JPH04226630A - Biomagnetism measuring instrument - Google Patents

Biomagnetism measuring instrument

Info

Publication number
JPH04226630A
JPH04226630A JP2416140A JP41614090A JPH04226630A JP H04226630 A JPH04226630 A JP H04226630A JP 2416140 A JP2416140 A JP 2416140A JP 41614090 A JP41614090 A JP 41614090A JP H04226630 A JPH04226630 A JP H04226630A
Authority
JP
Japan
Prior art keywords
point
measurement
receiver
dimensional
transmitter
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2416140A
Other languages
Japanese (ja)
Inventor
Kenji Shibata
芝田 健治
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Shimadzu Corp
Original Assignee
Shimadzu Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Shimadzu Corp filed Critical Shimadzu Corp
Priority to JP2416140A priority Critical patent/JPH04226630A/en
Publication of JPH04226630A publication Critical patent/JPH04226630A/en
Pending legal-status Critical Current

Links

Abstract

PURPOSE:To make magnetism measurement while easily and exactly recognizing the positional relation of the position and measurement direction of a magnetism measurement point with a living body by pointing a certain point by using a visible light beam. and using a three-dimensional coordinate input device inputting this point. CONSTITUTION:A receiver 42 is mounted to a frame 44 and two lens holding bases 45 are provided on this frame 44. Lens barrels 46 are respectively mounted to these bases. Optical fibers 47 are respectively connected to these lens barrels 46. The other ends of two pieces of optical fibers 47 are connected to light sources which generate visible light of respectively different wavelengths. The positions and directions of the two lens barrels 46 are so set that the two light beams projected from the two lens barrels 46 are focused to intersect at a specific one point. The specific point is directed at the intersected point of the visualized light beams, by which the three-dimensional coordinates of this point are inputted.

Description

【発明の詳細な説明】[Detailed description of the invention]

【0001】0001

【産業上の利用分野】この発明は、人間の脳や心臓など
において発生する磁界を計測することによって、脳や心
臓の活動部位の推定などを行う生体磁気計測装置に関す
る。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a biomagnetic measuring device for estimating active areas of a human brain or heart by measuring magnetic fields generated in the human brain or heart.

【0002】0002

【従来の技術】従来より、微小な磁気を計測するセンサ
として、SQUID(Superconducting
Quantum  InterferenceDevi
ce:超電導量子干渉型デバイス)センサが知られてい
る。このSQUIDは超電導状態を維持するため液体ヘ
リウムで冷却する必要があり、通常デュワーと呼ばれる
容器中に満たされた液体ヘリウム中に浸されている。
[Prior Art] Conventionally, SQUID (Superconducting) has been used as a sensor for measuring minute magnetism.
Quantum InterferenceDevi
ce (superconducting quantum interference device) sensors are known. This SQUID needs to be cooled with liquid helium to maintain its superconducting state, and is usually immersed in liquid helium filled in a container called a dewar.

【0003】このSQUIDセンサを用いることにより
、人体から発生する微小な磁気を多数の測定点において
計測することができる。一方、人体内部の構造はMRI
装置やX線CT装置などの断層撮影装置を用いれば知る
ことができる。そこで、磁界計測点と生体との位置関係
が分かれば、これらより人体内部のどこで電流が発生し
たかを推定することが可能となる。具体的には内部構造
を表すデータより生体近似の適当なモデルを作り、その
モデルについて複数の電流ダイポールの位置・大きさ・
方向を仮定し、それら電流双極子群が上記磁界の計測点
に作る磁界分布と上記の計測データとの差が最小になる
ような電流ダイポール群を求める。こうして求めた電流
ダイポール群の各位置・大きさ・方向をMR画像などの
上に表示すれば、人体内部での活動電流の分布を知るこ
とができる。
[0003] By using this SQUID sensor, minute magnetism generated from the human body can be measured at a large number of measurement points. On the other hand, the internal structure of the human body can be seen using MRI
This can be determined by using a tomography device such as an X-ray CT device or an X-ray CT device. Therefore, if the positional relationship between the magnetic field measurement point and the living body is known, it becomes possible to estimate from this information where in the human body the current is generated. Specifically, we created an appropriate model that approximates the living body from data representing the internal structure, and then determined the position, size, and size of multiple current dipoles for that model.
Assuming the direction, a current dipole group is found that minimizes the difference between the magnetic field distribution created by the current dipole group at the measurement point of the magnetic field and the above measurement data. By displaying the positions, sizes, and directions of the current dipole groups thus determined on an MR image or the like, it is possible to know the distribution of active currents inside the human body.

【0004】このような生体磁気計測においては、測定
対象となる生体に対してどの位置にどの方向からSQU
IDセンサをあてて、どの位置・方向で磁気を計測した
かを正確に把握することは非常に重要である。生体とS
QUIDセンサとの位置関係把握のため、従来ではたと
えば生体の保持装置とSQUIDセンサの保持装置の両
方に位置・方向検出機構を持たせることなどが考えられ
ている(特開平2−116767号公報)。
[0004] In such biomagnetic measurement, the SQU is
It is very important to accurately understand in which position and direction magnetic field was measured by applying the ID sensor. Living body and S
In order to understand the positional relationship with the QUID sensor, it has conventionally been considered to provide a position/direction detection mechanism for both the biological body holding device and the SQUID sensor holding device (Japanese Patent Laid-Open No. 2-116767). .

【0005】また、3次元磁界を利用した3次元座標入
力装置などを用いて生体と測定位置・方向との関係を求
めることも考えられている(特願平2−50703号参
照)。この3次元座標入力装置は、商品化されたものと
してはマクダネル・ダグラス社の「3SPACE」(商
標)3次元ディジタイザーなどが知られており、磁場を
発生する発信器と磁場を受信する受信器とを用いる。発
信器、受信器とも3つの直交コイルを有している。発信
器から、相互に識別可能な(たとえば周波数を違える)
3次元磁界を発生させておき、その3次元磁界の中に受
信器を置いて各コイルにより、各方向の磁界を検出する
ことによって、その3次元磁界中での受信器の3次元的
な位置及び角度方向を計測するというものである。
It has also been considered to obtain the relationship between a living body and a measurement position/direction using a three-dimensional coordinate input device using a three-dimensional magnetic field (see Japanese Patent Application No. 2-50703). This three-dimensional coordinate input device is known as the McDonnell Douglas "3SPACE" (trademark) three-dimensional digitizer, which has been commercialized, and includes a transmitter that generates a magnetic field and a receiver that receives the magnetic field. and use. Both the transmitter and receiver have three orthogonal coils. mutually distinguishable from the transmitter (e.g. different frequencies)
By generating a three-dimensional magnetic field, placing the receiver in the three-dimensional magnetic field, and detecting the magnetic field in each direction using each coil, the three-dimensional position of the receiver in the three-dimensional magnetic field can be determined. and to measure the angular direction.

【0006】このような3次元座標入力装置を用いる場
合、生体の表面皮膚上の特徴点を、点指定可能なスライ
ラス型受信器のスタイラス先端で指して生体の特徴点の
3次元座標を入力し、また、デュワーの表面数カ所に上
記のスタイラス先端を当ててその内部のSQUIDセン
サコイルの3次元位置を入力するようにしている。
[0006] When using such a three-dimensional coordinate input device, the three-dimensional coordinates of a feature point on the living body are input by pointing at a feature point on the surface skin of the living body with the tip of a stylus of a slylus type receiver that can specify points. In addition, the stylus tip is applied to several locations on the surface of the dewar to input the three-dimensional position of the SQUID sensor coil inside the stylus.

【0007】[0007]

【発明が解決しようとする課題】しかしながら、従来の
場合は、いずれも生体とSQUIDセンサとの位置関係
を正確に把握することが困難であるという問題がある。
However, in all conventional methods, there is a problem in that it is difficult to accurately grasp the positional relationship between the living body and the SQUID sensor.

【0008】すなわち、生体保持装置とSQUIDセン
サ保持装置の両方に位置・方向検出機構を持たせる場合
、生体は生体保持装置に正確な位置関係で保持されてい
るわけではなく、生体保持装置の位置・方向を検出して
も、かならずしも生体自体の位置・方向は正確には分か
らないからである。また、この場合、生体保持装置とS
QUIDセンサ保持装置の両方に位置・方向検出機構を
持たせたので、大がかりな機構が必要となり、簡便でな
く、コストもかかるという問題もある。
In other words, when both the biological support device and the SQUID sensor holding device are provided with a position/direction detection mechanism, the biological body is not held in the biological support device in an accurate positional relationship, but the position of the biological support device - This is because even if the direction is detected, the position and direction of the living body itself cannot always be accurately determined. In addition, in this case, the biological support device and S
Since both of the QUID sensor holding devices are provided with a position/direction detection mechanism, a large-scale mechanism is required, which poses the problem of not being simple and expensive.

【0009】スタイラス型受信器の先端を生体皮膚に当
ててその点を入力する場合には、皮膚が軟組織であって
スタイラス先端を当てるとへこむのでかならずしも特徴
点を指しているかどうかが曖昧であり、指定点を生体特
徴点に一致させることが難しく、計測誤差の原因となる
[0009] When inputting a point by applying the tip of a stylus type receiver to the skin of a living body, it is ambiguous whether the skin is a soft tissue and dents when the tip of the stylus is applied, so it is unclear whether it is necessarily pointing to a feature point. It is difficult to match designated points with biological feature points, which causes measurement errors.

【0010】この発明は、上記に鑑み、磁気測定点の位
置・測定方向の生体に対する位置関係を容易且つ正確に
把握して磁気測定を行うことができるように改善した、
生体磁気計測装置を提供することを目的とする。
In view of the above, the present invention has been improved so that magnetic measurement can be performed by easily and accurately grasping the positional relationship of the position and measurement direction of the magnetic measurement point with respect to the living body.
The purpose is to provide a biomagnetic measurement device.

【0011】[0011]

【課題を解決するための手段】上記の目的を達成するた
め、この発明による生体磁気計測装置においては、スタ
イラス先端で特徴点を指すのではなく、可視光ビームを
利用してある点を指すことによってその点を入力する3
次元座標入力装置を用いることが特徴となっている。可
視光で生体特徴点を指してその点の3次元座標を入力す
るため、柔らかい皮膚表面がへこんだりするということ
がなく、正確な生体特徴点の3次元座標の入力が容易に
行える。その結果、生体磁気計測の精度自体が向上する
[Means for Solving the Problems] In order to achieve the above object, the biomagnetic measuring device according to the present invention does not point to a feature point with the tip of a stylus, but points to a certain point using a visible light beam. Enter that point by 3
It is characterized by the use of a dimensional coordinate input device. Since the three-dimensional coordinates of a biological feature point are input by pointing at the biological feature point using visible light, the soft skin surface will not be indented, and accurate three-dimensional coordinates of the biological feature point can be input easily. As a result, the accuracy of biomagnetic measurement itself improves.

【0012】0012

【実施例】以下、この発明の一実施例について図面を参
照しながら詳細に説明する。この実施例では図1に示す
ようにして、被検者の頭部とデュワー11との位置関係
を検出しながら、デュワー11内のSQUIDセンサに
よる生体磁気計測を行う。発信器41、受信器42、4
3が3次元座標入力装置を構成する。これらはそれぞれ
互いに直交する3つのコイルを備え、図示しない制御及
び信号処理装置に接続される。発信器41から、相互に
識別可能な(たとえば周波数を変える、時分割する)3
次元磁界を発生させておき、その3次元磁界の中に置か
れた受信器42、43の各コイルにより、各方向の磁界
を検出することによって、その3次元磁界中での、つま
り発信器41の3次元座標での受信器42、43の3次
元的な位置及び角度方向を計測する。
DESCRIPTION OF THE PREFERRED EMBODIMENTS An embodiment of the present invention will be described in detail below with reference to the drawings. In this embodiment, as shown in FIG. 1, biomagnetic measurement is performed using the SQUID sensor in the Dewar 11 while detecting the positional relationship between the subject's head and the Dewar 11. Transmitter 41, receiver 42, 4
3 constitutes a three-dimensional coordinate input device. Each of these has three coils orthogonal to each other and is connected to a control and signal processing device (not shown). From the transmitter 41, mutually distinguishable (for example, changing frequency, time sharing) 3
By generating a dimensional magnetic field and detecting the magnetic field in each direction by the coils of the receivers 42 and 43 placed in the 3-dimensional magnetic field, the transmitter 41 The three-dimensional positions and angular directions of the receivers 42 and 43 in three-dimensional coordinates are measured.

【0013】受信器42はフレーム44に取り付けられ
ており、このフレーム44には2つのレンズ保持台45
が設けられ、それらにレンズ筒46がそれぞれ取り付け
られている。そしてこれらレンズ筒46に光ファイバ4
7がそれぞれ接続されている。2本の光ファイバ47の
他端はそれぞれ異なる波長(色)の可視光を発生する光
源に接続されており、2つのレンズ筒46から照射され
る2つの光ビームが集束して特定の1点で交差するよう
2つのレンズ筒46の位置・方向が設定されている。可
視化された光ビームの交点で特定の点を指すことにより
、その点の3次元座標を入力する。
The receiver 42 is attached to a frame 44, and the frame 44 has two lens holders 45.
are provided, and a lens barrel 46 is attached to each of them. The optical fiber 4 is connected to these lens barrels 46.
7 are connected to each other. The other ends of the two optical fibers 47 are each connected to a light source that generates visible light of different wavelengths (colors), and the two light beams emitted from the two lens barrels 46 are focused at one specific point. The positions and directions of the two lens barrels 46 are set so that they intersect at. By pointing to a specific point at the intersection of the visualized light beams, the three-dimensional coordinates of that point are input.

【0014】すなわち、発信器41をデュワー11の表
面の適当な位置に固定した状態で、フレーム44を動か
して光ビームの交点が頭部の特徴点を指す。これによっ
て、鼻根や左右の耳のつけ根などの頭部の特徴点の発信
器41の3次元座標系での3次元座標を入力する。また
、フレーム44を動かして光ビームの交点が、デュワー
11に内蔵されたSQUIDセンサコイルの位置・方向
に関連した複数の表面位置を指すようにして、発信器4
1の3次元座標系でのSQUIDセンサコイルの3次元
座標及び方向を入力する。こうして頭部の特徴点を基準
として頭部に対する磁気計測点及び計測方向の入力がで
きたことになる。
That is, with the transmitter 41 fixed at an appropriate position on the surface of the dewar 11, the frame 44 is moved so that the intersection of the light beams points to a characteristic point on the head. As a result, the three-dimensional coordinates of feature points on the head, such as the base of the nose and the roots of the left and right ears, in the three-dimensional coordinate system of the transmitter 41 are input. Furthermore, the transmitter 4 is moved by moving the frame 44 so that the intersection points of the light beams point to a plurality of surface positions related to the position and direction of the SQUID sensor coil built in the Dewar 11.
Input the three-dimensional coordinates and direction of the SQUID sensor coil in the three-dimensional coordinate system of 1. In this way, the magnetic measurement points and measurement direction for the head can be input using the feature points of the head as a reference.

【0015】つぎに光ビームの交点で指した点の発信器
41の3次元座標系での座標が求められることについて
詳しく説明する。発信器41、受信器42、43は上記
の通りそれぞれ3組の直交コイルを有しており、発信器
41の1つのコイルを励磁すると受信器42(または4
3)の3つのコイルに、それぞれ電圧が誘起される。こ
れらの電圧は発信器41からの距離及び受信器42(ま
たは43)の角度方向に応じたものとなる。そこで、発
信器41の3次元座標系における受信器42(または4
3)の座標と方向角度(Azimuth,Elevat
ion,Roll)の6つのパラメータが算出される。
Next, we will explain in detail how the coordinates of the point indicated by the intersection of the light beams in the three-dimensional coordinate system of the transmitter 41 are determined. The transmitter 41, receivers 42, and 43 each have three orthogonal coils as described above, and when one coil of the transmitter 41 is excited, the receiver 42 (or four
3) A voltage is induced in each of the three coils. These voltages will depend on the distance from the transmitter 41 and the angular orientation of the receiver 42 (or 43). Therefore, the receiver 42 (or 4
3) coordinates and direction angle (Azimuth, Elevat
ion, Roll) are calculated.

【0016】ここでは発信器41は机の上などに固定し
、フレーム44も机の上に置く。そして、光ビームの交
点が空間のある1点Qを指すようにする。このとき、発
信器41の3軸コイルの中心Oを原点とする発信器座標
系(O;X,Y,Z)での受信器42の座標をP(a,
b,c)、受信器42の方向角度をそれぞれA,E,R
とし、また受信器42の3軸コイルの中心Pを原点とす
る受信器座標系(P;U,V,W)での点Qの座標を(
α,β、γ)とすれば、発信器座標系での点Qの座標(
X,Y,Z)は、(X,Y,Z)=(a,b,c)+(
α,β,γ)・T1・T2・T3となる。ただし、
[0016] Here, the transmitter 41 is fixed on a desk or the like, and the frame 44 is also placed on the desk. Then, the intersection of the light beams is made to point to a certain point Q in space. At this time, the coordinates of the receiver 42 in the transmitter coordinate system (O;
b, c), the direction angle of the receiver 42 is A, E, R, respectively.
Also, the coordinates of point Q in the receiver coordinate system (P; U, V, W) whose origin is the center P of the three-axis coil of the receiver 42 are (
α, β, γ), then the coordinates of point Q in the transmitter coordinate system (
X, Y, Z) is (X, Y, Z) = (a, b, c) + (
α, β, γ)・T1・T2・T3. however,

【数1】 である。[Math 1] It is.

【0017】そこで、光ビームの交点が同じ点Qを指す
ようにしてフレーム44を移動させて2回計測を行えば
、未知数X,Y,Z,α,β、γについての6つの式が
得られ、これを解くことによりα,β、γが求められる
。こうして光ビームの交点が受信器42の座標系のどこ
に位置しているかが分かるため、この交点である点を指
せば、その時の受信器42の、発信器41の座標系にお
ける座標と方向角度から、その指された点の、発信器4
1の座標系での3次元座標の入力ができることになる。
Therefore, by moving the frame 44 so that the intersection points of the light beams point to the same point Q and performing the measurement twice, six equations for the unknowns X, Y, Z, α, β, and γ can be obtained. By solving this, α, β, and γ can be found. In this way, we know where the intersection of the light beams is located in the coordinate system of the receiver 42, so if we point to this point, we can use the coordinates and direction angle of the receiver 42 in the coordinate system of the transmitter 41 at that time. , the transmitter 4 of the pointed point
1 coordinate system can be input.

【0018】そして、頭部あるいはデュワー11が動か
されて多数の測定点で磁気計測が行われるので、頭部と
デュワー11の位置関係の変動を捉えるため、頭部表面
に受信器43が取り付けられる。発信器41の3次元座
標系内での受信器43の位置及び方向の変動分により、
デュワー11内蔵のSQUIDセンサによる磁気計測点
・方向の頭部に対する位置関係が捉えられる。
Then, since the head or the Dewar 11 is moved and magnetic measurements are performed at a large number of measurement points, a receiver 43 is attached to the surface of the head in order to capture changes in the positional relationship between the head and the Dewar 11. . Due to the variation in the position and direction of the receiver 43 within the three-dimensional coordinate system of the transmitter 41,
The positional relationship of magnetic measurement points and directions with respect to the head by the SQUID sensor built into the dewar 11 can be captured.

【0019】図2は生体磁気計測装置のシステム全体を
示すものである。この図において上記のように3次元座
標入力装置4によって頭部に対する計測点・方向の入力
を行いながら、SQUIDセンサ1による磁気計測を行
う。測定データはデータ収集装置2によって収集された
後コンピュータ3に取り込まれる。これにより、生体に
対して位置的に関係づけられた磁束密度分布データがコ
ンピュータ3に取り込まれることになる。
FIG. 2 shows the entire system of the biomagnetic measuring device. In this figure, magnetic measurement is performed using the SQUID sensor 1 while inputting measurement points and directions for the head using the three-dimensional coordinate input device 4 as described above. The measurement data is collected by the data collection device 2 and then imported into the computer 3. As a result, magnetic flux density distribution data that is positionally related to the living body is imported into the computer 3.

【0020】他方、MRI装置5(あるいは図示しない
X線CT装置)により被検者の頭部の断層像を撮影する
。この撮影は上記の磁気計測の前でも後でもよく、得ら
れた画像データはオンラインあるいはオフラインでコン
ピュータ3に送られる。この撮影時にはMR画像(ある
いはX線CT画像など)でも写るような指標を頭部特徴
点につけておく。こうして得られた指標像の現れた画像
データと、上記の3次元座標入力装置で入力した頭部特
徴点のデータとがコンピュータ3においてつき合わされ
る。これにより、断層像の上でどの位置・方向から磁気
計測されたかを正確に知ることができ、上記の磁束密度
分布データを断層像データと位置的に正確に関連付ける
ことができる。
On the other hand, a tomographic image of the subject's head is taken by the MRI device 5 (or an X-ray CT device, not shown). This photographing may be performed before or after the magnetic measurement described above, and the obtained image data is sent to the computer 3 online or offline. At the time of this imaging, an index that can be seen in an MR image (or an X-ray CT image, etc.) is attached to the head feature points. The image data in which the index image thus obtained appears and the data of the head feature points inputted by the three-dimensional coordinate input device are compared in the computer 3. Thereby, it is possible to accurately know from which position and direction on the tomographic image the magnetic field was measured, and it is possible to accurately correlate the magnetic flux density distribution data with the tomographic image data in terms of position.

【0021】コンピュータ3はこの断層像データから頭
部の適当な近似モデルを作成し、電流双極子の算出を行
う。すなわち、その頭部近似モデル上に電流双極子の大
きさ・位置・方向を仮定し、この仮定した電流双極子が
近似モデル上で作る磁束密度分布と計測した磁束密度分
布との2乗誤差が最小になるような電流双極子の大きさ
・位置・方向を求めることによって、この電流双極子の
大きさ・位置・方向が算出される。上記のように、計測
した磁束密度分布が正確に近似モデルに対して位置決め
されるため、電流双極子の算出精度を向上させることが
できる。こうして算出された電流双極子はたとえば矢印
などで表示することとし、この矢印をCT像やMR像な
どの断層像の上に重ねた状態で、コンピュータ3に接続
された表示装置31において表示する。また、この求め
られた電流双極子の大きさ・位置・方向は断層像データ
とともに記録装置32で記録される。
The computer 3 creates an appropriate approximate model of the head from this tomographic image data and calculates the current dipole. In other words, the size, position, and direction of the current dipole are assumed on the head approximation model, and the square error between the magnetic flux density distribution created by the assumed current dipole on the approximation model and the measured magnetic flux density distribution is The size, position, and direction of this current dipole are calculated by finding the size, position, and direction of the current dipole that minimizes it. As described above, since the measured magnetic flux density distribution is accurately positioned with respect to the approximate model, the accuracy of calculating the current dipole can be improved. The current dipole thus calculated is displayed, for example, as an arrow, and this arrow is displayed on the display device 31 connected to the computer 3 while being superimposed on a tomographic image such as a CT image or an MR image. Further, the magnitude, position, and direction of the current dipole thus determined are recorded by the recording device 32 together with the tomographic image data.

【0022】なお、上記では被検者の頭部の磁気計測を
行う場合を例として説明したが、このような脳磁計測に
限らず、心磁計測などに適用することもできる。
[0022] In the above description, the case where the magnetic field of the subject's head is measured has been described as an example, but the present invention is not limited to such magnetic brain magnetic field measurement, but can also be applied to magnetocardial magnetic field measurement.

【0023】[0023]

【発明の効果】以上実施例について説明したように、こ
の発明の生体磁気計測装置によれば、生体の特徴点の座
標を光ビームの交点で指すことによりその点の3次元座
標を入力するため、磁気測定点の位置・測定方向の生体
に対する位置関係を容易且つ正確に把握して磁気測定を
行うことができ、電流双極子推定精度も向上する。
[Effects of the Invention] As described above with respect to the embodiments, according to the biomagnetic measuring device of the present invention, the three-dimensional coordinates of a feature point of a living body can be input by pointing to the coordinates of the feature point with the intersection point of the light beam. The magnetic measurement can be performed by easily and accurately grasping the position of the magnetic measurement point and the positional relationship of the measurement direction with respect to the living body, and the accuracy of current dipole estimation is also improved.

【図面の簡単な説明】[Brief explanation of the drawing]

【図1】この発明の一実施例の模式図。FIG. 1 is a schematic diagram of an embodiment of the present invention.

【図2】同実施例の全体のブロック図。FIG. 2 is an overall block diagram of the same embodiment.

【符号の説明】[Explanation of symbols]

1                SQUIDセンサ
11              デュワー2    
            データ収集装置3     
           コンピュータ31      
        表示装置32           
   記録装置4                3
次元座標入力装置41              発
信器42、43        受信器
1 SQUID sensor 11 Dewar 2
Data collection device 3
computer 31
Display device 32
Recording device 4 3
Dimensional coordinate input device 41 Transmitter 42, 43 Receiver

Claims (1)

【特許請求の範囲】[Claims] 【請求項1】  SQUIDセンサと、このSQUID
センサを収納するデュワーと、該デュワー及び生体表面
にそれぞれ取り付けられた3次元磁場を発生・受信する
発信器及び受信器を有するとともに光ビームにより照射
された点を入力する点指定可能な受信器を有する3次元
座標入力装置とを備えることを特徴とする生体磁気計測
装置。
[Claim 1] SQUID sensor and this SQUID
A dewar that houses a sensor, a transmitter and a receiver that generate and receive a three-dimensional magnetic field attached to the dewar and the surface of a living body, respectively, and a receiver that can input a point irradiated with a light beam and that can specify a point. A biomagnetic measurement device comprising: a three-dimensional coordinate input device.
JP2416140A 1990-12-31 1990-12-31 Biomagnetism measuring instrument Pending JPH04226630A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2416140A JPH04226630A (en) 1990-12-31 1990-12-31 Biomagnetism measuring instrument

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2416140A JPH04226630A (en) 1990-12-31 1990-12-31 Biomagnetism measuring instrument

Publications (1)

Publication Number Publication Date
JPH04226630A true JPH04226630A (en) 1992-08-17

Family

ID=18524381

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2416140A Pending JPH04226630A (en) 1990-12-31 1990-12-31 Biomagnetism measuring instrument

Country Status (1)

Country Link
JP (1) JPH04226630A (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2002526188A (en) * 1998-09-24 2002-08-20 スーパー ディメンション リミテッド System and method for determining the position of a catheter during a medical procedure inside the body

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2002526188A (en) * 1998-09-24 2002-08-20 スーパー ディメンション リミテッド System and method for determining the position of a catheter during a medical procedure inside the body

Similar Documents

Publication Publication Date Title
US7174202B2 (en) Medical navigation apparatus
US6757557B1 (en) Position location system
US8249689B2 (en) Coil arrangement for electromagnetic tracking method and system
EP0655138B1 (en) Position location system
US20080204012A1 (en) Magnetic Tracking System for an Imaging System
JPS61105448A (en) Automatic shimming device and phantom used for said device
CA2358682A1 (en) Position location system
JP4110108B2 (en) Biomagnetic field measurement device, horizontal position setting method for biomagnetic field measurement
JP4011340B2 (en) Surgery support system
JPH04109930A (en) Living body magnetism measuring device
JP2751408B2 (en) Magnetoencephalograph
JPH04109929A (en) Method for measuring living body magnetism
JPH04109932A (en) Living body magnetism measuring device
JPH04226630A (en) Biomagnetism measuring instrument
JPH04303416A (en) Device for measuring magnetism of living body
JP2022147542A (en) Biological information measurement system and program for biological information measurement
JP2844848B2 (en) Biomagnetic measurement device
JP2797665B2 (en) Magnetoencephalograph
JPH03251226A (en) Organism magnetic measuring method
JPH04303417A (en) Device for measuring magnetism of living body
JPH04226631A (en) Biomagnetism measuring instrument
JPH04226632A (en) Biomagnetism measuring instrument
CA2288411C (en) Position location system
JPH0461842A (en) Measurement of living body magnetism
Abraham-Fuchs et al. Fusion of Biomagnetlsm with MR or CT Images by Contour-Fitting