JP2000292111A - Apparatus and method for measuring attitude and position - Google Patents

Apparatus and method for measuring attitude and position

Info

Publication number
JP2000292111A
JP2000292111A JP11094720A JP9472099A JP2000292111A JP 2000292111 A JP2000292111 A JP 2000292111A JP 11094720 A JP11094720 A JP 11094720A JP 9472099 A JP9472099 A JP 9472099A JP 2000292111 A JP2000292111 A JP 2000292111A
Authority
JP
Japan
Prior art keywords
magnetic field
sensor
coil
posture
axial direction
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP11094720A
Other languages
Japanese (ja)
Other versions
JP4291454B2 (en
Inventor
Ichiro Sasada
一郎 笹田
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Japan Science and Technology Agency
Original Assignee
Japan Science and Technology Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Japan Science and Technology Corp filed Critical Japan Science and Technology Corp
Priority to JP09472099A priority Critical patent/JP4291454B2/en
Publication of JP2000292111A publication Critical patent/JP2000292111A/en
Application granted granted Critical
Publication of JP4291454B2 publication Critical patent/JP4291454B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Abstract

PROBLEM TO BE SOLVED: To enable fast detection by simultaneously detecting attitude and position to simplify data processing. SOLUTION: A sensor 1 as 3-axis magnetic field sensor is arranged in a measuring area within an attitude/position measuring device 50. Two kinds of uniform magnetic fields h and h parallel in direction with the Z and X axes are generated by two of first and second coils 10 and 20 separately in the measuring area. With the uniform magnetic fields, a magnetic field measured by a local coordinate system (U, V, W) of the sensor 1 is converted to a global coordinate system (X, Y, Z) to measure an attitude. Currents opposite in direction are made to flow through a third coil 30 as a pair of coils wound at both ends thereof to generate a linear gradient magnetic field to measure a position.

Description

【発明の詳細な説明】DETAILED DESCRIPTION OF THE INVENTION

【0001】[0001]

【発明の属する技術分野】本発明は、姿勢位置測定装置
及び測定方法に係り、特に、一様磁界と線形勾配磁界を
用いる3次元の位置及び姿勢を高速に測定できるように
した姿勢位置測定装置及び測定方法に関する。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a posture position measuring apparatus and a measuring method, and more particularly to a posture position measuring apparatus capable of measuring a three-dimensional position and posture using a uniform magnetic field and a linear gradient magnetic field at a high speed. And a measuring method.

【0002】[0002]

【従来の技術】3次元空間における物体の座標および姿
勢の非接触計測は、人体運動のキャプチャ等のマンマシ
ンインターフェースの基礎となる技術であり、重要性が
増してきている。物体の姿勢と位置を同時検出する技術
には、複数のカメラで撮りこまれた画像よりデータ処理
を行う光学式と、物体に取り付けた磁気センサによりダ
イポール磁界発生装置からの磁界を測定する磁気式があ
り、モーションキャプチャ等に利用されている。
2. Description of the Related Art Non-contact measurement of the coordinates and posture of an object in a three-dimensional space is a technology that is the basis of a man-machine interface such as capturing human body motion, and is becoming increasingly important. The technology for simultaneous detection of the posture and position of an object includes an optical system that processes data from images captured by multiple cameras and a magnetic system that measures the magnetic field from a dipole magnetic field generator using a magnetic sensor attached to the object And is used for motion capture and the like.

【0003】光学式は、人体の測定すべき各部にマーカ
ーを取り付け、これを複数のカメラで撮影し、得られた
データから3次元位置を計測する。磁気式を用いて計測
する方法はいくつかあるが、その多くは、ダイポール磁
界を用い、位置及び姿勢の検出に複雑な計算を要するも
のであった(F.H.Raab, E.B.Blood, T.O.Steiner, H.R.J
ones: Magnetic Position Tracker.IEEE.Trans.,Vol.AE
S-15,NO.5,pp.709-717(1979)、及び、阿刀田、中村、富
澤、横山、今田:計測自動制御学会論文集、Vol.34, N
O.5, pp.445-453(1998)等参照)。
[0003] In the optical system, a marker is attached to each part of the human body to be measured, this is photographed by a plurality of cameras, and a three-dimensional position is measured from the obtained data. There are several methods of measurement using magnetic methods, but most of them require complex calculations to detect position and orientation using dipole magnetic fields (FHRaab, EBBlood, TOSteiner, HRJ
ones: Magnetic Position Tracker.IEEE.Trans., Vol.AE
S-15, NO.5, pp.709-717 (1979), and Atoda, Nakamura, Tomizawa, Yokoyama, Imada: Transactions of the Society of Instrument and Control Engineers, Vol. 34, N
O.5, pp.445-453 (1998), etc.).

【0004】[0004]

【発明が解決しようとする課題】従来のような光学式の
測定方法では、標点が重なったり陰に隠れた場合、正確
なデータを得ることが困難である。一方、磁気式では、
光学式のようにセンサの隠蔽によって困ることが無いも
のの、距離算出のための複雑な非線形方程式の計算を必
要とするため、データ処理に時間がかかるという問題が
あった。なお、光学式の測定の場合も、同様に、データ
処理に時間がかかっていた。
In the conventional optical measuring method, it is difficult to obtain accurate data when the reference points overlap or are hidden behind. On the other hand, in the magnetic type,
Although there is no problem with the concealment of the sensor as in the case of the optical system, there is a problem that it takes time to perform data processing because a complicated nonlinear equation for calculating the distance is required. In the case of optical measurement, similarly, data processing took time.

【0005】本発明は、以上の点を鑑み、磁気式におい
て一様磁界と線形勾配磁界とを用い、姿勢検出用に一様
磁界を、位置検出用に線形勾配磁界を利用することで、
磁界の大きさに関する簡単な一次方程式により姿勢と位
置とを検出するようにして、データ処理を簡素化し、高
速検出を可能とすることを目的とする。
In view of the above, the present invention uses a uniform magnetic field and a linear gradient magnetic field in a magnetic system, and uses a uniform magnetic field for posture detection and a linear gradient magnetic field for position detection.
An object of the present invention is to detect attitude and position using a simple linear equation relating to the magnitude of a magnetic field, thereby simplifying data processing and enabling high-speed detection.

【0006】また、本発明は、ダイポール磁界を用いる
方法に比べ、計算アルゴリズムが極めて容易となり、モ
ーションキャプチャ等による3次元コンピュータグラフ
ィックスの製作時間の短縮化を図るとともに、スポーツ
医学、娯楽用ソフト製作などへの利用化を目的とする。
Further, the present invention makes it possible to greatly simplify the calculation algorithm as compared with the method using a dipole magnetic field, to shorten the time for producing three-dimensional computer graphics by motion capture and the like, and to produce sports medicine and entertainment software. It is intended to be used for such purposes.

【0007】[0007]

【課題を解決するための手段】本発明の第1の解決手段
によると、センサの姿勢及び位置を測定する姿勢位置測
定装置であって、第1の軸方向に一様磁界を発生する第
1のコイルと、第1の軸方向と直交する第2の軸方向に
一様磁界を発生する第2のコイルと、直交する3軸方向
に線形勾配磁界を発生する第3のコイルとを備え、前記
第1及び第2のコイルで発生された磁界によりセンサの
姿勢を測定し、前記第3のコイルで発生された磁界によ
りセンサの位置を測定する姿勢位置測定装置を提供す
る。
According to a first aspect of the present invention, there is provided an attitude and position measuring apparatus for measuring an attitude and a position of a sensor, the first and the second means generating a uniform magnetic field in a first axial direction. , A second coil that generates a uniform magnetic field in a second axial direction orthogonal to the first axial direction, and a third coil that generates a linear gradient magnetic field in three orthogonal axial directions, Provided is a posture position measuring device that measures a posture of a sensor by a magnetic field generated by the first and second coils and measures a position of the sensor by a magnetic field generated by the third coil.

【0008】また、本発明の第2の解決手段によると、
磁界センサの姿勢及び位置を測定する姿勢位置測定方法
であって、第1の軸方向と、第1の軸方向に直交する第
2の軸方向とに、それぞれ一様磁界を発生し、発生され
た各々の一様磁界により磁界センサの姿勢を測定し、直
交する3軸方向に線形勾配磁界を発生し、発生された線
形勾配磁界により磁界センサの位置を測定するようにし
た姿勢位置測定方法を提供する。
According to a second solution of the present invention,
A posture and position measuring method for measuring a posture and a position of a magnetic field sensor, wherein a uniform magnetic field is generated in a first axial direction and a second axial direction orthogonal to the first axial direction. The method of measuring the attitude of the magnetic field sensor by each uniform magnetic field, generating a linear gradient magnetic field in three orthogonal axes, and measuring the position of the magnetic field sensor by the generated linear gradient magnetic field. provide.

【0009】[0009]

【発明の実施の形態】図1に、座標系及び一様磁界の説
明図を示す。図1(A)はグローバル座標系を、図1
(B)はローカル座標系を図示している。
DESCRIPTION OF THE PREFERRED EMBODIMENTS FIG. 1 is an explanatory diagram of a coordinate system and a uniform magnetic field. FIG. 1A shows a global coordinate system, and FIG.
(B) illustrates a local coordinate system.

【0010】図1(A)の座標系では、グローバル座標
系を(X,Y,Z)座標系とし、図1(B)では、センサ
1自身のローカル座標系を(U,V,W)座標系と定め
た。図1(B)は、計測領域内の任意の場所に3軸磁界
センサであるセンサ1を配置し、その感度軸を表す局所
座標系であるローカル座標系(U,V,W)を表してい
る。
In the coordinate system of FIG. 1A, the global coordinate system is an (X, Y, Z) coordinate system. In FIG. 1B, the local coordinate system of the sensor 1 itself is (U, V, W). Coordinate system is defined. FIG. 1B shows a local coordinate system (U, V, W), which is a local coordinate system representing a sensitivity axis, in which a sensor 1 that is a three-axis magnetic field sensor is arranged at an arbitrary position in a measurement area. I have.

【0011】最初に、姿勢測定について説明する。本発
明では、センサ1の姿勢計測のためにX軸とZ軸にそれ
ぞれ平行な一様磁界h、hを利用する。この一様磁
界h 、hは、ヘルムホルツコイル形のコイル等によ
って発生させることができる。
First, the attitude measurement will be described. Departure
In the light, the X-axis and Z-axis
Parallel uniform magnetic fields hX, HZUse This uniform magnet
World X, HZIs a Helmholtz coil type coil, etc.
Can be generated.

【0012】まず、Z軸に平行な一様磁界hを発生さ
せる。つぎに、このときの計測領域内の任意の位置に配
置されたセンサ1により、センサ1の位置でのローカル
座標系における磁界S=(huz,hvz,hwz)を
計測する。これから、U,V,Wの各軸に付随する基底ベ
クトルのZ成分(auz,avz,awz)を次式によっ
て求めることができる。同様にしてX軸に平行な一様磁
界hを発生させ、同様の計算によって、U,V,Wの各
軸に付随する基底ベクトルのX成分(aux,avx,a
wx)を次式によって求める。
[0012] First, to generate a parallel uniform magnetic field h Z in the Z-axis. Then, the sensor 1 located at any position of the measurement region of this time, the magnetic field S Z = in the local coordinate system at the location of the sensor 1 (h uz, h vz, h wz) measured. From this, the Z component (a uz , a vz , a wz ) of the basis vector associated with each of the U, V, and W axes can be obtained by the following equation. Similarly to generate a uniform magnetic field h X parallel to the X axis, like the calculation, U, V, X component of the basis vectors associated with each axis of the W (a ux, a vx, a
wx ) is determined by the following equation.

【0013】[0013]

【数1】 (Equation 1)

【0014】また、センサ1の姿勢を表す行列Aは、次
式の様に定まる。
A matrix A representing the attitude of the sensor 1 is determined as follows.

【0015】[0015]

【数2】 (Equation 2)

【0016】この姿勢行列Aの行列式|A|=1で、各
列ベクトル式(aux,avx,a )、(auz,a
vz,awz)及び求めるべき(auy,avy,
wy)は、大きさ1で、互いに直交する性質を持つ。
よって、以下のようなベクトルの外積の式(3)によっ
て、基底ベクトルの直交関係から、実測により(1)及
び(2)式で求めたX成分及びZ成分を用いて、Y成分
(auy,avy,awy)を求めることができる。
When the determinant | A | = 1 of the attitude matrix A, each column vector equation (a ux , a vx , a w x ), (a uz , a
vz , a wz ) and to be determined (a ui , a vy ,
a wy ) have a size of 1 and have properties orthogonal to each other.
Therefore, the Y component (a uuy ) is obtained from the orthogonal relationship between the base vectors by using the X component and the Z component obtained by the formulas (1) and (2) by the actual measurement according to the following equation (3) of the cross product of the vectors. , a vy , a wy ).

【0017】[0017]

【数3】 (Equation 3)

【0018】この姿勢行列Aを用いることにより、式
(4)のように、ローカル座標系である(U,V,W)座
標系で測定した磁界を、グローバル座標系である(X,
Y,Z)座標系の成分に変換することができる。
By using the attitude matrix A, the magnetic field measured in the local coordinate system (U, V, W) as shown in equation (4) can be converted into the global coordinate system (X,
(Y, Z) coordinate system.

【0019】[0019]

【数4】 (Equation 4)

【0020】つぎに、位置測定について説明する。セン
サ1の位置決定には、大域的な線形勾配磁界を用いる。
すなわち、位置についてのX成分はX軸方向に、Y成分
はY軸方向に、Z成分はZ軸方向にその強度が直線的に
変化するような磁界を用いる。
Next, the position measurement will be described. A global linear gradient magnetic field is used to determine the position of the sensor 1.
That is, a magnetic field whose intensity linearly changes in the X-axis direction, the Y-component in the Y-axis direction, and the Z-component in the Z-axis direction is used for the position.

【0021】図2に、X方向に勾配を持つ線形勾配磁界
ghの分布図を示す。この分布は、Y方向及びZ方向
にそれぞれ勾配を持つ線形勾配磁界gh、ghにつ
いても同様である。このような線形勾配磁界は、直線上
にある同値逆極性の一対の磁気ダイポールによってその
中間領域・内部領域に生成することができる。このよう
にして得られる線形勾配磁界の対称点を改めて、グロー
バル座標系(X,Y,Z)の原点とすれば、線形勾配磁界
ghと位置Xの関係はgh=kXの関係にあり、線
形勾配磁界ghが求まれば、センサ1の位置のX成分
を容易に算出することができる。なお、kはコイル定数
とセンサ感度で決まる比例定数である。位置のY成分、
Z成分も、同様に算出することができる。つまり、線形
勾配磁界gh、ghにより、得られた磁場ベクトル
成分と位置座標の各成分の比例関係により、センサ位置
は容易に求めることができる。
[0021] FIG 2 shows a distribution diagram of a linear gradient field gh X with a gradient in the X direction. This distribution is the same for linear gradient magnetic fields gh Y and gh Z having gradients in the Y direction and the Z direction, respectively. Such a linear gradient magnetic field can be generated in the intermediate region and the internal region by a pair of magnetic dipoles having the same polarity and opposite polarities on a straight line. If the point of symmetry of the linear gradient magnetic field obtained in this manner is set as the origin of the global coordinate system (X, Y, Z), the relationship between the linear gradient magnetic field gh X and the position X is gh X = kX. if Motomare linear gradient field gh X, it is possible to easily calculate the X component of the position of the sensor 1. Note that k is a proportional constant determined by the coil constant and the sensor sensitivity. The Y component of the position,
The Z component can be calculated similarly. That is, the sensor position can be easily obtained from the linear gradient magnetic fields gh Y and gh Z and the proportional relationship between the obtained magnetic field vector component and each component of the position coordinates.

【0022】図3に、本発明に係る姿勢位置測定装置が
備える各コイルの説明図を示す。図3(A)は、Z軸に
一様磁界を発生させる第1のコイル10を、図3(B)
は、X軸に一様磁界を発生させる第2のコイル20を、
図3(C)は、線形勾配磁界を発生させる第3のコイル
30を図示している。
FIG. 3 is an explanatory diagram of each coil provided in the posture and position measuring device according to the present invention. FIG. 3A shows the first coil 10 for generating a uniform magnetic field on the Z axis, as shown in FIG.
Represents a second coil 20 for generating a uniform magnetic field on the X axis,
FIG. 3C illustrates a third coil 30 that generates a linear gradient magnetic field.

【0023】図3(A)及び(B)に図示されている2
組のコイル(第1のコイル10、第2のコイル20)
は、中央にもコイルが配置されており、計測領域にZ軸
とX軸に平行な向きを持った2種類の一様磁界h及び
を発生させるものである。後述する実験及び計算の
ように、第1のコイル10及び第2のコイル20の各両
端のコイルは、例えば、50ターン、中央のコイルは、
例えば、31ターン(0.62倍)として、電流は同方
向に流れるようにすることができる。
2 (A) and 3 (B).
Set of coils (first coil 10, second coil 20)
Also in the center is arranged a coil, it is intended to generate two kinds of uniform magnetic field h X and h Z having parallel orientation to the Z axis and the X-axis in the measurement region. As described later in experiments and calculations, the coils at both ends of the first coil 10 and the second coil 20 are, for example, 50 turns, and the coil at the center is
For example, the current can flow in the same direction as 31 turns (0.62 times).

【0024】図3(C)に図示されている線形勾配磁界
を発生させる第3のコイル30は、両端に巻いた1対の
コイルに互いに逆方向の電流を流すことにより線形勾配
磁界を発生させるものである。このような1対の角形コ
イルにより、X、Y、Z軸の方向に線形勾配磁界を発生
することができる。後述する実験及び計算では、この両
端のコイルは、共に、例えば、20ターンであり、電流
は互いに逆方向に流れる。コイルに流れる電流は、例え
ば、正弦波交流で周波数は50Hzであり、2組の一様
磁界発生用コイルに流れる電流は、例えば、78mA、
勾配磁界発生用コイルに流れる電流は、例えば、950
mAとすることができる。発生した磁界は、測定領域内
の任意の位置に配置されたフラックスゲート(例えば、
感度10V/G、分解能2×10-5G、dc〜1kHz)によって測定
した。なお、センサ1自身の向きは(U,V,W)=(0,
0,1)、つまり、W方向がセンサ1の方向と定義し
た。
The third coil 30 for generating a linear gradient magnetic field shown in FIG. 3C generates a linear gradient magnetic field by applying currents in opposite directions to a pair of coils wound at both ends. Things. With such a pair of rectangular coils, a linear gradient magnetic field can be generated in the directions of the X, Y, and Z axes. In experiments and calculations to be described later, the coils at both ends have, for example, 20 turns, and currents flow in opposite directions. The current flowing through the coil is, for example, a sine wave alternating current with a frequency of 50 Hz, and the current flowing through the two sets of uniform magnetic field generating coils is, for example, 78 mA.
The current flowing through the gradient magnetic field generating coil is, for example, 950
mA. The generated magnetic field is applied to a flux gate (eg,
The sensitivity was measured at 10 V / G, the resolution was 2 × 10 −5 G, dc to 1 kHz). Note that the direction of the sensor 1 itself is (U, V, W) = (0,
0,1), that is, the W direction is defined as the direction of the sensor 1.

【0025】なお、Z軸に一様磁界を発生させるコイル
10と線形勾配磁界を発生させるコイル30は、共用し
ても良いし、別々にしてもよく、適宜の設計とすること
ができる。また、測定において各コイル10、20及び
30に流す電流は、一度に流すのではなく、それぞれ別
に流すこともできるが、各一様磁界及び線形勾配磁界
は、第1、第2及び第3のコイル10、20及び30の
いずれか又は全てを、時分割又は周波数分割により動作
させることで磁界を発生し、磁界センサの姿勢又は位置
又はこれら両方を適宜測定することもできる。さらに
は、第1又は第2のコイル10又は20の一方のみに電
流を流し、1つの一様磁界を発生し、残りの一方に対す
る一様磁界を地磁気で代用しても良い。
The coil 10 for generating a uniform magnetic field on the Z-axis and the coil 30 for generating a linear gradient magnetic field may be shared or separated, and may be appropriately designed. Also, in the measurement, the current flowing through each of the coils 10, 20 and 30 can be separately supplied instead of flowing all at once. However, the uniform magnetic field and the linear gradient magnetic field are the first, second and third magnetic fields. By operating any or all of the coils 10, 20, and 30 by time division or frequency division, a magnetic field is generated, and the attitude and / or position of the magnetic field sensor can be appropriately measured. Further, a current may be applied to only one of the first and second coils 10 or 20 to generate one uniform magnetic field, and the uniform magnetic field for the other one may be replaced by geomagnetism.

【0026】図4に、本発明に係る姿勢位置測定装置の
構成図を示す。ここでは、図4の姿勢位置測定装置50
は、立方体の形状をした枠をベースとしている。この姿
勢位置測定装置50は、Z軸及びX軸に一様磁界を発生
させる第1及び第2のコイル10、20、線形勾配磁界
を発生させる第3のコイル30及びセンサ1を備える。
姿勢位置測定装置50は、各コイル10、20、及び3
0に電流を流す正弦波発振器等の発振器OSCとパワー
アンプに接続されている。また、センサ1は、姿勢位置
測定装置50内に置かれ、その信号は、フラックスゲー
ト磁束用アンプで増幅され、マルチメータで測定され
る。この枠には、図3(A)、(B)及び(C)のよう
な3組のコイルが取り付けてある。なお、原理的には、
一様磁界の向く軸の方向と、線形勾配磁界を規定する3
つの軸方向は、共有しても、共有されなくても良い。
FIG. 4 shows a configuration diagram of a posture and position measuring apparatus according to the present invention. Here, the posture position measuring device 50 of FIG.
Is based on a frame in the shape of a cube. The posture position measuring device 50 includes first and second coils 10 and 20 for generating uniform magnetic fields on the Z axis and X axis, a third coil 30 for generating a linear gradient magnetic field, and the sensor 1.
The posture and position measurement device 50 includes the coils 10, 20, and 3
It is connected to an oscillator OSC, such as a sine wave oscillator, which supplies a current to 0, and a power amplifier. The sensor 1 is placed in the posture and position measuring device 50, and its signal is amplified by a flux gate magnetic flux amplifier and measured by a multimeter. Three sets of coils as shown in FIGS. 3A, 3B and 3C are attached to this frame. In principle,
3 defining the direction of the axis to which the uniform magnetic field is directed and the linear gradient magnetic field
The two axial directions may or may not be shared.

【0027】つぎに、本発明に係る姿勢位置測定装置に
ついての実験結果及び計算結果について説明する。ま
ず、一様磁界について説明する。
Next, experimental results and calculation results of the posture and position measuring apparatus according to the present invention will be described. First, the uniform magnetic field will be described.

【0028】図5に、一様磁界の磁界分布計算結果の説
明図を示す。センサ1の姿勢を計測するためには、計測
領域内全域で磁界の方向ベクトルが一様でなければなら
ず、この確認をする必要がある。そこで、センサ1が移
動するためのレールを枠で作成し、X軸とZ軸に平行な
一様磁界をそれぞれ発生したときの磁界のX,Y,Z成分
を測定範囲−20≦X,Y,Z≦20で5cmごとに測定
した。
FIG. 5 is an explanatory diagram of a calculation result of a magnetic field distribution of a uniform magnetic field. In order to measure the attitude of the sensor 1, the direction vector of the magnetic field must be uniform over the entire measurement area, and it is necessary to confirm this. Therefore, a rail for moving the sensor 1 is formed by a frame, and the X, Y, and Z components of the magnetic field when a uniform magnetic field parallel to the X-axis and the Z-axis are respectively generated are measured in a range of −20 ≦ X, Y , Z ≦ 20 every 5 cm.

【0029】図6に、X軸一様磁界の均一性の特性図を
示す。この図は、X軸に平行な一様磁界を発生したとき
の磁界のX成分を示す。X軸上を移動させた場合、対角
線上に移動した場合の両方でほぼ一定であり、その誤差
は1%未満であることが分かる。
FIG. 6 shows a characteristic diagram of the uniformity of the X-axis uniform magnetic field. This figure shows the X component of the magnetic field when a uniform magnetic field parallel to the X axis is generated. It can be seen that the movement on the X-axis and the movement on the diagonal line are almost constant, and the error is less than 1%.

【0030】図7に、Z軸一様磁界の均一性の特性図を
示す。この図は、Z軸に平行な一様磁界を発生したとき
の磁界の正規化されたZ成分を示しているが、図7と同
様の結果が得られた。計測領域全域で磁界の方向ベクト
ルはほぼ一様であり、その一様性は姿勢計測において十
分だということがわかる。
FIG. 7 shows a characteristic diagram of the uniformity of the Z-axis uniform magnetic field. This figure shows the normalized Z component of the magnetic field when a uniform magnetic field parallel to the Z axis is generated, but the same result as in FIG. 7 was obtained. It can be seen that the direction vector of the magnetic field is substantially uniform over the entire measurement area, and that the uniformity is sufficient for posture measurement.

【0031】つぎに、線形勾配磁界について説明する。
図8に、X座標と磁界ghの関係についての計算結果
の説明図を示す。
Next, the linear gradient magnetic field will be described.
Figure 8 is a diagram for explaining the calculation results of the relationship between X and the magnetic field gh X.

【0032】この図は、1m四方の正方形コイル2組
を、1m隔てて対向配置させて線形勾配磁界を発生した
ときのX座標とX成分ghの関係についての計算結果
を示している。X座標の位置が−20≦X≦20及び0
≦Z≦20のときにXとghが比例関係にあることが
分かる。また、同範囲でZが変化してもグラフの勾配は
一致している。これは、Yが変化しても同様である。こ
のことからghがXのみの関数であることが分かる。
Yとgh、Zとghの関係も計算結果は同様の傾向
が見られる。
This figure shows the result of calculation on the relationship between the X coordinate and the X component gh X when a linear gradient magnetic field is generated by arranging two pairs of 1 m square coils facing each other at a distance of 1 m. When the position of the X coordinate is -20 ≦ X ≦ 20 and 0
It can be seen that when ≤Z≤20, X and gh X are in a proportional relationship. Further, even if Z changes in the same range, the gradients of the graph match. This is the same even if Y changes. This shows that gh X is a function of X only.
The calculation results also show the same tendency in the relationship between Y and gh Y and between Z and gh Z.

【0033】図9に、勾配磁界の磁界分布計算結果の説
明図を示す。図10では、線形勾配磁界のX成分とgh
の関係説明図を、図11に、線形勾配磁界のZ成分と
ghの関係説明図を示す。これらの図は、勾配磁界の
X,Y,Z成分を測定範囲−20≦X,Y,Z≦20で5c
mごとに計測し、それらの線形性を検証したものを示し
ている。図10からわかるように、X座標とghは比
例関係にあり、YおよびZを変化させてもグラフの傾き
はほぼ一致しており、ghがXのみに依存した関数で
あるが分かる。角形コイルの対称性からY成分gh
もghと同様のことが言える。また、図11からもわ
かるように、Z座標とghも比例関係にあり、gh
がZのみの関数であることが分かる。これにより、
(4)式の関係が−20≦X,Y,Z≦20の範囲で十分
成立することが確認できる。
FIG. 9 is an explanatory diagram of the calculation result of the magnetic field distribution of the gradient magnetic field. In FIG. 10, the X component of the linear gradient magnetic field and gh
The relationship illustration of X, FIG. 11 shows the relationship explanatory view of the Z component and gh Z linear gradient fields. These figures show that the X, Y, and Z components of the gradient magnetic field are 5c in the measurement range -20 ≦ X, Y, Z ≦ 20.
The values measured for each m and their linearity are verified. As can be seen from FIG. 10, the X coordinate and gh X are in a proportional relationship, and even when Y and Z are changed, the slopes of the graphs are almost the same, indicating that gh X is a function dependent only on X. From the symmetry of the rectangular coil, the same can be said for the Y component gh Y as for gh X. Further, as can be seen from FIG. 11, the Z coordinate and gh Z are also in a proportional relationship, and gh Z
Is a function of only Z. This allows
It can be confirmed that the relationship of the expression (4) is sufficiently satisfied in the range of −20 ≦ X, Y, Z ≦ 20.

【0034】以下に、センサ1を任意の位置に任意の姿
勢で配置し、その測定値を実際の位置および姿勢と比較
した結果を示す。 実験1 設定値 センサ位置 (X,Y,Z)=(13,8,−5) センサ姿勢 (a,a,a)=(1,0,0) (センサがX正方向を向いている状態) 測定値 センサ位置 (X,Y,Z)=(12.9,7.7,−5.
3) センサ姿勢 (a,a,a)=(0.99,0.01,
0.05) 実験2 測定値 センサ位置 (X,Y,Z)=(2.2,−6.7,0.6) センサ姿勢 (a,a,a)=(−0.01,0.9
7,−0.23) 設定値 センサ位置 (X,Y,Z)=(1.5,−6,1) センサ姿勢 (a,a,a)=(0,0.97,−0.
25)
The following is a result of arranging the sensor 1 at an arbitrary position in an arbitrary posture and comparing the measured value with the actual position and posture. Experiment 1 setpoint sensor position (X, Y, Z) = (13,8, -5) sensor attitude (a X, a Y, a Z) = (1,0,0) ( sensor facing the X positive direction State) Measurement value Sensor position (X, Y, Z) = (12.9, 7.7, −5.
3) Sensor position (a X, a Y, a Z) = (0.99,0.01,
0.05) Experiment 2 Measurement value sensor position (X, Y, Z) = (2.2, -6.7,0.6) sensor attitude (a X, a Y, a Z) = (- 0.01 , 0.9
7, -0.23) setpoint sensor position (X, Y, Z) = (1.5, -6,1) sensor attitude (a X, a Y, a Z) = (0,0.97, - 0.
25)

【0035】以上の結果から、センサ1の姿勢に関して
設定値と測定値はほぼ一致していることが分かる。一
方、センサ1の位置に関しては1cm弱の誤差がみられ
たが、これは、今回実験に使用した3軸フラックスゲー
トの各軸のセンサが空間の同一点になく、これを同一点
として取り扱った事が主な原因であると考えられる。こ
のセンサ1の位置を標定すれば一層精度のよい測定が可
能となる。
From the above results, it can be seen that the set value and the measured value of the attitude of the sensor 1 substantially match. On the other hand, an error of less than 1 cm was observed in the position of the sensor 1, but this was because the sensors of each axis of the three-axis fluxgate used in this experiment were not at the same point in space, and were treated as the same point. Things seem to be the main cause. If the position of the sensor 1 is located, more accurate measurement can be performed.

【0036】[0036]

【発明の効果】本発明によると、磁気式において一様磁
界と線形勾配磁界とを用い、姿勢検出用に一様磁界を、
位置検出用に線形勾配磁界を利用することで、磁界の大
きさに関する簡単な一次方程式により姿勢と位置とを同
時に検出することができ、データ処理を簡素化し、高速
検出を可能とすることができる。
According to the present invention, a uniform magnetic field and a linear gradient magnetic field are used in a magnetic system, and a uniform magnetic field is used for posture detection.
By using a linear gradient magnetic field for position detection, the attitude and position can be simultaneously detected by a simple linear equation relating to the magnitude of the magnetic field, thereby simplifying data processing and enabling high-speed detection. .

【0037】また、本発明によると、ダイポール磁界を
用いる方法に比べ、計算アルゴリズムが極めて容易であ
り、モーションキャプチャ等による3次元コンピュータ
グラフィックスの製作時間の短縮化を図るとともに、ス
ポーツ医学、娯楽用ソフト製作などへの利用化をするこ
とができる。
Further, according to the present invention, the calculation algorithm is extremely easy as compared with the method using a dipole magnetic field, so that the time required for producing three-dimensional computer graphics by motion capture or the like can be shortened, and sports medicine and recreation can be used. It can be used for software production.

【図面の簡単な説明】[Brief description of the drawings]

【図1】座標系及び一様磁界の説明図。FIG. 1 is an explanatory diagram of a coordinate system and a uniform magnetic field.

【図2】X方向に勾配を持つ線形勾配磁界ghの分布
図。
[Figure 2] distribution diagram of a linear gradient field gh X with a gradient in the X direction.

【図3】本発明に係る姿勢位置測定装置が備える各コイ
ルの説明図。
FIG. 3 is an explanatory diagram of each coil provided in the posture and position measuring device according to the present invention.

【図4】本発明に係る姿勢位置測定装置の構成図。FIG. 4 is a configuration diagram of a posture and position measurement device according to the present invention.

【図5】一様磁界の磁界分布計算結果の説明図。FIG. 5 is an explanatory diagram of a calculation result of a magnetic field distribution of a uniform magnetic field.

【図6】X軸一様磁界の均一性の特性図。FIG. 6 is a characteristic diagram of uniformity of an X-axis uniform magnetic field.

【図7】Z軸一様磁界の均一性の特性図。FIG. 7 is a characteristic diagram of uniformity of a Z-axis uniform magnetic field.

【図8】X座標と磁界ghの関係についての計算結果
の説明図。
Figure 8 is an explanatory diagram of a calculation result of the relationship between X and the magnetic field gh X.

【図9】勾配磁界の磁界分布計算結果の説明図。FIG. 9 is an explanatory diagram of a magnetic field distribution calculation result of a gradient magnetic field.

【図10】線形勾配磁界のX成分とghの関係説明
図。
[10] relationship diagram of the X component and gh X linear gradient fields.

【図11】線形勾配磁界のZ成分とghの関係説明
図。
[11] related illustration of the Z component and gh Z linear gradient fields.

【符号の説明】[Explanation of symbols]

1 センサ 10 第1のコイル 20 第2のコイル 30 第3のコイル 50 姿勢位置測定装置 DESCRIPTION OF SYMBOLS 1 Sensor 10 1st coil 20 2nd coil 30 3rd coil 50 Posture position measuring device

Claims (8)

【特許請求の範囲】[Claims] 【請求項1】センサの姿勢及び位置を測定する姿勢位置
測定装置であって、 第1の軸方向に一様磁界を発生する第1のコイルと、 第1の軸方向と直交する第2の軸方向に一様磁界を発生
する第2のコイルと、 直交する3軸方向に線形勾配磁界を発生する第3のコイ
ルとを備え、 前記第1及び第2のコイルで発生された磁界によりセン
サの姿勢を測定し、前記第3のコイルで発生された磁界
によりセンサの位置を測定する姿勢位置測定装置。
An attitude and position measuring device for measuring an attitude and a position of a sensor, comprising: a first coil for generating a uniform magnetic field in a first axial direction; and a second coil orthogonal to the first axial direction. A second coil for generating a uniform magnetic field in the axial direction; and a third coil for generating a linear gradient magnetic field in the three orthogonal axes, wherein a sensor is provided by the magnetic field generated by the first and second coils. A posture and position measuring device for measuring a posture of the sensor and measuring a position of the sensor by a magnetic field generated by the third coil.
【請求項2】前記センサは、3軸磁界センサであること
を特徴とする請求項1に記載の姿勢位置測定装置。
2. The posture position measuring device according to claim 1, wherein said sensor is a three-axis magnetic field sensor.
【請求項3】前記第3のコイルは、一対の角形コイルを
有し、 各々の前記角形コイルにそれぞれ逆方向に電流を流すこ
とで、直交する3軸方向に勾配磁界を発生することを特
徴とする請求項1又は2に記載の姿勢位置測定装置。
3. The third coil has a pair of rectangular coils, and generates a gradient magnetic field in three orthogonal axes by applying currents to the respective rectangular coils in opposite directions. The posture position measuring device according to claim 1 or 2, wherein:
【請求項4】前記第3のコイルは、前記第1又は第2の
コイルの一部又は全部により共有されて構成することを
特徴とする請求項1乃至3のいずれかに記載の姿勢位置
測定装置。
4. The posture position measurement according to claim 1, wherein the third coil is shared by a part or all of the first or second coil. apparatus.
【請求項5】磁界センサの姿勢及び位置を測定する姿勢
位置測定方法であって、 第1の軸方向と、第1の軸方向に直交する第2の軸方向
とに、それぞれ一様磁界を発生し、 発生された各々の一様磁界により磁界センサの姿勢を測
定し、 直交する3軸方向に線形勾配磁界を発生し、 発生された線形勾配磁界により磁界センサの位置を測定
するようにした姿勢位置測定方法。
5. A posture and position measuring method for measuring a posture and a position of a magnetic field sensor, wherein a uniform magnetic field is generated in a first axial direction and a second axial direction orthogonal to the first axial direction. The attitude of the magnetic field sensor is measured by the generated uniform magnetic fields, linear gradient magnetic fields are generated in three orthogonal axes, and the position of the magnetic field sensor is measured by the generated linear gradient magnetic fields. Posture position measurement method.
【請求項6】第1、第2及び第3のコイルのいずれか又
は全てを、時分割又は周波数分割により動作させること
で磁界を発生し、磁界センサの姿勢及び/又は位置を測
定することを特徴とする請求項5に記載の姿勢位置測定
方法。
6. A method for generating a magnetic field by operating any or all of the first, second and third coils by time division or frequency division to measure the attitude and / or position of a magnetic field sensor. The posture position measuring method according to claim 5, wherein:
【請求項7】第1又は第2の軸方向のいずれかの一様磁
界として、地磁気を用いることを特徴とする請求項5又
は6に記載の姿勢位置測定方法。
7. The method according to claim 5, wherein terrestrial magnetism is used as a uniform magnetic field in either the first or second axial direction.
【請求項8】前記直交する3軸方向は、それぞれ第1の
軸方向、第2の軸方向、及び、第1並びに第2の軸方向
に直交する第3の軸方向であることを特徴とする請求項
5乃至7のいずれかに記載の姿勢位置測定方法。
8. The orthogonal three-axis directions are a first axial direction, a second axial direction, and a third axial direction orthogonal to the first and second axial directions, respectively. The posture position measuring method according to any one of claims 5 to 7.
JP09472099A 1999-04-01 1999-04-01 Posture position measuring apparatus and measuring method Expired - Fee Related JP4291454B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP09472099A JP4291454B2 (en) 1999-04-01 1999-04-01 Posture position measuring apparatus and measuring method

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP09472099A JP4291454B2 (en) 1999-04-01 1999-04-01 Posture position measuring apparatus and measuring method

Publications (2)

Publication Number Publication Date
JP2000292111A true JP2000292111A (en) 2000-10-20
JP4291454B2 JP4291454B2 (en) 2009-07-08

Family

ID=14117976

Family Applications (1)

Application Number Title Priority Date Filing Date
JP09472099A Expired - Fee Related JP4291454B2 (en) 1999-04-01 1999-04-01 Posture position measuring apparatus and measuring method

Country Status (1)

Country Link
JP (1) JP4291454B2 (en)

Cited By (11)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2005037386A (en) * 2003-07-01 2005-02-10 Ge Medical Systems Global Technology Co Llc Electromagnetic tracking system and method using single-coil transmitter
JP2006527841A (en) * 2003-06-16 2006-12-07 ソシエテ ド テクノロジー ミシュラン Detection of rotation speed of tire and wheel assembly by geomagnetic field
WO2008096856A1 (en) * 2007-02-09 2008-08-14 Asahi Kasei Emd Corporation Spatial information detecting system, its detecting method, and spatial information detecting device
JP2008275395A (en) * 2007-04-26 2008-11-13 Asahi Kasei Electronics Co Ltd Position attitude detection system, its detection method, and position attitude detection device
JP2009216424A (en) * 2008-03-07 2009-09-24 Kobe Steel Ltd Magnet position measuring method and magnetic field measuring instrument
CN102590764A (en) * 2012-03-02 2012-07-18 中国医学科学院生物医学工程研究所 MHz pulse weak magnetic field detection experimental system and signal processing system
CN103995239A (en) * 2014-05-09 2014-08-20 北京航空航天大学 Novel measurement method for magnetic field gradient parameters
CN106226630A (en) * 2016-08-31 2016-12-14 卢俊文 A kind of railway system low-frequency AC magnetic fields test system
JP6256962B1 (en) * 2017-06-21 2018-01-10 朝日インテック株式会社 Magnetic orientation / position measuring device
JP2020148629A (en) * 2019-03-13 2020-09-17 株式会社東芝 Sensor chip
CN113928428A (en) * 2021-10-28 2022-01-14 杭州容大智造科技有限公司 Recording system for recording container movement in freight transportation process

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN102866374B (en) * 2011-07-05 2016-02-24 美新半导体(无锡)有限公司 Based on the magnetic sensor test method of probe

Cited By (20)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2006527841A (en) * 2003-06-16 2006-12-07 ソシエテ ド テクノロジー ミシュラン Detection of rotation speed of tire and wheel assembly by geomagnetic field
JP2005037386A (en) * 2003-07-01 2005-02-10 Ge Medical Systems Global Technology Co Llc Electromagnetic tracking system and method using single-coil transmitter
JP4686142B2 (en) * 2003-07-01 2011-05-18 ジーイー・メディカル・システムズ・グローバル・テクノロジー・カンパニー・エルエルシー Electromagnetic tracking system and method using a single coil transmitter
WO2008096856A1 (en) * 2007-02-09 2008-08-14 Asahi Kasei Emd Corporation Spatial information detecting system, its detecting method, and spatial information detecting device
JP4875110B2 (en) * 2007-02-09 2012-02-15 旭化成エレクトロニクス株式会社 Spatial information detection system, detection method thereof, and spatial information detection apparatus
JP2008275395A (en) * 2007-04-26 2008-11-13 Asahi Kasei Electronics Co Ltd Position attitude detection system, its detection method, and position attitude detection device
JP2009216424A (en) * 2008-03-07 2009-09-24 Kobe Steel Ltd Magnet position measuring method and magnetic field measuring instrument
CN102590764A (en) * 2012-03-02 2012-07-18 中国医学科学院生物医学工程研究所 MHz pulse weak magnetic field detection experimental system and signal processing system
CN103995239A (en) * 2014-05-09 2014-08-20 北京航空航天大学 Novel measurement method for magnetic field gradient parameters
CN103995239B (en) * 2014-05-09 2016-10-05 北京航空航天大学 A kind of magnetic field gradient parameter measurement new method
CN106226630A (en) * 2016-08-31 2016-12-14 卢俊文 A kind of railway system low-frequency AC magnetic fields test system
JP6256962B1 (en) * 2017-06-21 2018-01-10 朝日インテック株式会社 Magnetic orientation / position measuring device
WO2018235481A1 (en) * 2017-06-21 2018-12-27 朝日インテック株式会社 Magnetic orientation and position measurement device
JP2019007936A (en) * 2017-06-21 2019-01-17 朝日インテック株式会社 Magnetic type azimuth/position measurement device
CN110869707A (en) * 2017-06-21 2020-03-06 朝日英达科株式会社 Magnetic azimuth/position measuring device
CN110869707B (en) * 2017-06-21 2022-02-25 朝日英达科株式会社 Magnetic azimuth/position measuring device
JP2020148629A (en) * 2019-03-13 2020-09-17 株式会社東芝 Sensor chip
JP7263065B2 (en) 2019-03-13 2023-04-24 株式会社東芝 sensor chip
CN113928428A (en) * 2021-10-28 2022-01-14 杭州容大智造科技有限公司 Recording system for recording container movement in freight transportation process
CN113928428B (en) * 2021-10-28 2022-09-02 杭州容大智造科技有限公司 Recording system for recording container movement in freight transportation process

Also Published As

Publication number Publication date
JP4291454B2 (en) 2009-07-08

Similar Documents

Publication Publication Date Title
US10551916B2 (en) Detecting positions of a device based on magnetic fields generated by magnetic field generators at different positions of the device
US6879160B2 (en) Magnetic resonance scanner with electromagnetic position and orientation tracking device
Su et al. Investigation of the relationship between tracking accuracy and tracking distance of a novel magnetic tracking system
WO2020005460A1 (en) Magnetic field measurement systems and methods of making and using
CN107003258B (en) The metal detector of spatial discrimination
CN106443535B (en) The system of imaging magnetic field measurement and correction in magnetic resonance device
US20080204012A1 (en) Magnetic Tracking System for an Imaging System
JP4291454B2 (en) Posture position measuring apparatus and measuring method
Hadjigeorgiou et al. Vector magnetic field sensors: Operating principles, calibration, and applications
Lee et al. Magnetic tensor sensor for gradient-based localization of ferrous object in geomagnetic field
JP5187907B2 (en) Position detection input device
Li et al. Design of highly uniform three-dimensional square magnetic field coils for external magnetic shielding of magnetometers
TWI608243B (en) Localization device and method using magnetic field
Yu et al. A practicable method for calibrating a magnetic sensor array
CN109633539B (en) Static positioning device and static positioning method for magnetic source
CN109188320B (en) Flow field imaging system and method based on magnetoresistance effect
JP2011185863A (en) Magnetic field detector
Osaki et al. Wireless magnetic position-detection system with four excitation coils
JPH04109929A (en) Method for measuring living body magnetism
Wu et al. Electromagnetic Tracking System Design for Location and Orientation Estimation
Lin et al. A New Correction Method of Distributed Magnetic Sensor System Based on Magnetic Shielding Room
Zeng et al. An analytic algorithm based position and orientation detection using a tri-axial magnetoresistive sensor
JPH057561A (en) Magnetic measuring apparatus
Liu et al. Study on an experimental AC electromagnetic tracking system
JP2006177684A (en) Method of measuring position/direction using magnetic marker, and position/direction measuring method system

Legal Events

Date Code Title Description
A711 Notification of change in applicant

Free format text: JAPANESE INTERMEDIATE CODE: A712

Effective date: 20031031

RD03 Notification of appointment of power of attorney

Free format text: JAPANESE INTERMEDIATE CODE: A7423

Effective date: 20040129

A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20060322

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20080605

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20080617

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20080815

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20090331

A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20090403

R150 Certificate of patent or registration of utility model

Free format text: JAPANESE INTERMEDIATE CODE: R150

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120410

Year of fee payment: 3

LAPS Cancellation because of no payment of annual fees