JPH04109929A - Method for measuring living body magnetism - Google Patents

Method for measuring living body magnetism

Info

Publication number
JPH04109929A
JPH04109929A JP2231599A JP23159990A JPH04109929A JP H04109929 A JPH04109929 A JP H04109929A JP 2231599 A JP2231599 A JP 2231599A JP 23159990 A JP23159990 A JP 23159990A JP H04109929 A JPH04109929 A JP H04109929A
Authority
JP
Japan
Prior art keywords
dewar
subject
measurement
senser
testee
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2231599A
Other languages
Japanese (ja)
Inventor
Kenji Shibata
芝田 健治
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Shimadzu Corp
Original Assignee
Shimadzu Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Shimadzu Corp filed Critical Shimadzu Corp
Priority to JP2231599A priority Critical patent/JPH04109929A/en
Publication of JPH04109929A publication Critical patent/JPH04109929A/en
Pending legal-status Critical Current

Links

Abstract

PURPOSE:To grasp positional relation and measuring direction of a magnetism measuring point to a testee easily and correctly in measuring a magnetism by arranging a Dewar containing a SQUID senser and a subject testee taking a light beam for reference, and measuring the magnetism at the subject testee by the SQUID senser. CONSTITUTION:Cross beams 11, 21, 31 are projected to a subject testee 4 and a Dewar 51 using three beam generation sources 1, 2, 3. Cross beam lines 12, 22 appear in the surface of the subject testee and the Dewar 51 by projection of the light beams, and a three-dimensional coordinates system (X, Y, Z) for a head part is visualized. In the meanwhile, where a 1-channel SQUID senser is contained in the Dewar 51, marks are put at positions projected in the surface of the Dewar 51 in the directions of X-, Y-, Z-axes. The Dewar 51 is moved to let the beam lines coincide with the marks. When the Z-axis of the head part coincides with the senser axis, a distance L from the orgin of the head coordinates system to the senser is measured.

Description

【発明の詳細な説明】[Detailed description of the invention] 【産業上の利用分野】[Industrial application field]

この発明は、人間の脳などにおいて発生する磁界を計測
することによって、脳の活動部位の推定などを行う生体
磁気計測法に関する。
The present invention relates to a biomagnetic measurement method for estimating active areas of the brain by measuring magnetic fields generated in the human brain.

【従来の技術】[Conventional technology]

従来より、微少な磁気を計測するセンサとして、SQU
ID (Superconducting Quant
um  InterferenceDevice :超
電導量子干渉型デバイス)センサが知られている。そこ
で、このSQU IDセンサを用いて人体から発生する
微少な磁気を計測することが行われている。 このSQUIDは超電導状態を維持するため液体ヘリウ
ムで冷却する必要があり、通常デユワ−と呼ばれる容器
中に満たされた液体ヘリウム中に浸されている。 このSQUIDセンサを用いることにより、多数の測定
点において生体の磁界の測定が行われるとともに、その
磁界計測点と生体との位置関係が求められる。他方、M
RI装置やX線CT装置などの断層撮影装置を用いて生
体の内部構造を表すデータを得て、それから生体に近似
する適当なモデルを作成する。そしてそのモデルについ
て複数の電流ダイポールの位置・大きさ・方向を仮定し
、それら電流双極子群が上記磁界の計測点に作る磁界分
布と上記の計測データとの差が最小になるような電流ダ
イポール群を求める。こうして求めた電流ダイポール群
の各位置・大きさ・方向をMR両画像どの上に表示する
。 したがって、このような生体磁気計測において、測定対
象となる生体に対してどの位置にどの方向からSQUI
Dセンサをあてて、どの位置・方向で磁気を計測したか
を正確に把握することは非常に重要である。 そのため、従来ではたとえば3次元磁界を利用した3次
元座標計測装置などを用いて生体と測定位置・方向との
関係を求めるようにしている(特願平2−50703号
参照)。この3次元座標計測装置は、磁場発生器から3
次元磁界を発生させておき、その3次元磁界の中に受信
器をおいて各方向の磁界を検出することによって、その
3次元磁界中での受信器の3次元的な位置を計測すると
いうものである。これを用いる場合、生体の表面皮膚の
上に受信器を配置して生体の特徴点を入力し、また、デ
ユワ−の表面数カ所に受信器を当ててその内部のSQU
IDセンサコイルの位置を入力するようにしている。
Traditionally, SQU has been used as a sensor to measure minute magnetism.
ID (Superconducting Quant
um InterferenceDevice (superconducting quantum interference device) sensors are known. Therefore, this SQU ID sensor is used to measure minute magnetism generated from the human body. This SQUID needs to be cooled with liquid helium to maintain its superconducting state, and is usually immersed in liquid helium filled in a container called a dewar. By using this SQUID sensor, the magnetic field of the living body is measured at a large number of measurement points, and the positional relationship between the magnetic field measurement points and the living body is determined. On the other hand, M
Data representing the internal structure of a living body is obtained using a tomography device such as an RI device or an X-ray CT device, and then an appropriate model that approximates the living body is created. Then, assume the positions, sizes, and directions of multiple current dipoles for that model, and select a current dipole that minimizes the difference between the magnetic field distribution created by the current dipole group at the measurement point of the magnetic field and the measurement data above. Find the group. The positions, sizes, and directions of the current dipole groups thus determined are displayed on both MR images. Therefore, in such biomagnetic measurement, the SQUI is
It is very important to accurately grasp the position and direction in which magnetism was measured by applying the D sensor. Therefore, conventionally, for example, a three-dimensional coordinate measuring device using a three-dimensional magnetic field has been used to determine the relationship between the living body and the measurement position and direction (see Japanese Patent Application No. 2-50703). This three-dimensional coordinate measuring device uses three
A 3D magnetic field is generated, and a receiver is placed in the 3D magnetic field to detect the magnetic field in each direction, thereby measuring the 3D position of the receiver in the 3D magnetic field. It is. When using this, the receiver is placed on the surface skin of the living body and the feature points of the living body are input, and the receiver is placed on several places on the surface of the dewar to measure the internal SQU.
The position of the ID sensor coil is input.

【発明が解決しようとする課題】[Problem to be solved by the invention]

しかしながら、3次元座標計測装置は、磁場発生器から
発生される3次元磁界の中に受信器をおいて、その3次
元磁界中での受信器の3次元的な位置を入力するという
ものであるから、これを用いる場合、受信器で生体及び
デユワ−の特定位置を指定していく必要があり、所定の
位置を正確に入力することは容易でないという問題があ
る。すなわち、CT像やMR像などで明かな生体の特徴
点に相当する位置の皮膚の上に受信器を置くことによっ
てその位置の入力を行うが、この特徴点に相当する位置
に正確に受信器を置くということは容易でなく、誤差が
生じ易い。 この発明は、磁気測定点の位置・測定方向の生体との位
置関係を容易且つ正確に把握しながら磁気測定を行うこ
とができるように改善した、生体磁気計測法を提供する
ことを目的とする。
However, a three-dimensional coordinate measuring device places a receiver in a three-dimensional magnetic field generated by a magnetic field generator, and inputs the three-dimensional position of the receiver in the three-dimensional magnetic field. Therefore, when using this method, it is necessary to specify the specific positions of the living body and dewar using the receiver, and there is a problem in that it is not easy to input the predetermined positions accurately. In other words, the position is input by placing the receiver on the skin at a position corresponding to a characteristic point of a living body that is clearly seen in a CT image or MR image. It is not easy to place the values, and errors are likely to occur. An object of the present invention is to provide a biomagnetic measurement method that is improved so that magnetic measurement can be performed while easily and accurately grasping the position of a magnetic measurement point and its positional relationship with the living body in the measurement direction. .

【課題を解決するための手段】[Means to solve the problem]

上記の目的を達成するため、この発明による生体磁気計
測法においては、5QUI Dセンサが納められたデユ
ワ−と被検体とを光ビームを基準にして整列させ、上記
SQU I Dセンサにより被検体の磁気を計測するこ
とが特徴となっている。
In order to achieve the above object, in the biomagnetic measurement method according to the present invention, a dewar in which a 5QUID sensor is housed and a subject are aligned with a light beam as a reference, and the SQUID sensor is used to detect the subject. Its feature is that it measures magnetism.

【作  用】[For production]

SQUIDセンサが納められたデユワ−と被検体とを、
光ビームを基準として整列させる。これらが整列させら
れることにより、被検体とデユワ−内のSQUIDセン
サとが基準の位置関係となる。 そのため、被検体に対するSQUIDセンサによる磁気
測定点位置・方向が、基準の位置関係から正確に求めら
れる。
The dewar containing the SQUID sensor and the subject are
Align with the light beam as a reference. By aligning these, the subject and the SQUID sensor in the dewar have a standard positional relationship. Therefore, the position and direction of the magnetic measurement point by the SQUID sensor with respect to the subject can be accurately determined from the reference positional relationship.

【実 施 例】【Example】

以下、この発明の一実施例について図面を参照しながら
詳細に説明する。第1図に示すように光ビーム(レーザ
ビーム)を投射してそのビームライン(投影線)を基準
にして被検者4に対してデユワ−51を整列させる。す
なわち、3つのビーム発生源1.2.3を用い、それぞ
れからクロスビーム(十文字の光ビーム)11.21.
31を被検者4及びデユワ−51に投射する。被検者4
には、その頭表皮上に、頭部の3次元座標を決めるため
の3点A、B、Cにマークが施されており、そのA点を
通るX軸に沿ってクロスビーム11が投射され、B点を
通るY軸に沿ってクロスビーム21が投射され、0点を
通るY軸に沿ってクロスビーム31が投射される。この
ような光ビームの投射により被検者4及びデユワ−51
の表面には十文字状のビームライン(投影線)12.2
2が現れ、頭部の3次元座標系(X、Y、Z)が可視化
されることになる。 一方、デユワ−51には1チヤンネルのSQUIDセン
サが内蔵されているものとすると、そのセンサ(コイル
)の位置をx、y、z軸方向に向けてデユワ−51の表
面に投影した位置にマーク(点及び線)を付しておく。 そして、ビームラインがそのマークに合致するようにデ
ユワ−51を移動させる。これにより頭部のZ軸とセン
サの軸とが一致する。このとき、頭部座標系の原点から
センサまでの距離りが計測される。こうして、頭部座標
系(X、Y、Z’)でのセンサの位置(0,0、L)が
求められる。SQUIDセンサの磁界測定方向はZ軸原
点方向となる。デユワ−51はたとえば天井吊り下げ走
行方式などによって保持される。 このような位置決めが終了した後、SQU I Dセン
サによる磁気測定を行う、このとき、その測定点の被検
者4に対する位置関係は、被検者4とデユワ−51とが
整列させられているため、正確に知られていることにな
る。したがって、1チヤンネルのSQUIDセンサによ
る1測定点での磁気測定でよい場合や、デユワ−51内
に多数のチャンネルのSQUIDセンサが納められてい
て、デユワ−51を動かさずにその多数チャンネルのS
QUIDセンサによる多側定点での磁気測定だけでよい
場合に有効である。 デユワ−51を動かしてさらに多数の測定点で磁気測定
を行う場合には第2図、第3図に示すような発信器81
と、受信器82とを備える3次元座標計測装置8を用い
る。発信器81から3次元の磁界が発生させられ、受信
器82がその磁界の中に置かれると、受信器82はその
磁界を受信し、その受信信号が3次元座標計測装置8に
送られ、発信器81からの3次元磁界による3次元座標
系で受信器82がどの位置となっている゛かが求めろれ
る。この種の3次元座標計測装置として株式会社日商エ
レクトロニクスの「3次元デジタイザ」(商品名)など
を用いることができる。 上記のような位置決めを行う前に(あるいは行った後位
置をずらさないようにして)、被検者4に非磁性体ゴム
バンド付メガネ41をかけさせる。 このメガネ41に上記の受信器82が取り付けられてい
る。他方、デユワ−51にはあらかじめ支持棒52が設
けられており、その先端に発信器81が取り付けられて
いる。 このように被検者4の座標系にSQUIDセンサが整列
するようにデユワ−51が配置されたときに、3次元座
標計測装置8で発信器81の座標系における受信器82
の位置を求めれば、発信器81と受信器82との間の位
置関係が基準の位置関係として求められることになる。 そして、つぎに第2図に示すように、被検者4に対して
デユワ−51を移動させながら、各測定点にデユワ−5
1を位置決めして被検者4の磁気を計測する。このとき
、各計測点で、発信器81の座標系に対する受信器82
の位置を求め、上記の基準位置との間の変位を知れば、
SQUIDセンサによる測定点が被検者4の座標系でど
の位置となっているかが分かる。すなわち、第3図に示
すようなシステム構成において、SQUIDセンサ5が
データ収集装置6に接続されており、収集された磁気計
測データがコンピュータ7に取り込まれると内時に、発
信器81と受信器82とを有する3次元座標計測装置8
によりその磁気の測定点の被検者4の座標系での位1・
方向が入力されることになる。 このようなSQUIDセンサ5による磁気計測、及びそ
の測定点の位置・方向の測定とは別に、MHI装置9(
あるいは図示しないXIICT装置など)により被検者
4の頭部の断層像が撮影される。 この撮影は上記の磁気計測の前でも後でもよく、このM
HI装置9によって得られた画像データはオンラインあ
るいはオフラインでコンピュータ7に送られる。この撮
影時には、上記の被検者4の頭部の座標を決めるための
3点A、B、CにMR■装置9によって映像化されるよ
うな指標を取り付けておく。こうして第4図Aに示すよ
うな指標像42が現れたM R断層像を得ることができ
る。 これによりMHI装置9で得た断層像における頭部座標
系の位置関係を知ることができる。コンピュータ7はこ
のMR断層像データから頭部の適当な近似モデルを作成
し、電流双極子の算出を行う。 すなわち、その頭部近似モデル上に電流双極子の大きさ
・位置・方向を仮定し、この仮定した電流双極子が近似
モデル上で作る磁束密度分布と計測した磁束密度分布と
の2乗誤差が最小になるような電流双極子の大きさ・位
置・方向を求めることによって、この電流双極子の大き
さ・位置・方向が算出される。 こうして得られた電流双極子はたとえば第4図A、B、
CのようにMR断層像上に矢印などの適当なマークで表
示される。この画像はコンピュータ7に接続された表示
装置71において表示され、記録装置72で記録される
。この第4図A、B。 Cは手首の正中線神経刺激によって発生した電流双極子
を例示するものである。 なお、上記では被検者4の頭部の磁気計測を行う場合を
例として説明したが、このような脳磁計測に限らず、第
5図に示すように6磁計測に適用することもできる。こ
の6磁計測の場合、被検者4の座標系を決めるための3
つの点A、B、Cとして、体rs2箇所、体表面1箇所
の点を定め、それらにビーム発生源1.2.3からの光
のクロスビームが照射されるように位置決めした上で、
その光ビームを基準としてデユワ−51を基準の位置に
整列させる。そして、デユワ−51を動かす場合はデユ
ワ−51と被検者4とに3次元座標計測装置8の発信器
81と受信器82とを取り付けて基準の位置関係を求め
るとともに、各測定点での位置関係を測定しながら、各
測定点でデユワ−51内のSQUIDセンサ5により6
磁計測を行っていくことは脳磁計測の場合と同様である
。なお、この場合、呼吸運動により体が動くため非磁性
体のベツドに発信器81または受信器82を取り付ける
ことが望ましい。
Hereinafter, one embodiment of the present invention will be described in detail with reference to the drawings. As shown in FIG. 1, a light beam (laser beam) is projected and the dewar 51 is aligned with respect to the subject 4 using the beam line (projection line) as a reference. That is, three beam generation sources 1.2.3 are used, and cross beams (cross-shaped light beams) 11.21.
31 is projected onto the subject 4 and the dewar 51. Subject 4
Marks are placed on the head skin at three points A, B, and C to determine the three-dimensional coordinates of the head, and a cross beam 11 is projected along the X axis passing through point A. , a cross beam 21 is projected along the Y axis passing through point B, and a cross beam 31 is projected along the Y axis passing through point 0. By projecting such a light beam, the subject 4 and the dewar 51
There is a cross-shaped beam line (projection line) 12.2 on the surface of
2 will appear, and the three-dimensional coordinate system (X, Y, Z) of the head will be visualized. On the other hand, assuming that the dewar 51 has a built-in one-channel SQUID sensor, mark the position of the sensor (coil) projected on the surface of the dewar 51 in the x, y, and z axis directions. (Dots and lines) are attached. Then, the dewar 51 is moved so that the beam line matches the mark. As a result, the Z-axis of the head and the axis of the sensor coincide. At this time, the distance from the origin of the head coordinate system to the sensor is measured. In this way, the position (0, 0, L) of the sensor in the head coordinate system (X, Y, Z') is determined. The magnetic field measurement direction of the SQUID sensor is the Z-axis origin direction. The dewar 51 is held by, for example, a hanging system. After such positioning is completed, magnetic measurement is performed using the SQUID sensor. At this time, the positional relationship of the measurement point with respect to the subject 4 is such that the subject 4 and the dewar 51 are aligned. Therefore, it is known exactly. Therefore, in cases where magnetic measurement at one measurement point using a one-channel SQUID sensor is sufficient, or when many channels of SQUID sensors are housed in the dewar 51, the SQUID sensor of many channels can be measured without moving the dewar 51.
This is effective when only magnetic measurements at fixed points on multiple sides using QUID sensors are required. When moving the dewar 51 to perform magnetic measurements at a larger number of measurement points, a transmitter 81 as shown in FIGS. 2 and 3 is used.
A three-dimensional coordinate measuring device 8 including a receiver 82 and a receiver 82 is used. When a three-dimensional magnetic field is generated from the transmitter 81 and the receiver 82 is placed in the magnetic field, the receiver 82 receives the magnetic field, and the received signal is sent to the three-dimensional coordinate measuring device 8. The position of the receiver 82 in the three-dimensional coordinate system based on the three-dimensional magnetic field from the transmitter 81 can be determined. As this type of three-dimensional coordinate measuring device, "3-dimensional digitizer" (trade name) manufactured by Nissho Electronics Co., Ltd., etc. can be used. Before performing the positioning as described above (or without shifting the position after the positioning), the subject 4 is made to wear glasses 41 with non-magnetic rubber bands. The receiver 82 described above is attached to the glasses 41. On the other hand, a support rod 52 is provided in advance on the dewar 51, and a transmitter 81 is attached to the tip of the support rod 52. When the dewar 51 is arranged so that the SQUID sensor is aligned in the coordinate system of the subject 4, the receiver 82 in the coordinate system of the transmitter 81 is
If the position is determined, the positional relationship between the transmitter 81 and the receiver 82 will be determined as the reference positional relationship. Then, as shown in FIG. 2, while moving the dewar 51 relative to the subject 4, the dewar 51 is placed at each measurement point.
1 and measure the magnetism of the subject 4. At this time, at each measurement point, the receiver 82 with respect to the coordinate system of the transmitter 81
If you find the position of and know the displacement from the reference position above,
It can be seen where the measurement point by the SQUID sensor is located in the coordinate system of the subject 4. That is, in the system configuration shown in FIG. 3, the SQUID sensor 5 is connected to the data collection device 6, and when the collected magnetic measurement data is taken into the computer 7, the transmitter 81 and the receiver 82 are connected. A three-dimensional coordinate measuring device 8 having
Therefore, the position of the magnetic measurement point in the coordinate system of subject 4 is 1.
The direction will be input. Apart from the magnetic measurement by the SQUID sensor 5 and the measurement of the position and direction of the measurement point, the MHI device 9 (
Alternatively, a tomographic image of the head of the subject 4 is taken using an XIICT device (not shown). This photograph may be taken before or after the magnetic measurement described above, and this M
Image data obtained by the HI device 9 is sent to the computer 7 online or offline. At the time of this photographing, markers are attached to three points A, B, and C for determining the coordinates of the head of the subject 4, which are visualized by the MR device 9. In this way, an MR tomographic image in which an index image 42 as shown in FIG. 4A appears can be obtained. This allows the positional relationship of the head coordinate system in the tomographic image obtained by the MHI device 9 to be known. The computer 7 creates an appropriate approximate model of the head from this MR tomographic image data and calculates the current dipole. In other words, the size, position, and direction of the current dipole are assumed on the head approximation model, and the square error between the magnetic flux density distribution created by the assumed current dipole on the approximation model and the measured magnetic flux density distribution is The magnitude, position, and direction of this current dipole are calculated by finding the magnitude, position, and direction of the current dipole that minimizes it. The current dipoles obtained in this way are, for example, in Fig. 4A, B,
It is displayed as an appropriate mark such as an arrow on the MR tomographic image as shown in C. This image is displayed on a display device 71 connected to the computer 7 and recorded on a recording device 72. This figure 4 A, B. C illustrates the current dipole generated by midline nerve stimulation of the wrist. In addition, although the case where the magnetism measurement of the head of the subject 4 is performed is explained above as an example, the present invention is not limited to such magnetoencephalography measurement, but can also be applied to 6 magnetism measurement as shown in FIG. . In the case of this 6-magnetic measurement, 3
As points A, B, and C, two points on the body rs and one point on the body surface are determined, and they are positioned so that the cross beam of light from the beam source 1.2.3 is irradiated, and then
The dewar 51 is aligned at a reference position using the light beam as a reference. When moving the dewar 51, the transmitter 81 and receiver 82 of the three-dimensional coordinate measuring device 8 are attached to the dewar 51 and the subject 4 to determine the reference positional relationship, and at the same time While measuring the positional relationship, the SQUID sensor 5 in the dewar 51 at each measurement point
The procedure for performing magnetometry is the same as in the case of magnetoencephalography measurement. In this case, since the body moves due to breathing exercise, it is desirable to attach the transmitter 81 or the receiver 82 to the non-magnetic bed.

【発明の効果】【Effect of the invention】

この発明の生体磁気計測法によれば、光ビームを被検者
に投射することにより被検者の3次元座標系を可視化す
ることができ、それに合わせてSQU I Dセンサを
整列させることにより、被検者とSQUIDセンサとを
基準の位置関係とすることができる。そのため、この状
態でSQU IDセンサによって磁気計測を行えば、基
準の位置関係から正確に分かる測定位置・方向でその磁
気計測を行うことができる。すなわち、5QUI Dセ
ンサにより被検者の磁気計測を行うとき、その計測点が
被検者座標系でどこにあるかを精度高く、容易に検出す
ることができる。また、デユワ−保持機構に特殊な動き
をするものを採用したり、あるいはデユワ−保持機構に
座標系をもたせることに比べて、被検者へのデユワ−セ
ツティングが容易である。磁気計測データの被検者に対
する位置関係が正確であるため、電流双極子の推定精度
を向上させることできる。また、頭部の磁界を計測する
脳磁計測の場合でも胸部の磁界を計測する6磁計測の場
合でも適用が可能である。
According to the biomagnetic measurement method of the present invention, the three-dimensional coordinate system of the subject can be visualized by projecting a light beam onto the subject, and by aligning the SQUID sensor accordingly, The subject and the SQUID sensor can be placed in a standard positional relationship. Therefore, if magnetic measurement is performed using the SQU ID sensor in this state, the magnetic measurement can be performed at a measurement position and direction that can be accurately determined from the reference positional relationship. That is, when performing magnetic measurement of a subject using the 5QUID sensor, it is possible to easily detect where the measurement point is located in the subject's coordinate system with high accuracy. Further, dewar setting for the subject is easier than using a dewar holding mechanism that moves in a special manner or providing a dewar holding mechanism with a coordinate system. Since the positional relationship of the magnetic measurement data with respect to the subject is accurate, the estimation accuracy of the current dipole can be improved. Further, it can be applied to both magnetoencephalography measurement that measures the magnetic field of the head and hexamagnetic measurement that measures the magnetic field of the chest.

【図面の簡単な説明】[Brief explanation of drawings]

第1図はこの発明の一実施例にががるもので脳磁計測す
る場合の被検者の頭部とデユワ−とを光ビームを基準に
して整列させる様子を示す模式的な斜視図、第2図は被
検者の頭部に対してデユワ−を移動させながら磁気計測
を行う様子を示す模式図、第3図はこの実施例で用いる
システム構成例を示すブロック図、第4図はMR断層像
の一例を示す図、第5図は6磁計測する場合の他の実施
例にかかるもので被検者の胸部とデユワ−とを光ビーム
を基準にして整列させる様子を示す模式的な斜視図であ
る。 l、2.3・・・ビーム発生源、11.21.31・・
・クロスビーム、12.22・・・ビームライン、4・
・・被検者、41・・・非磁性体ゴムバンド付メガネ、
42・・・指標像、5・・・SQUIDセンサ、51・
・・デユワ−152・・・支持棒、6・・・データ収集
装置、7・・・コンピュータ、71・・・表示装置、7
2・・・記録装置、8・・・3次元座標計測装置、81
・・・発信器、82・・・受信器、9・・・MHI装置
FIG. 1 shows an embodiment of the present invention, and is a schematic perspective view showing how the head of a subject and a dewar are aligned with respect to a light beam when performing magnetoencephalography measurement; Fig. 2 is a schematic diagram showing how magnetic measurement is performed while moving the dewar with respect to the subject's head, Fig. 3 is a block diagram showing an example of the system configuration used in this example, and Fig. 4 is FIG. 5 is a diagram showing an example of an MR tomographic image, and is related to another embodiment in the case of 6-magnetic measurement, and is a schematic diagram showing how to align the chest of the subject and the dewar with reference to the light beam. FIG. l, 2.3... Beam source, 11.21.31...
・Cross beam, 12.22...beam line, 4・
...Subject, 41...Glasses with non-magnetic rubber band,
42... Index image, 5... SQUID sensor, 51...
...Dewar-152...Support rod, 6...Data collection device, 7...Computer, 71...Display device, 7
2... Recording device, 8... Three-dimensional coordinate measuring device, 81
... transmitter, 82 ... receiver, 9 ... MHI device.

Claims (1)

【特許請求の範囲】[Claims] (1)SQUIDセンサが納められたデュワーと被検体
とを光ビームを基準にして整列させ、上記SQUIDセ
ンサにより被検体の磁気を計測することを特徴とする生
体磁気計測法。
(1) A biomagnetic measurement method characterized in that a dewar containing a SQUID sensor and a subject are aligned with a light beam as a reference, and the magnetism of the subject is measured by the SQUID sensor.
JP2231599A 1990-08-31 1990-08-31 Method for measuring living body magnetism Pending JPH04109929A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2231599A JPH04109929A (en) 1990-08-31 1990-08-31 Method for measuring living body magnetism

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2231599A JPH04109929A (en) 1990-08-31 1990-08-31 Method for measuring living body magnetism

Publications (1)

Publication Number Publication Date
JPH04109929A true JPH04109929A (en) 1992-04-10

Family

ID=16926040

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2231599A Pending JPH04109929A (en) 1990-08-31 1990-08-31 Method for measuring living body magnetism

Country Status (1)

Country Link
JP (1) JPH04109929A (en)

Cited By (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH10127607A (en) * 1996-10-29 1998-05-19 Toshiba Corp Device and method for positioning for medical diagnostic system
WO1999049781A1 (en) * 1998-03-27 1999-10-07 Hitachi, Ltd. Apparatus for magnetic measurement of living body, and method of positioning person under examination
JP2001299714A (en) * 1999-10-06 2001-10-30 Hitachi Ltd Method for measuring biological magnetic field
JP2001299715A (en) * 1999-10-06 2001-10-30 Hitachi Ltd Biological magnetic field measuring instrument
JP2001321349A (en) * 1999-10-06 2001-11-20 Hitachi Ltd Positioning method of subject for biomagnetism measurement
US6522908B1 (en) 1999-10-06 2003-02-18 Hitachi, Ltd. Biomagnetic field measuring apparatus
JP2005287675A (en) * 2004-03-31 2005-10-20 Advanced Telecommunication Research Institute International Intracerebral current source estimation method, program and apparatus

Cited By (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH10127607A (en) * 1996-10-29 1998-05-19 Toshiba Corp Device and method for positioning for medical diagnostic system
WO1999049781A1 (en) * 1998-03-27 1999-10-07 Hitachi, Ltd. Apparatus for magnetic measurement of living body, and method of positioning person under examination
US6628978B1 (en) 1998-03-27 2003-09-30 Hitachi, Ltd. Biomagnetism measurement device and method of biomagnetism measurement using the device
JP2001299714A (en) * 1999-10-06 2001-10-30 Hitachi Ltd Method for measuring biological magnetic field
JP2001299715A (en) * 1999-10-06 2001-10-30 Hitachi Ltd Biological magnetic field measuring instrument
JP2001321349A (en) * 1999-10-06 2001-11-20 Hitachi Ltd Positioning method of subject for biomagnetism measurement
US6522908B1 (en) 1999-10-06 2003-02-18 Hitachi, Ltd. Biomagnetic field measuring apparatus
JP2005287675A (en) * 2004-03-31 2005-10-20 Advanced Telecommunication Research Institute International Intracerebral current source estimation method, program and apparatus

Similar Documents

Publication Publication Date Title
Tomek et al. Magnetopneumography—Incorporation of optical position reference
EP0312570A1 (en) Apparatus and method for making biomagnetic measurements
JPH0966037A (en) Magnetism of living body measuring instrument
US20050212515A1 (en) Biomagnetic measurement apparatus and method for setting horizontal position for biomagnetic measurement
JPH04109929A (en) Method for measuring living body magnetism
JPH04109932A (en) Living body magnetism measuring device
JPH04109930A (en) Living body magnetism measuring device
JP2797665B2 (en) Magnetoencephalograph
JPH031839A (en) Brain magnetism measuring apparatus
JP2500715B2 (en) Living activity current source estimation device
JPH04303416A (en) Device for measuring magnetism of living body
JP2844848B2 (en) Biomagnetic measurement device
JPH03251226A (en) Organism magnetic measuring method
JPH02180244A (en) Heart magnetism measuring device
Abraham-Fuchs et al. Fusion of Biomagnetlsm with MR or CT Images by Contour-Fitting
JPH04303417A (en) Device for measuring magnetism of living body
Ilmoniemi et al. Method for locating a small magnetic object in the human body
JPH0555126B2 (en)
JPH0295337A (en) Method for measuring position relation between multichannel squid sensor and subject
JPH0461842A (en) Measurement of living body magnetism
JP3814923B2 (en) Biomagnetic measurement device
JPH04226631A (en) Biomagnetism measuring instrument
JPH04226630A (en) Biomagnetism measuring instrument
JP2614726B2 (en) Nuclear magnetic resonance imaging equipment
JPH04226632A (en) Biomagnetism measuring instrument