vacuum vessel 41 having a central axis that coincides with the z-axis, and a cylindrical magnetic field uniformity adjusting device that is disposed along the inner wall of the vacuum vessel 41 and that has a central axis that coincides with the z-axis ( Shim tray) 45 and a refrigerator 46 disposed on the upper portion of the vacuum vessel 41.

図12Bに、本発明の第4の実施形態に係る磁石装置8の縦断面図を示す。磁石装置8には、均一磁場空間3を囲うように配置された二重円筒状の真空容器41と、真空容器41の内側に配置された輻射シールド42と、さらに輻射シールド42の内側に配置された冷媒容器43と、その冷媒容器43の内側に配置され、主磁場を発生するための、超電導線からなる円環形状の主コイル51と、磁石装置8の外部への漏洩磁場を低減するために、主コイル51とは逆方向に通電され、超電導線からなる円環形状の遮蔽コイル52とが、それぞれの中心軸13をz軸に一致させるように同軸状に配置されている。また、冷媒容器43には、主コイル51と遮蔽コイル52を超電導に保つための極低温冷媒、例えば、液体ヘリウム44が格納されている。極低温冷媒は、冷凍機46(図12A参照)によって極低温を維持することができる。   FIG. 12B shows a longitudinal sectional view of the magnet device 8 according to the fourth embodiment of the present invention. In the magnet device 8, a double cylindrical vacuum vessel 41 arranged so as to surround the uniform magnetic field space 3, a radiation shield 42 arranged inside the vacuum vessel 41, and further arranged inside the radiation shield 42. In order to reduce the leakage magnetic field to the outside of the magnet device 8 and the annular main coil 51 made of a superconducting wire, which is arranged inside the refrigerant vessel 43, is disposed inside the refrigerant vessel 43, and generates a main magnetic field. In addition, an annular shield coil 52, which is energized in the opposite direction to the main coil 51 and is made of a superconducting wire, is arranged coaxially so that the respective central axes 13 coincide with the z-axis. The refrigerant container 43 stores a cryogenic refrigerant, for example, liquid helium 44, for keeping the main coil 51 and the shielding coil 52 in superconductivity. The cryogenic refrigerant can maintain a cryogenic temperature by the refrigerator 46 (see FIG. 12A).

均一磁場空間3はどのような形状であっても構わないが、多くの場合、球状、あるいは偏平な回転楕円体である。第4の実施形態では、半径rの球状の空間を均一磁場空間3として例示している。磁場空間3における磁場の向き4に、z軸の正方向を一致させている。複数の主コイル51の点対称の対称点となる磁石中心12が、z軸上に設定され、磁石中心12を含んでz軸を法線とする平面を、赤道面14と定義している。磁石中心12は、均一磁場空間3の外形の球状の中心に略一致している。   The uniform magnetic field space 3 may have any shape, but in most cases, it is a spherical or flat spheroid. In the fourth embodiment, a spherical space having a radius r is illustrated as the uniform magnetic field space 3. The positive direction of the z-axis is made to coincide with the magnetic field direction 4 in the magnetic field space 3. A plane in which the magnet center 12 that is a point-symmetrical symmetry point of the plurality of main coils 51 is set on the z-axis and includes the magnet center 12 and has the z-axis as a normal line is defined as an equatorial plane 14. The magnet center 12 substantially coincides with the spherical center of the outer shape of the uniform magnetic field space 3.

均一磁場空間3の外形の表面上の任意の点のスイープ計測点M0で、磁場の強度を計測する場合を考えると、スイープ計測点M0の位置は、均一磁場空間3の外形の球状の半径rと、磁石中心12からスイープ計測点M0への方向と中心軸13(z軸)とのなす仰角θと、中心軸13(z軸)周りの角度(方位角)φとによって一意に定めることができる。   Considering the case where the intensity of the magnetic field is measured at a sweep measurement point M0 at an arbitrary point on the outer surface of the uniform magnetic field space 3, the position of the sweep measurement point M0 is the spherical radius r of the outer shape of the uniform magnetic field space 3 And the elevation angle θ formed by the direction from the magnet center 12 to the sweep measurement point M0 and the central axis 13 (z axis) and the angle (azimuth angle) φ around the central axis 13 (z axis). it can.

磁場均一度調整装置(シムトレイ)45は、二重円筒状の真空容器41の内周側の面に沿って配置され、円筒形状をしている。シムトレイ45には、磁性材(シム)17が螺合等により埋め込まれて保持され、シムトレイ45上の任意の場所に配置できるようになっている。シム17をシムトレイ45に配置することで、均一磁場空間3の磁束を移動させる制御(いわゆるシミング作業)を行い、均一磁場空間3における磁場の均一度を向上できる。シム17には、永久磁石や鉄などを用いることができる。   The magnetic field uniformity adjusting device (shim tray) 45 is disposed along the inner peripheral surface of the double cylindrical vacuum vessel 41 and has a cylindrical shape. A magnetic material (shim) 17 is embedded and held in the shim tray 45 by screwing or the like, and can be disposed at any place on the shim tray 45. By disposing the shim 17 on the shim tray 45, control (so-called shimming work) for moving the magnetic flux in the uniform magnetic field space 3 is performed, and the uniformity of the magnetic field in the uniform magnetic field space 3 can be improved. For the shim 17, a permanent magnet, iron, or the like can be used.

シムトレイ45の円筒上におけるシム17の位置は、赤道面14上のシムトレイ中心24を原点(ゼロ)とする円筒の長さ方向のR座標と、前記z軸周りの角度(方位角)φとによって一意に定めることができる。図12Bでは、シム17を、シムトレイ45上のR=0(ゼロ)の位置と、R=Rの位置に配置した場合を示している。 The position of the shim 17 on the cylinder of the shim tray 45 is determined by the R coordinate in the length direction of the cylinder with the origin (zero) of the shim tray center 24 on the equatorial plane 14 and the angle (azimuth angle) φ around the z axis. It can be determined uniquely. FIG. 12B shows a case where the shim 17 is arranged at the position of R = 0 (zero) and the position of R = RA on the shim tray 45.

図13に、本発明の第4の実施形態に係る磁気共鳴撮像装置9の概略図を示す。磁気共鳴撮像装置9は、第4の実施形態の磁石装置8を搭載し、さらに、磁場均一度調整装置(シムトレイ)45のz軸(中心軸13)側に傾斜磁場コイル48を配置し、さらに傾斜磁場コイル48のz軸(中心軸13)側にRF送受信コイル50が配置されている。そして、磁石装置8の外側には、傾斜磁場コイル48やRF送受信コイル50を駆動するための駆動装置22や制御装置23が具備されている。傾斜磁場コイル48は、磁場均一度調整装置(シムトレイ)45の内周側の面に沿って配置され、RF送受信コイル50は、傾斜磁場コイル48の内周側の面に沿って配置されている。シムトレイ45は、真空容器41と傾斜磁場コイル48との間の隙間に配置される例や、傾斜磁場コイル48の構造上の隙間に配置される例などがあり、どのような方法であっても本質に影響はないが、第4の実施形態(図13)では、真空容器41と傾斜磁場コイル48との隙間の領域に配置した例を図示している。   FIG. 13 shows a schematic diagram of a magnetic resonance imaging apparatus 9 according to the fourth embodiment of the present invention. The magnetic resonance imaging apparatus 9 is equipped with the magnet device 8 of the fourth embodiment, further has a gradient magnetic field coil 48 disposed on the z-axis (center axis 13) side of the magnetic field uniformity adjusting device (shim tray) 45, and An RF transmitting / receiving coil 50 is arranged on the z-axis (center axis 13) side of the gradient magnetic field coil 48. A driving device 22 and a control device 23 for driving the gradient magnetic field coil 48 and the RF transmitting / receiving coil 50 are provided outside the magnet device 8. The gradient magnetic field coil 48 is disposed along the inner peripheral surface of the magnetic field uniformity adjusting device (shim tray) 45, and the RF transmitting / receiving coil 50 is disposed along the inner peripheral surface of the gradient magnetic field coil 48. . There are examples in which the shim tray 45 is disposed in the gap between the vacuum vessel 41 and the gradient magnetic field coil 48 and examples in which the shim tray 45 is disposed in the structural gap of the gradient magnetic field coil 48. Although the essence is not affected, in the fourth embodiment (FIG. 13), an example in which the vacuum vessel 41 and the gradient magnetic field coil 48 are arranged in the gap region is illustrated.

均一磁場空間3とシムトレイ45とは、赤道面14上のそれぞれの位置で最短距離となるから、シム17がシムトレイ45と赤道面14とが交差する位置(R=0)、すなわちシムトレイ中心53(24)に配置された場合、シム17が均一磁場空間(撮像空間)3の磁場分布に与える影響が最大となる。逆に、シムトレイ端部54にシム17が配置された場合は均一磁場空間3の磁場分布に与える影響は最小となる。また、シム17が、シムトレイ中心53(24)とシムトレイ端部54の間に配置された場合は、均一磁場空間3の磁場分布に与える影響は、シムトレイ中心53(24)に配置された場合と、シムトレイ端部54に配置された場合との間の値になる。   Since the uniform magnetic field space 3 and the shim tray 45 have the shortest distance at each position on the equator plane 14, the shim 17 is at a position where the shim tray 45 and the equator plane 14 intersect (R = 0), that is, the shim tray center 53 ( 24), the influence of the shim 17 on the magnetic field distribution of the uniform magnetic field space (imaging space) 3 is maximized. Conversely, when the shim 17 is disposed at the shim tray end 54, the influence on the magnetic field distribution of the uniform magnetic field space 3 is minimized. Further, when the shim 17 is disposed between the shim tray center 53 (24) and the shim tray end 54, the influence on the magnetic field distribution of the uniform magnetic field space 3 is the case where the shim tray center 53 (24) is disposed. , And a value between the case where it is arranged at the shim tray end portion 54.

図14に、第4の実施形態の磁石装置8において、1つのシム17をシムトレイ45のシムトレイ中心24上(R=0)とシムトレイ中心24上からR離れたところ(R=R)のそれぞれに配置した場合に、それらのシム17が均一磁場空間3の表面上に作る磁場分布56と57を示している。これらの磁場分布56、57は、スイープ計測点M0(図12B参照)で、磁場強度を計測しながら、スイープ計測点M0をθ方向に移動させることで、計測することができる。移動するスイープ計測点M0には、磁場センサを配置させる。なお、この計測に替えて、シミュレーションにより磁場分布56、57を算出してもよい。また、磁石装置8の中心軸(z軸)13回りの対称性より、これらのθ方向の磁場分布56、57の傾向は、任意の方位角φにおいて成立している。 In FIG. 14, in the magnet device 8 of the fourth embodiment, one shim 17 is placed on the shim tray center 24 (R = 0) of the shim tray 45 and at a position R A away from the top of the shim tray center 24 (R = R A ). The magnetic field distributions 56 and 57 that the shims 17 form on the surface of the uniform magnetic field space 3 when they are arranged respectively are shown. These magnetic field distributions 56 and 57 can be measured by moving the sweep measurement point M0 in the θ direction while measuring the magnetic field intensity at the sweep measurement point M0 (see FIG. 12B). A magnetic field sensor is disposed at the moving sweep measurement point M0. Note that the magnetic field distributions 56 and 57 may be calculated by simulation instead of this measurement. Further, due to the symmetry around the central axis (z axis) 13 of the magnet device 8, the tendency of the magnetic field distributions 56 and 57 in the θ direction is established at an arbitrary azimuth angle φ.

図14より、R=0の場合、すなわちシム17をシムトレイ中心24に置いた場合の磁場分布56は、R=Rの場合の磁場分布57に対し、ピーク位置θにおけるピーク強度が、ピーク位置θにおけるピーク強度より大きく、かつ、半値半幅dθが、半値半幅dθより狭い、鋭いピークのある磁場分布となっている。図14のグラフは、第1の実施形態の図14のグラフに対し、θを90度ずらした(傾けた)ものに相当している。すなわち、第1の実施形態と同様に、サンプリング定理により、磁場分布56、57を正確に知るには、半値半幅dθ、dθ以下の計測点間隔で、磁場分布56、57を計測しなければならない。そして、半値半幅dθ、dθは、ピーク位置θ、θによって、すなわち、シム17をシムトレイ45に置いた位置(R)によって、異なる値を取っている。つまり半値半幅dθ、dθは、ピーク位置θ、θやシム17の位置R=0、Rにおける計測点間隔の最大値を示していることになる。なお、ピーク位置θ、θと、シム17の位置R=0、Rとは、物理現象として一対一に対応するので、ピーク位置θ、θは、シム17の位置を表すために、R値の代用としても用いることができる。 From FIG. 14, when R = 0, that is, when the shim 17 is placed at the shim tray center 24, the magnetic field distribution 56 has a peak intensity at the peak position θ 0 , which is higher than that of the magnetic field distribution 57 when R = R A. The magnetic field distribution has a sharp peak that is larger than the peak intensity at the position θ A and the half-value half-width dθ 0 is narrower than the half-value half-width dθ A. The graph of FIG. 14 corresponds to a graph in which θ is shifted (tilted) by 90 degrees with respect to the graph of FIG. 14 of the first embodiment. That is, similarly to the first embodiment, in order to accurately know the magnetic field distributions 56 and 57 by the sampling theorem, the magnetic field distributions 56 and 57 must be measured at measurement point intervals equal to or less than the half-value half widths dθ 0 and dθ A. I must. The half-value half widths dθ 0 and dθ A take different values depending on the peak positions θ 0 and θ A , that is, the position (R) where the shim 17 is placed on the shim tray 45. That is, the half widths dθ 0 and dθ A indicate the maximum values of the measurement point intervals at the peak positions θ 0 and θ A and the shim 17 positions R = 0 and R A. Since the peak positions θ 0 and θ A and the positions R = 0 and R A of the shim 17 correspond one-to-one as a physical phenomenon, the peak positions θ 0 and θ A represent the position of the shim 17. It can also be used as a substitute for the R value.

図15に、磁場分布のピーク位置θと、そのピーク位置θにおける均一磁場空間3の表面上の磁場分布の半値半幅dθとの関係のシミュレーション結果を示している。さらに、均一磁場空間3の表面上の磁場の計測点M1〜M4の計測点間隔dθa〜dθcを決める磁場分布測定方法の一例を示している。図15のグラフは、ピーク位置θとして0度から90度までを表示しているが、90度から180度までについては、90度(赤道面14)に対して対称な値を取る。そうすると、この図15のグラフも第1の実施形態の図6のグラフを90度分ずらしたものになっている。なお、図15でも、縦軸と横軸のスケールは異なっている。   FIG. 15 shows a simulation result of the relationship between the peak position θ of the magnetic field distribution and the half-value half width dθ of the magnetic field distribution on the surface of the uniform magnetic field space 3 at the peak position θ. Furthermore, an example of a magnetic field distribution measurement method for determining the measurement point intervals dθa to dθc of the measurement points M1 to M4 of the magnetic field on the surface of the uniform magnetic field space 3 is shown. The graph of FIG. 15 displays 0 to 90 degrees as the peak position θ, but the values from 90 degrees to 180 degrees are symmetrical with respect to 90 degrees (equatorial plane 14). Then, the graph of FIG. 15 is also obtained by shifting the graph of FIG. 6 of the first embodiment by 90 degrees. In FIG. 15, the scales of the vertical axis and the horizontal axis are different.

図15によれば、ピーク位置θが90度近傍における半値半幅dθmin(dθa=dθ)に対し、ピーク位置θが前記θの半値半幅dθの方が大きくなっており、さらに、0度近傍の半値半幅dθmaxの方が大きくなっていることがわかる。そして、0度近傍の半値半幅dθmaxは、90度近傍の半値半幅dθminの2倍以上で略3倍になっている。すなわち、ピーク位置θが0度から90度間で、ピーク位置θが大きくなればなる程、半値半幅dθは小さくなる減少関数になっていることがわかる。そして、計測点間隔は、サンプリング定理より、半値半幅dθを最大の計測点間隔として、それ以下に設定されるので、半値半幅dθがピーク位置θによって大きさを変えるということは、計測点間隔もピーク位置θによって大きさを変えることができることになる。そして、ピーク位置θに応じて半値半幅dθの許容範囲で、計測点間隔を大きくすることで、磁場分布の測定精度あるいは内挿演算精度を高精度に維持したまま計測点の数を減らすことができる。つまり、計測点間隔を、図15のグラフのカーブにしたがって導かれる半値半幅dθ以下になるように、ピーク位置θ(計測点に相当)に応じて計測点間隔の大きさを変えることにすれば、最適かつ最少の計測点配置により、高精度に磁場分布が測定できる。 According to FIG. 15, the half-value half-width dθ A with the peak position θ being θ A is larger than the half-value half-width dθmin (dθa = dθ 0 ) when the peak position θ is around 90 degrees, and further, 0 degree It can be seen that the half width at half maximum dθmax in the vicinity is larger. The half-value half-width dθmax near 0 degrees is approximately three times as large as twice or more the half-value half-width dθmin near 90 degrees. That is, it can be seen that the half-value half-width dθ is a decreasing function that decreases as the peak position θ is between 0 and 90 degrees and the peak position θ increases. The measurement point interval is set to be less than or equal to the half-value half-width dθ as the maximum measurement point interval according to the sampling theorem. Therefore, changing the size of the half-value half-width dθ according to the peak position θ The size can be changed by the peak position θ. Then, by increasing the measurement point interval within an allowable range of the half value half width dθ according to the peak position θ, the number of measurement points can be reduced while maintaining the measurement accuracy of the magnetic field distribution or the accuracy of the interpolation calculation with high accuracy. it can. That is, if the size of the measurement point interval is changed according to the peak position θ (corresponding to the measurement point) so that the measurement point interval becomes equal to or less than the half-value half width dθ derived according to the curve of the graph of FIG. The magnetic field distribution can be measured with high accuracy by the optimum and minimum measurement point arrangement.

そして、磁場分布測定方法としての均一磁場空間3の表面上の磁場の計測点M1〜M4の計測点間隔dθa〜dθcの決定方法について説明する。まず、ピーク位置θが90度(θ=90度)の位置に計測点M1を配置する。次に、ピーク位置θが90度(θ=90度)の位置における半値半幅dθa(=dθmin=dθ)を図15グラフから読み取って取得し(あるいは、シミュレーションによって取得してもよい。以下、同様)、この半値半幅dθaを、計測点M1と計測点M2の間の計測点間隔(dθa)とする。具体的には、計測点M1から計測点間隔(dθa)離れた位置に、計測点M2を配置する。 A method for determining the measurement point intervals dθa to dθc of the magnetic field measurement points M1 to M4 on the surface of the uniform magnetic field space 3 as a magnetic field distribution measurement method will be described. First, the measurement point M1 is arranged at a position where the peak position θ is 90 degrees (θ = 90 degrees). Next, the half-value half width dθa (= dθmin = dθ 0 ) at the position where the peak position θ is 90 degrees (θ = 90 degrees) is obtained by reading from the graph of FIG. 15 (or may be obtained by simulation. Similarly, the half value half width dθa is defined as a measurement point interval (dθa) between the measurement point M1 and the measurement point M2. Specifically, the measurement point M2 is arranged at a position away from the measurement point M1 by the measurement point interval (dθa).

次に、ピーク位置θが計測点M2の位置(θ=90−dθa)における半値半幅dθbを図15グラフから読み取って取得し、この半値半幅dθbを、計測点M2と計測点M3の間の計測点間隔(dθb)とする。半値半幅dθbは、半値半幅dθaとは読み取った際のピーク位置θが異なる(90−dθa≠90)ので、異なった値になり(dθb≠dθa)、半値半幅dθaより大きくなる(dθb>dθa)。具体的には、計測点M2から計測点間隔(dθb)離れた位置(θ=90−(dθa+dθb))に、計測点M3を配置する。   Next, the half-value half-width dθb at the position where the peak position θ is the measurement point M2 (θ = 90−dθa) is obtained by reading from the graph of FIG. 15, and this half-value half-width dθb is measured between the measurement point M2 and the measurement point M3. The point interval (dθb) is used. The half-value half-width dθb is different from the half-value half-width dθa because the peak position θ at the time of reading is different (90−dθa ≠ 90). . Specifically, the measurement point M3 is arranged at a position (θ = 90− (dθa + dθb)) away from the measurement point M2 by the measurement point interval (dθb).

同様に、ピーク位置θが計測点M3の位置(θ=90−(dθa+dθb))における半値半幅dθcを図15グラフから読み取って取得し、この半値半幅dθcを、計測点M3と計測点M4の間の計測点間隔(dθc)とする。半値半幅dθcは、半値半幅dθa、dθbとは読み取った際のピーク位置θが異なる(90−(dθa+dθb)≠90、90−(dθa+dθb)≠90−dθa)ので、異なった値になり(dθc≠dθa、dθc≠dθb)、半値半幅dθa、dθbより大きくなる(dθc>dθb>dθa)。具体的には、計測点M3から計測点間隔(dθc)離れた位置(θ=90−(dθa+dθb+dθc))に、計測点M4を配置する。そして、0度近傍の半値半幅dθmaxは、90度近傍の半値半幅dθminの2倍以上で略3倍になっていることから、計測点間隔もその最小値と最大値とで、最大値を最小値の2倍以上で3倍程度に設定できる。   Similarly, the half-value half width dθc at the peak position θ at the measurement point M3 (θ = 90− (dθa + dθb)) is obtained by reading from the graph of FIG. 15, and this half-value half-width dθc is obtained between the measurement point M3 and the measurement point M4. The measurement point interval (dθc). The half-value half-width dθc is different from the half-value half-widths dθa and dθb because the peak positions θ when read are different (90− (dθa + dθb) ≠ 90, 90− (dθa + dθb) ≠ 90−dθa). dθa, dθc ≠ dθb), and half width at half maximum dθa, dθb (dθc> dθb> dθa). Specifically, the measurement point M4 is arranged at a position (θ = 90− (dθa + dθb + dθc)) away from the measurement point M3 by the measurement point interval (dθc). Since the half-value half-width dθmax near 0 degrees is twice or more than the half-value half-width dθmin near 90 degrees and is almost tripled, the measurement point interval is the minimum value and the maximum value, and the maximum value is minimized. It can be set to about 3 times more than twice the value.

図16Aに、均一磁場空間3の表面上に計測点M1〜M4を配置した一例を、二次元的に示す。計測点M1〜M4の配置の作業は、まず、計測点M1〜M4の位置が90度(θ=90度)から0度(θ=0度)の範囲で繰り返される。そして、ピーク位置θが90〜180度の範囲は、磁石装置8の赤道面14(図12B参照)に対する対称性から、図16Aに示すように設定できる。すなわち、ピーク位置θが90度(θ=90度)の位置には、既に計測点M1が配置されているので、更なる計測点M1の配置は省略して、次に、計測点M1から計測点間隔(dθa)離れた位置(θ=90+dθa)に、計測点M2を配置する。次に、計測点M2から計測点間隔(dθb)離れた位置(θ=90+dθa+dθb)に、計測点M3を配置する。最後に、計測点M3から計測点間隔(dθc)離れた位置(θ=90+dθa+dθb+dθc)に、計測点M4を配置する。   FIG. 16A shows two-dimensionally an example in which the measurement points M1 to M4 are arranged on the surface of the uniform magnetic field space 3. The operation of arranging the measurement points M1 to M4 is first repeated in the range of the positions of the measurement points M1 to M4 from 90 degrees (θ = 90 degrees) to 0 degrees (θ = 0 degrees). The range where the peak position θ is 90 to 180 degrees can be set as shown in FIG. 16A from the symmetry with respect to the equator plane 14 (see FIG. 12B) of the magnet device 8. That is, since the measurement point M1 is already arranged at the position where the peak position θ is 90 degrees (θ = 90 degrees), the arrangement of the further measurement point M1 is omitted, and then the measurement is performed from the measurement point M1. The measurement point M2 is arranged at a position (θ = 90 + dθa) that is separated from the point interval (dθa). Next, the measurement point M3 is arranged at a position (θ = 90 + dθa + dθb) away from the measurement point M2 by the measurement point interval (dθb). Finally, the measurement point M4 is arranged at a position (θ = 90 + dθa + dθb + dθc) that is separated from the measurement point M3 by the measurement point interval (dθc).

図16Bに、均一磁場空間3の表面上に計測点M1〜M4を配置した一例を、三次元的に示す。z軸まわりの計測点間隔dφは、前記で述べてきたサンプリング定理等の原理から、ピーク位置θが90度(θ=90度)での半値半幅dθ90(=dθmin、図15参照)に等しくする(dφ=dθ90)。これによれば、隣り合う計測点M4と計測点M4との計測点間隔より、隣り合う計測点M3と計測点M3との計測点間隔を長くすることができる。同様に、隣り合う計測点M3と計測点M3との計測点間隔より、隣り合う計測点M2と計測点M2との計測点間隔を長くすることができる。また、隣り合う計測点M2と計測点M2との計測点間隔より、隣り合う計測点M1と計測点M1との計測点間隔を長くすることができる。そして、計測点M1〜M4を最適に配置でき、計測点M1〜M4の個数を最少にできる。 FIG. 16B three-dimensionally shows an example in which the measurement points M1 to M4 are arranged on the surface of the uniform magnetic field space 3. The measurement point interval dφ around the z-axis is equal to the half-value half width dθ 90 (= dθmin, see FIG. 15) when the peak position θ is 90 degrees (θ = 90 degrees) based on the principle such as the sampling theorem described above. (Dφ = dθ 90 ). According to this, the measurement point interval between the adjacent measurement points M3 and M3 can be made longer than the measurement point interval between the adjacent measurement points M4 and M4. Similarly, the measurement point interval between the adjacent measurement points M2 and M2 can be made longer than the measurement point interval between the adjacent measurement points M3 and M3. Moreover, the measurement point interval between the adjacent measurement points M1 and M1 can be made longer than the measurement point interval between the adjacent measurement points M2 and M2. The measurement points M1 to M4 can be optimally arranged, and the number of measurement points M1 to M4 can be minimized.

図17に、磁場分布測定時に本発明の第4の実施形態に係る磁場分布測定用治具32を、磁石装置8に設置した様子を示す。第4の実施形態でも第1の実施形態と同様の磁場分布測定用治具32を用いることができるが、第4の実施形態では、第3の実施形態と同様に、z軸が水平方向を向いているので、座29を水平軸であるz軸の回りに回転可能なように変更している。   FIG. 17 shows a state in which the magnetic field distribution measurement jig 32 according to the fourth embodiment of the present invention is installed in the magnet device 8 during the magnetic field distribution measurement. In the fourth embodiment, the same magnetic field distribution measurement jig 32 as in the first embodiment can be used. However, in the fourth embodiment, the z-axis is in the horizontal direction as in the third embodiment. Since it faces, the seat 29 is changed so as to be rotatable around the z axis that is the horizontal axis.

また、第4の実施形態でも、ホルダ28には、均一磁場空間3の表面の円弧と同じ大きさの円弧に沿った前記計測点M1〜M4のそれぞれの位置に穴31が設けられているが、計測点M1〜M4の計測点間隔は、第4の実施形態の磁場分布測定方法で説明した前記計測点間隔dθa〜dθcと同じになるように設けられている。このため、ホルダ28の隣り合う穴31の間隔は、z軸(θ=0度および180度)近傍よりも、z軸から離れた赤道面14(θ=90度)近傍の方が狭くなるという外見的特徴を持っている。このような磁場分布測定用治具32を使うことで、位置θに依存して変動する前記計測点間隔dθa〜dθcで磁場分布を測定することが可能になる。   Also in the fourth embodiment, the holder 28 is provided with the holes 31 at the positions of the measurement points M1 to M4 along an arc having the same size as the arc on the surface of the uniform magnetic field space 3. The measurement point intervals of the measurement points M1 to M4 are set to be the same as the measurement point intervals dθa to dθc described in the magnetic field distribution measurement method of the fourth embodiment. For this reason, the interval between the adjacent holes 31 of the holder 28 is narrower in the vicinity of the equator plane 14 (θ = 90 degrees) away from the z axis than in the vicinity of the z axis (θ = 0 degrees and 180 degrees). Has appearance characteristics. By using such a magnetic field distribution measurement jig 32, it is possible to measure the magnetic field distribution at the measurement point intervals dθa to dθc that vary depending on the position θ.

1、2 磁極
3 (均一)磁場空間(撮像領域)
4 磁場空間における磁場の向き
8 磁石装置
9 磁気共鳴撮像装置
12 磁石中心(磁石対称点)
13 中心軸
14 赤道面(磁石対称面)
15、16 磁場均一度調整装置(シムトレイ)
17 磁性材(シム)
24、25 シムトレイ中心(R=0)
28 ホルダ
29 座
30 磁場センサ
31 ホルダに設けられた穴
32 磁場分布測定用治具
33 半月板状のホルダ
44 液体ヘリウム
45 磁場均一度調整装置(シムトレイ)
53 シムトレイ中心
54 シムトレイ端部
1, 2 Magnetic pole 3 (Uniform) Magnetic field space (imaging area)
4 Direction of magnetic field in magnetic field space 8 Magnet device 9 Magnetic resonance imaging device 12 Magnet center (magnet symmetry point)
13 Central axis 14 Equatorial plane (magnet symmetry plane)
15, 16 Magnetic field uniformity adjustment device (Shim tray)
17 Magnetic material (Shim)
24, 25 Shim tray center (R = 0)
28 Holder 29 Seat 30 Magnetic field sensor 31 Hole provided in holder 32 Magnetic field distribution measurement jig 33 Meniscus holder 44 Liquid helium 45 Magnetic field uniformity adjusting device (shim tray)
53 Center of shim tray 54 End of shim tray

Claims (11)

磁場空間に磁場を発生させる磁場発生源と、複数の磁性材を不均一に配置し前記磁場空間内の磁場の均一度を向上させる磁場均一度調整装置とを備えた磁石装置での前記磁場空間の磁場分布測定方法において、
前記磁性材の前記磁場均一度調整装置に配置する位置を変えながら、前記磁性材が前記磁場空間の表面に作る磁場分布を取得し、
前記磁場分布のピーク位置に対する前記磁場分布の半値半幅の関数を設定し、
前記磁場空間の表面上に配置し前記磁場を計測する複数の計測点の間隔を、前記計測点を置いた位置に一致する前記ピーク位置から前記関数によって導かれる前記半値半幅以下になるように、前記計測点の位置によって前記間隔の大きさを変えることを特徴とする磁場分布測定方法。
The magnetic field space in a magnet device comprising: a magnetic field generation source that generates a magnetic field in the magnetic field space; and a magnetic field uniformity adjusting device that non-uniformly arranges a plurality of magnetic materials to improve the uniformity of the magnetic field in the magnetic field space. In the magnetic field distribution measurement method of
While changing the position of the magnetic material arranged in the magnetic field uniformity adjusting device, obtain the magnetic field distribution that the magnetic material creates on the surface of the magnetic field space,
Set a half-width function of the magnetic field distribution with respect to the peak position of the magnetic field distribution,
The interval between a plurality of measurement points that are arranged on the surface of the magnetic field space and measure the magnetic field is equal to or less than the half-value half width derived by the function from the peak position that coincides with the position where the measurement point is placed. A magnetic field distribution measuring method, wherein the distance is changed according to the position of the measurement point.
前記磁場空間に発生している前記磁場の向きと、前記磁場空間の中心から複数の前記計測点へのそれぞれの方向との成す複数の角度は、互いに等差の関係になっていないことを特徴とする請求項1に記載の磁場分布測定方法。   A plurality of angles formed by the direction of the magnetic field generated in the magnetic field space and the respective directions from the center of the magnetic field space to the plurality of measurement points are not equal to each other. The magnetic field distribution measurement method according to claim 1. 前記磁場均一度調整装置は、前記磁場空間を挟むように、前記磁場の向きに対向して配置され、複数の前記磁性材を支持する一対の円板を有し、
前記角度が略0度および略180度における前記間隔よりも、前記角度が略90度における前記間隔の方が広いことを特徴とする請求項2に記載の磁場分布測定方法。
The magnetic field homogeneity adjusting device has a pair of disks arranged to face the direction of the magnetic field so as to sandwich the magnetic field space, and supports a plurality of the magnetic materials,
3. The magnetic field distribution measurement method according to claim 2, wherein the interval when the angle is approximately 90 degrees is wider than the interval when the angle is approximately 0 degrees and approximately 180 degrees.
前記角度が略90度における前記間隔は、前記角度が略0度および略180度における前記間隔の2倍以上であることを特徴とする請求項3に記載の磁場分布測定方法。   4. The magnetic field distribution measurement method according to claim 3, wherein the interval when the angle is approximately 90 degrees is at least twice the interval when the angle is approximately 0 degrees and approximately 180 degrees. 前記磁場均一度調整装置は、複数の前記磁性材を支持し、中心軸が前記磁場の向きに平行であり、前記磁場空間を囲む円筒を有し、
前記角度が略0度および略180度における前記間隔の方が、前記角度が略90度における前記間隔よりも広いことを特徴とする請求項2に記載の磁場分布測定方法。
The magnetic field uniformity adjusting device has a cylinder that supports the plurality of magnetic materials, a central axis is parallel to the direction of the magnetic field, and surrounds the magnetic field space,
The magnetic field distribution measurement method according to claim 2, wherein the interval at the angle of approximately 0 degrees and approximately 180 degrees is wider than the interval at the angle of approximately 90 degrees.
前記角度が略0度および略180度における前記間隔は、前記角度が略90度における前記間隔の2倍以上であることを特徴とする請求項5に記載の磁場分布測定方法。   6. The magnetic field distribution measurement method according to claim 5, wherein the interval when the angle is approximately 0 degrees and approximately 180 degrees is at least twice the interval when the angle is approximately 90 degrees. 請求項1乃至請求項6のいずれか1項に記載の磁場分布測定方法により配置された前記計測点で前記磁場発生源で発生させた磁場を計測した計測結果に基づいて、複数の磁性材を配置した前記磁場均一度調整装置によって、前記磁場空間内の磁場の均一度を向上させていることを特徴とする磁石装置。   A plurality of magnetic materials are formed based on a measurement result obtained by measuring a magnetic field generated by the magnetic field generation source at the measurement point arranged by the magnetic field distribution measurement method according to any one of claims 1 to 6. The magnet apparatus characterized by improving the uniformity of the magnetic field in the magnetic field space by the arranged magnetic field uniformity adjusting device. 磁場空間に磁場を発生させる磁場発生源と、複数の磁性材を不均一に配置し前記磁場空間内の磁場の均一度を向上させる磁場均一度調整装置とを備えた磁石装置での前記磁場空間の磁場分布測定用治具において、
前記磁性材の前記磁場均一度調整装置に配置する位置を変えたときに、前記磁性材が前記磁場空間の表面に作る磁場分布を用いて設定した、前記磁場分布のピーク位置に対する前記磁場分布の半値半幅の関数を用いて、前記磁場空間の表面上に配置し前記磁場を計測する複数の計測点の間隔を、前記計測点を置いた位置に一致する前記ピーク位置から前記関数によって導かれる前記半値半幅以下になるように、前記計測点の位置によって前記間隔の大きさを変えている前記計測点に、磁場センサを固定するホルダと、
前記ホルダを、前記磁場空間における磁場の向きに平行な回転軸のまわりに回転させることが出来るように構成された座とを有することを特徴とする磁場分布測定用治具。
The magnetic field space in a magnet device comprising: a magnetic field generation source that generates a magnetic field in the magnetic field space; and a magnetic field uniformity adjusting device that non-uniformly arranges a plurality of magnetic materials to improve the uniformity of the magnetic field in the magnetic field space. In the magnetic field distribution measurement jig of
When the position of the magnetic material to be arranged in the magnetic field uniformity adjusting device is changed, the magnetic field distribution with respect to the peak position of the magnetic field distribution set by using the magnetic field distribution that the magnetic material creates on the surface of the magnetic field space. Using a half-value half-width function, the interval between a plurality of measurement points arranged on the surface of the magnetic field space and measuring the magnetic field is derived by the function from the peak position that coincides with the position where the measurement point is placed. A holder for fixing a magnetic field sensor to the measurement point where the size of the interval is changed according to the position of the measurement point so as to be equal to or less than a half value half width;
A jig for measuring a magnetic field distribution, comprising: a seat configured to be able to rotate the holder around a rotation axis parallel to a direction of a magnetic field in the magnetic field space.
前記ホルダには、複数の前記計測点それぞれに、前記磁場センサが配置してあることを特徴とする請求項8に記載の磁場分布測定用治具。   9. The magnetic field distribution measuring jig according to claim 8, wherein the magnetic field sensor is arranged at each of the plurality of measurement points on the holder. 請求項8又は請求項9に記載の磁場分布測定用治具により設定された前記計測点で前記磁場発生源で発生させた磁場を計測した計測結果に基づいて、複数の磁性材を配置した前記磁場均一度調整装置によって、前記磁場空間内の磁場の均一度を向上させていることを特徴とする磁石装置。   A plurality of magnetic materials are arranged based on a measurement result obtained by measuring a magnetic field generated by the magnetic field generation source at the measurement point set by the magnetic field distribution measurement jig according to claim 8 or 9. A magnet apparatus characterized in that the homogeneity of a magnetic field in the magnetic field space is improved by a magnetic field uniformity adjusting device. 請求項7又は請求項10に記載の磁石装置を搭載していることを特徴とする磁気共鳴撮像装置。   A magnetic resonance imaging apparatus equipped with the magnet device according to claim 7 or 10.
JP2009214099A 2009-09-16 2009-09-16 Magnetic field distribution measuring method, magnetic field distribution measuring jig, magnet apparatus, and magnetic resonance imaging apparatus Active JP5291583B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2009214099A JP5291583B2 (en) 2009-09-16 2009-09-16 Magnetic field distribution measuring method, magnetic field distribution measuring jig, magnet apparatus, and magnetic resonance imaging apparatus

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2009214099A JP5291583B2 (en) 2009-09-16 2009-09-16 Magnetic field distribution measuring method, magnetic field distribution measuring jig, magnet apparatus, and magnetic resonance imaging apparatus

Publications (2)

Publication Number Publication Date
JP2011062274A JP2011062274A (en) 2011-03-31
JP5291583B2 true JP5291583B2 (en) 2013-09-18

Family

ID=43949187

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2009214099A Active JP5291583B2 (en) 2009-09-16 2009-09-16 Magnetic field distribution measuring method, magnetic field distribution measuring jig, magnet apparatus, and magnetic resonance imaging apparatus

Country Status (1)

Country Link
JP (1) JP5291583B2 (en)

Families Citing this family (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP5620353B2 (en) * 2011-09-13 2014-11-05 株式会社日立メディコ Magnetic field adjustment method
JP6368849B2 (en) * 2015-02-20 2018-08-01 株式会社日立製作所 Magnetic field adjustment support system and magnetic field adjustment method
KR101925630B1 (en) * 2016-12-27 2019-03-07 벡터필드 코리아(주) Method of arrangement of measurement points for magnetic field mapping and method of magnetic field mapping using the same

Family Cites Families (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
GB8615854D0 (en) * 1986-06-28 1986-08-06 Turner R Magnetic field coils
JPH04141145A (en) * 1990-09-30 1992-05-14 Shimadzu Corp Magnetic field corrective device for mr apparatus
JPH05142316A (en) * 1991-11-20 1993-06-08 Fuji Electric Co Ltd Scanning device of homogeneous magnetic field sensor

Also Published As

Publication number Publication date
JP2011062274A (en) 2011-03-31

Similar Documents

Publication Publication Date Title
JP5818267B2 (en) Method and apparatus for producing a uniform magnetic field
JP6719902B2 (en) Phantom-based MR magnetic field mapping of polarized magnetic fields
US20170248665A1 (en) Method and Device for Position Determination in a Magnetic Resonance Tomography Unit
EP3315983B1 (en) Calibration tool for calibrating a magnetic sensor
US5173661A (en) Nuclear magnetic resonance spectrometer
JP2015500127A (en) Active resistive shimming for MRI equipment
US10261148B2 (en) Magnetic resonance imaging apparatus and manufacturing method thereof
US11333728B2 (en) Pre-polarisation magnet arrangement
US20210116525A1 (en) Hybrid mpi and mri/ct imaging apparatus and method
US10156619B2 (en) Magnetic resonance imaging system, static magnetic field homogeneity adjusting system, magnetic field homogeneity adjusting method, and magnetic field homogeneity adjusting program
JP5291583B2 (en) Magnetic field distribution measuring method, magnetic field distribution measuring jig, magnet apparatus, and magnetic resonance imaging apparatus
JP2016191606A (en) Magic angle precision adjustment coil for solid-state nmr device, and magic angle adjustment method using the same
Wenzel et al. B0-shimming methodology for affordable and compact low-field magnetic resonance imaging magnets
US9995805B2 (en) Magnetic field homogeneity adjustment method, magnet device, and magnetic resonance imaging apparatus
US11204404B2 (en) Measurement magnet arrangement
JP6392141B2 (en) Magnetic field uniformity adjustment method, magnetic field uniformity adjustment program, and magnetic field uniformity adjustment apparatus
CN108802644B (en) Shimming method and device for gradient coil
EP2677333B1 (en) A method of correcting inhomogeneity of the static magnetic field of a MRI machine
Tamada et al. Design and evaluation of a planar single-channel shim coil for a permanent magnetic resonance imaging magnet
GB2348960A (en) Iterative method for determining shim positioning in NMR apparatus
EP3652554B1 (en) A system for generating a magnetic field
JP2014004169A (en) Magnetic field adjustment method, magnetic field generator, magnetic resonance imaging device and magnetic field adjuster
JP5149004B2 (en) Magnetic resonance imaging system
JP5548895B2 (en) Magnetic field correction apparatus and magnetic field correction method
Shiravi et al. Static Coil Design Considerations for the Magnetic Resonance Imaging

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20110803

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20130521

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20130607

R150 Certificate of patent or registration of utility model

Ref document number: 5291583

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

S111 Request for change of ownership or part of ownership

Free format text: JAPANESE INTERMEDIATE CODE: R313111

S533 Written request for registration of change of name

Free format text: JAPANESE INTERMEDIATE CODE: R313533

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

S111 Request for change of ownership or part of ownership

Free format text: JAPANESE INTERMEDIATE CODE: R313111

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

S111 Request for change of ownership or part of ownership

Free format text: JAPANESE INTERMEDIATE CODE: R313111

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350