JPH0295337A - Method for measuring position relation between multichannel squid sensor and subject - Google Patents

Method for measuring position relation between multichannel squid sensor and subject

Info

Publication number
JPH0295337A
JPH0295337A JP63247893A JP24789388A JPH0295337A JP H0295337 A JPH0295337 A JP H0295337A JP 63247893 A JP63247893 A JP 63247893A JP 24789388 A JP24789388 A JP 24789388A JP H0295337 A JPH0295337 A JP H0295337A
Authority
JP
Japan
Prior art keywords
image
subject
squid sensor
sensor
small coil
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP63247893A
Other languages
Japanese (ja)
Inventor
Kenji Shibata
芝田 健治
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Shimadzu Corp
Original Assignee
Shimadzu Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Shimadzu Corp filed Critical Shimadzu Corp
Priority to JP63247893A priority Critical patent/JPH0295337A/en
Publication of JPH0295337A publication Critical patent/JPH0295337A/en
Pending legal-status Critical Current

Links

Landscapes

  • Measuring Magnetic Variables (AREA)
  • Measuring And Recording Apparatus For Diagnosis (AREA)
  • Measurement And Recording Of Electrical Phenomena And Electrical Characteristics Of The Living Body (AREA)

Abstract

PURPOSE:To execute a diagnosis with a high accuracy by superposing optical images photographed from plural directions of a subject and the fault image of the subject internal part in the same direction as them, referring to a receiver image projected on the optical image and measuring the position relation to the subject of the coordinates of a multichannel SQUID sensor reference. CONSTITUTION:The fault image and optical image are superposed after the image in the same directions are uniformized in size. Namely, a face fault image 5 and a face image 7 are superposed, simultaneously, a side fault image 6 and a side image 8 are superposed, and then, the position of a small coil 2 is correctly expressed on the fault image. On the other hand, the position of the small coil 2 is obtained as one in a coordinate system to make a multichannel SQUID sensor 3 into a reference by the multichannel SQUID sensor 3. Then, at the time of executing an adjustment mutally between position information pieces in which the position information of the small coil 2 obtained from the multichannel SQUID sensor 3 and the position of the small coil 2 expressed on the fault image are matched, the correct grasp of the position relation of a cranium 1 to the multichannel SQUID sensor 3 can be executed.

Description

【発明の詳細な説明】[Detailed description of the invention]

【産業上の利用分野】[Industrial application field]

この発明は、生体内の微小な磁気を計測するマルチチャ
ンネルSQUIDセンサに関し、とくにその被検体との
位置関係を測定する方法に関する。
The present invention relates to a multichannel SQUID sensor that measures minute magnetism within a living body, and particularly relates to a method for measuring its positional relationship with a subject.

【従来の技術】[Conventional technology]

生体に刺激を加えると、細胞膜をはさんで形成されてい
る分極が破綻し、活動電流が流れる。このような活動電
流は、脳、心臓、骨格筋、網膜などにみられ、それぞれ
脳波、心電図、筋電図、網膜電位図などと呼ばれている
。また、電流が流れることにともなって生じる磁界の記
録は、それぞれ脳磁図、心磁図、筋磁図、網膜磁図など
と呼ばれる。 生体内の磁気を計測する装置として、近年、SQ U 
I D (Superconducting Quan
tum InterfaceDevice :超電導量
子干渉型デバイス)を用いたセンサが開発され、生体内
の微小な磁界の計測が容易になってきている(トリガー
別冊p155−163.1987.12月、パリティ別
1冊No、 1. p26−38.1986.メディカ
ルシステムニュースvo1.9 No、4第100号p
26−27.1988)。 ところで、このような生体内の磁図は、MRI(核磁気
共鳴映像)装置やX+1iCT装置で得な断層像と併用
することにより、患部等の物理的位置を特定することな
どに使用できるので、SQUIDセンサにより取得した
位置情報とこれらの断層像との位置関係を正確に捉える
ことが非常に重要である。 そこで、従来より、たとえば頭蓋の複数箇所に小コイル
や小さな送信器などを取り付け、小コイルに流れる電流
によって発生した磁界をマルチチャンネルSQUIDセ
ンサ自体で検出してその位置を求めたり、あるいはマル
チチャンネルSQUIDセンサを収容するデユワ−(冷
却容器)に取り付けた受信機で送信器の位置を求めたり
して、マルチチャンネルSQU I Dセンサの座標中
でのそれらの位置情報を得て、頭蓋に対するマルチチャ
ンネルSQUIDセンサの位置関係を把握する上うにし
ている。すなわち、小コイル等が頭蓋のどこに取り付け
られたかは分かっているので、その位置が断層像上でど
こになるかが分かり、これにより、マルチチャンネルS
QUIDセンサで得た位置情報と断層像とを関係を把握
するのである(S、N、Erne、et al、  ”
The Positioning Problemin
 Biomagnetic Measurement:
  A 5olution forArrays of
 Superconducting 5ensors 
  IEEETransactions on Mag
netics、vol、MAG−23,No、2゜Ma
rch 1987)。
When a stimulus is applied to a living body, the polarization formed between cell membranes breaks down, causing an active current to flow. Such action currents are seen in the brain, heart, skeletal muscles, retina, etc., and are called electroencephalograms, electrocardiograms, electromyograms, electroretinograms, etc., respectively. Records of magnetic fields caused by the flow of electric current are called magnetoencephalography, magnetocardiography, magnetomyography, magnetoretinography, etc., respectively. In recent years, SQU has been used as a device to measure magnetism in living organisms.
I D (Superconducting Quan)
tum InterfaceDevice: superconducting quantum interference device) has been developed, and it has become easier to measure minute magnetic fields inside living organisms (Trigger separate volume p155-163. December 1987, Parity separate volume No. 1). 1. p26-38.1986. Medical System News vol. 1.9 No. 4 No. 100 p.
26-27.1988). By the way, such in-vivo magnetic images can be used in conjunction with tomographic images obtained by MRI (nuclear magnetic resonance imaging) devices and X+1iCT devices to identify the physical location of affected areas, etc. It is very important to accurately capture the positional relationship between the positional information acquired by the sensor and these tomographic images. Conventionally, for example, small coils or small transmitters are attached to multiple locations on the skull, and the magnetic field generated by the current flowing through the small coils is detected by the multi-channel SQUID sensor itself to determine its position. By determining the position of the transmitter with a receiver attached to the dewar (cooling container) that houses the sensor, we can obtain their position information in the coordinates of the multi-channel SQUID sensor, and use the multi-channel SQUID relative to the skull. We are trying to understand the positional relationship of the sensors. In other words, since we know where the small coil etc. is attached to the skull, we know where it will be located on the tomographic image, and this allows us to perform multichannel S
This involves understanding the relationship between the position information obtained by the QUID sensor and the tomographic image (S, N, Erne, et al.
The Positioning Problem
Biomagnetic Measurement:
A 5 solution for Arrays of
Superconducting 5 sensors
IEEETransactions on Mag
netics, vol, MAG-23, No, 2゜Ma
rch 1987).

【発明が解決しようとするB題】[Problem B that the invention attempts to solve]

しかしながら、上記のような従来の方法では、頭蓋等へ
の小コイル等の取付位置が断層像上でどこになるかの位
置関係の把握が目測であり、正確でないという問題があ
る。そして、このような位置関係の不正確さは最終的な
診断の誤りを招く危険がある。 この発明は、マルチチャンネルSQUIDセンサと被検
体との位置関係を正確に測定する方法を提供することを
目的とする。
However, in the conventional method as described above, the positional relationship of where a small coil or the like is attached to the skull or the like on a tomographic image is determined visually, and there is a problem in that it is not accurate. Inaccuracies in such positional relationships may lead to errors in the final diagnosis. An object of the present invention is to provide a method for accurately measuring the positional relationship between a multichannel SQUID sensor and a subject.

【課題を解決するための手段】[Means to solve the problem]

上記目的を達成するため、この発明によるマルチチャン
ネルSQUIDセンサと被検体との位置関係測定法は、
位置決め用信号を発生する複数個の発信器く小コイルや
小さな送信器等)を被検体表面の適宜な箇所に取り付け
、マルチチャンネルSQUIDセンナ側で上記信号を検
出してマルチチャンネルSQUIDセンサを基準にした
座標上で上記発信器の位置を求め、被検体の複数方向か
ら撮影した光学像とこれらと同方向の被検体内部の断層
像とを重ね、該光学像上に写っている発信器像を参照し
て上記マルチチャンネルSQUIDセンナ基準の座標の
被検体に対する位置関係を測定することを特徴とする。
In order to achieve the above object, a method for measuring the positional relationship between a multi-channel SQUID sensor and a subject according to the present invention is as follows:
Multiple transmitters (small coils, small transmitters, etc.) that generate positioning signals are attached to appropriate locations on the surface of the subject, and the multi-channel SQUID sensor detects the above signals and uses the multi-channel SQUID sensor as a reference. The position of the transmitter is determined on the coordinates, and the optical images taken from multiple directions of the subject are superimposed on the tomographic images inside the subject in the same direction, and the transmitter image appearing on the optical image is determined. The present invention is characterized in that the positional relationship of the coordinates of the multi-channel SQUID sensor reference with respect to the subject is measured with reference.

【作  用】[For production]

小コイルなどの発信器が被検体に取り付けられるので、
この被検体を光学的に撮影すると、その光学像には発信
器の像が写っていることになる。 そのため、この光学像と同方向の断層像とを重ねれば、
断層像上において発信器がどこに位置するかが正確に分
かる。 したがって、このように発信器像が写っている光学像を
媒介とすることにより、発信器位置を指標として、マル
チチャンネル5QUI Dセンサにより取得した位置情
報と断層像上の位置情報とを正確に一致させることがで
きる。
Since a transmitter such as a small coil is attached to the subject,
When this object is photographed optically, the image of the transmitter is captured in the optical image. Therefore, if this optical image is superimposed with a tomographic image in the same direction,
It is possible to know exactly where the transmitter is located on the tomographic image. Therefore, by using the optical image containing the transmitter image as a medium, it is possible to accurately match the position information acquired by the multi-channel 5QUID sensor with the position information on the tomographic image using the transmitter position as an index. can be done.

【実 施 例】【Example】

つぎにこの発明の一実施例について図面を参照しながら
説明する。まず第1図に示すように頭蓋lに対して適宜
な箇所、ここでは顔面上皮膚の露出した部分の、顕中央
と両耳下の3箇所にそれぞれ小コイル2を取り付ける。 そして、小コイル2に電流を流し、それによって生じた
磁界をマルチチャンネルSQUIDセンサ3で検出し、
小コイル2の位置情報を得る。 一方、この頭M1に対してMRI撮像を行ない、第2図
に示すような3次元像4を得ておく。そして、この3次
元像4から正面断層像5と側面断層像6とを作成する。 さらに上記のようにして3つの小コイル2を取り付けた
状態で頭蓋1の正面像と、右及び左からの側面像とを、
通常の光学カメラあるいはビデオカメラで撮影する。こ
れらの光学像には小コイル2の像が写っていることにな
るので、これらカメラ撮像画像データから頭蓋1及び小
コイル2の輪郭を抽出する。すると、第3図に示すよう
な正面像7と第4図に示すような側面像8とが得られる
。 つぎに、上記の断層像と光学像とを、同方向のもの同士
を大きさを揃えた上で重ね合わせる。すなわち、第3図
に示すように正面断層像5と正面像7とを重ね合わせる
とともに、第4図に示すように側面断層像6と側面像8
とを重ね合わせるのである。 このような光学像と断層像との重ね合わせにより、断層
像上で小コイル2の位置が正確に表わされることになる
。一方、上記のように、この小コイル2の位置はマルチ
チャンネルSQU I Dセンサ3により、マルチチャ
ンネルSQU I Dセンサ3を基準にした座標系にお
けるものとして求められている。そこで、このマルチチ
ャンネルSQUIDセンサ3から得られた小コイル2の
位置情報とこの断層像上で表わされた小コイル2の位置
とが一致するような位置情報相互間の調整を行なえば、
マルチチャンネル5QUI Dセンサ3に対する頭蓋1
の位置関係の正確な把握ができたことになり、マルチチ
ャンネルSQUIDセンサ3で捉えた患部等の位置がM
RI装置で得た断層像上でどこに相当するかが正確に分
かることになる。 なお、上記では位置決め用信号を発生する発信器として
小コイルを用いているが、電波を発生する小さな送信器
を使用してもよい、この場合電波を受信する受信機をマ
ルチチャンネルSQUIDセンサ側に取り付け、この受
信機の受信信号から受信機に対する送信器の位置を求め
、マルチチャンネルSQUIDセンサに対する送信器の
位置を知るようにすればよい。 また、上記では被検体の内部の断層像をMHI装置によ
って得ているが、X線CT装置などで得た他の断層像を
用いることもできる。
Next, an embodiment of the present invention will be described with reference to the drawings. First, as shown in FIG. 1, small coils 2 are attached to appropriate locations on the cranium l, here three locations on the exposed skin of the face, at the center of the microscope and below both ears. Then, a current is passed through the small coil 2, and the resulting magnetic field is detected by the multi-channel SQUID sensor 3,
Obtain position information of the small coil 2. On the other hand, MRI imaging is performed on this head M1 to obtain a three-dimensional image 4 as shown in FIG. Then, a front tomographic image 5 and a side tomographic image 6 are created from this three-dimensional image 4. Furthermore, with the three small coils 2 attached as described above, a front view of the skull 1 and side views from the right and left are shown.
Photographs are taken with a regular optical camera or video camera. Since the image of the small coil 2 is reflected in these optical images, the contours of the cranium 1 and the small coil 2 are extracted from these camera-captured image data. Then, a front image 7 as shown in FIG. 3 and a side image 8 as shown in FIG. 4 are obtained. Next, the above-mentioned tomographic image and optical image are superimposed with the images in the same direction aligned in size. That is, as shown in FIG. 3, the front tomographic image 5 and the front image 7 are superimposed, and the side tomographic image 6 and the side image 8 are overlapped as shown in FIG.
and superimpose them. By superimposing the optical image and the tomographic image in this manner, the position of the small coil 2 is accurately represented on the tomographic image. On the other hand, as described above, the position of this small coil 2 is determined by the multi-channel SQU ID sensor 3 in a coordinate system based on the multi-channel SQU ID sensor 3. Therefore, if the positional information of the small coil 2 obtained from this multi-channel SQUID sensor 3 is matched with the position of the small coil 2 represented on this tomographic image, the mutual adjustment of the positional information is performed.
Multi-channel 5QUI D sensor 3 to skull 1
This means that we have been able to accurately grasp the positional relationship between the
This means that it is possible to know exactly where it corresponds on the tomographic image obtained by the RI device. Note that although a small coil is used as the transmitter to generate the positioning signal in the above example, a small transmitter that generates radio waves may also be used. In this case, the receiver that receives the radio waves should be placed on the side of the multi-channel SQUID sensor. After installation, the position of the transmitter relative to the receiver can be determined from the received signal of this receiver, and the position of the transmitter relative to the multi-channel SQUID sensor may be known. Moreover, although the tomographic image of the inside of the subject is obtained by the MHI apparatus in the above example, other tomographic images obtained by an X-ray CT apparatus or the like may also be used.

【発明の効果】【Effect of the invention】

この発明のマルチチャンネル5QUI Dセンサと被検
体との位置関係を測定する方法によれば、マルチチャン
ネルSQUIDセンサと被検体との位置関係を正確に捉
えることができ、たとえばマルチチャンネルSQUID
センサで得た脳磁図とMRI装置で得た脳の3次元像と
の位置関係を正確に合わせることができるので、患部等
の正確な位置を知ることができる′など、精度の高い診
断が可能である。
According to the method of measuring the positional relationship between the multi-channel 5QUID sensor and the subject of this invention, the positional relationship between the multi-channel SQUID sensor and the subject can be accurately determined.
The positional relationship between the magnetoencephalogram obtained by the sensor and the three-dimensional image of the brain obtained by the MRI device can be precisely matched, allowing highly accurate diagnosis such as knowing the exact location of the affected area. It is.

【図面の簡単な説明】[Brief explanation of drawings]

第1図はこの発明の一実施例にかかるもので、小コイル
及びマルチチャンネルSQUIDセンサの頭蓋に対する
位置関係を示す模式図、第2図はMRI装置で得た3次
元像を示す模式図、第3図及び第4図は光学像と断層像
との重ね合わぜを示す模式図である。 1・・・頭蓋、2・・・小コイル、3・・・マルチチャ
ンネルSQUIDセンサ、4・・・3次元像、5・・・
正面断層像、6・・・側面断層像。
FIG. 1 is a schematic diagram showing the positional relationship of a small coil and a multi-channel SQUID sensor with respect to the skull, and FIG. 2 is a schematic diagram showing a three-dimensional image obtained by an MRI apparatus, and FIG. 3 and 4 are schematic diagrams showing the superposition of an optical image and a tomographic image. 1... Cranium, 2... Small coil, 3... Multi-channel SQUID sensor, 4... Three-dimensional image, 5...
Frontal tomographic image, 6... side tomographic image.

Claims (1)

【特許請求の範囲】[Claims] (1)位置決め用信号を発生する複数個の発信器を被検
体表面の適宜な箇所に取り付け、マルチチャンネルSQ
UIDセンサ側で上記信号を検出してマルチチャンネル
SQUIDセンサを基準にした座標上で上記発信器の位
置を求め、被検体の複数方向から撮影した光学像とこれ
らと同方向の被検体内部の断層像とを重ね、該光学像上
に写っている発信器像を参照して上記マルチチャンネル
SQUIDセンサ基準の座標の被検体に対する位置関係
を測定することを特徴とする、マルチチャンネルSQU
IDセンサと被検体との位置関係測定法。
(1) Multiple transmitters that generate positioning signals are attached to appropriate locations on the surface of the subject, and multi-channel SQ
The UID sensor side detects the above signal, determines the position of the transmitter on the coordinates based on the multi-channel SQUID sensor, and generates optical images taken from multiple directions of the subject and tomographic images inside the subject in the same directions. The multi-channel SQU is characterized in that the positional relationship of the coordinates of the multi-channel SQUID sensor reference with respect to the subject is measured with reference to the transmitter image shown on the optical image.
A method for measuring the positional relationship between an ID sensor and a subject.
JP63247893A 1988-09-30 1988-09-30 Method for measuring position relation between multichannel squid sensor and subject Pending JPH0295337A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP63247893A JPH0295337A (en) 1988-09-30 1988-09-30 Method for measuring position relation between multichannel squid sensor and subject

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP63247893A JPH0295337A (en) 1988-09-30 1988-09-30 Method for measuring position relation between multichannel squid sensor and subject

Publications (1)

Publication Number Publication Date
JPH0295337A true JPH0295337A (en) 1990-04-06

Family

ID=17170145

Family Applications (1)

Application Number Title Priority Date Filing Date
JP63247893A Pending JPH0295337A (en) 1988-09-30 1988-09-30 Method for measuring position relation between multichannel squid sensor and subject

Country Status (1)

Country Link
JP (1) JPH0295337A (en)

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH04117945A (en) * 1990-09-07 1992-04-17 Daikin Ind Ltd Plane tomography image interpolation display device
JPH06133941A (en) * 1991-08-28 1994-05-17 Biomagnetic Technol Inc Device for magnetic measurement for human body equiped with nonmagnetic movement detector
JP2001275989A (en) * 2000-03-31 2001-10-09 Shimadzu Corp Biological signal measuring apparatus
JP2006026066A (en) * 2004-07-15 2006-02-02 Yokogawa Electric Corp Image superposing device

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH04117945A (en) * 1990-09-07 1992-04-17 Daikin Ind Ltd Plane tomography image interpolation display device
JPH06133941A (en) * 1991-08-28 1994-05-17 Biomagnetic Technol Inc Device for magnetic measurement for human body equiped with nonmagnetic movement detector
JP2001275989A (en) * 2000-03-31 2001-10-09 Shimadzu Corp Biological signal measuring apparatus
JP2006026066A (en) * 2004-07-15 2006-02-02 Yokogawa Electric Corp Image superposing device
JP4600735B2 (en) * 2004-07-15 2010-12-15 横河電機株式会社 Image overlay device

Similar Documents

Publication Publication Date Title
US4793355A (en) Apparatus for process for making biomagnetic measurements
JP3473210B2 (en) Biomagnetic measurement device
US5682889A (en) Method and apparatus for deducing bioelectric current sources
US4995395A (en) Method and apparatus for location finding of electrodes placed onto the body, particularly to the head
JPH0295337A (en) Method for measuring position relation between multichannel squid sensor and subject
Singh et al. Neuromagnetic localization using magnetic resonance images
JPH04109932A (en) Living body magnetism measuring device
JPH04109929A (en) Method for measuring living body magnetism
JPH031839A (en) Brain magnetism measuring apparatus
JP2797665B2 (en) Magnetoencephalograph
JP2001275989A (en) Biological signal measuring apparatus
JPH03251226A (en) Organism magnetic measuring method
JP2022147542A (en) Biological information measurement system and program for biological information measurement
JP3233444B2 (en) Biomagnetism measuring device, biomagnetism measuring method, and mounting device for biomagnetism measuring device
JPH04303416A (en) Device for measuring magnetism of living body
JP2844848B2 (en) Biomagnetic measurement device
JP3407520B2 (en) Biomagnetic measurement device
JP3814923B2 (en) Biomagnetic measurement device
JPH0555126B2 (en)
JPH02249530A (en) Action current display method
JPH08266499A (en) Biomagnetic measuring apparatus
JPH02180243A (en) Medical measuring device
JPH07124133A (en) Magnetic measuring instrument
JP3298312B2 (en) Biological activity current source estimation device
JPH0461842A (en) Measurement of living body magnetism