JP2002296238A - Squid magnetic imaging device - Google Patents

Squid magnetic imaging device

Info

Publication number
JP2002296238A
JP2002296238A JP2001101264A JP2001101264A JP2002296238A JP 2002296238 A JP2002296238 A JP 2002296238A JP 2001101264 A JP2001101264 A JP 2001101264A JP 2001101264 A JP2001101264 A JP 2001101264A JP 2002296238 A JP2002296238 A JP 2002296238A
Authority
JP
Japan
Prior art keywords
magnetic
magnetic field
squid
area
excitation source
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2001101264A
Other languages
Japanese (ja)
Other versions
JP3491017B2 (en
Inventor
Masahiro Daibo
真洋 大坊
Arimitsu Shikoda
有光 志子田
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Iwate Prefectural Government
Original Assignee
Iwate Prefectural Government
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Iwate Prefectural Government filed Critical Iwate Prefectural Government
Priority to JP2001101264A priority Critical patent/JP3491017B2/en
Publication of JP2002296238A publication Critical patent/JP2002296238A/en
Application granted granted Critical
Publication of JP3491017B2 publication Critical patent/JP3491017B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Landscapes

  • Measuring Magnetic Variables (AREA)
  • Investigating Or Analyzing Materials By The Use Of Magnetic Means (AREA)

Abstract

PROBLEM TO BE SOLVED: To enhance magnetism measurement density. SOLUTION: This squid magnetic imaging device is provided with a stage 20 for installing a specimen (t), an exciting source 30 for respectively imparting a magnetic field to plural areas (a) of the specimen (t) installed on the stage 20, a magnetic field period varying means 40 for varying the period of the magnetic field of the exciting source 30 for a selected area (a) by selecting the area (a), a magnetic signal extracting means 50 for extracting a magnetic signal detected by a SQUID for every area (a) selected by the varying means 40, and an imaging means 60 for imaging the magnetic signal extracted by the extracting means 50 by mapping it corresponding to the area (a).

Description

【発明の詳細な説明】DETAILED DESCRIPTION OF THE INVENTION

【0001】[0001]

【発明の属する技術分野】本発明は、物体の構造を磁気
的手段により測定を行なうスクイド磁気画像化装置に関
する。
[0001] 1. Field of the Invention [0002] The present invention relates to a squid magnetic imaging apparatus for measuring the structure of an object by magnetic means.

【0002】[0002]

【従来の技術】図8には、従来のスクイドによる磁気測
定の主な構成を示している。従来の磁気測定において
は、磁場発生部1で発生した磁場中に被検体tを配置
し、ピックアップコイルcとスクイドリングrとを備え
たスクイド磁気測定部2によって磁場変化を測定する。
従来の磁気測定による磁気測定密度は、ピックアップコ
イルcの直径d1とピックアップコイルcから被検体t
までの距離d2のいずれか大きい方で決定される。
2. Description of the Related Art FIG. 8 shows a main structure of a conventional magnetic measurement using a squid. In the conventional magnetic measurement, a subject t is arranged in a magnetic field generated by a magnetic field generating unit 1, and a magnetic field change is measured by a squid magnetic measuring unit 2 including a pickup coil c and a squid ring r.
The magnetic measurement density obtained by the conventional magnetic measurement is obtained by calculating the object t from the diameter d1 of the pickup coil c and the pickup coil c.
Is determined by the larger one of the distances d2 to d2.

【0003】[0003]

【発明が解決しようとする課題】ところで、従来のスク
イド磁気測定の構成において、ピックアップコイルcの
直径d1及びピックアップコイルcから被検体tまでの
距離d2は物理的に数mm間隔が限度である。また、ピ
ックアップコイルcの直径d1を小さくすると磁場感度
が低下してしまう。従って、従来の磁気測定の構成では
空間分解能を高めることは困難であるという問題があ
る。また、測定密度を高めるためには、被検体tを微小
変移させて2重3重の測定を行なうことが必要になり測
定が非常に煩雑になるという問題がある。
By the way, in the conventional configuration of squid magnetism measurement, the diameter d1 of the pickup coil c and the distance d2 from the pickup coil c to the subject t are physically limited to several mm. Also, when the diameter d1 of the pickup coil c is reduced, the magnetic field sensitivity is reduced. Therefore, there is a problem that it is difficult to increase the spatial resolution with the conventional magnetic measurement configuration. In addition, in order to increase the measurement density, it is necessary to perform double and triple measurement by subjecting the subject t to a small displacement, which causes a problem that the measurement becomes very complicated.

【0004】本発明は、このような問題点に鑑みてなさ
れたもので、磁気測定密度を高めることを図ったスクイ
ド磁気画像化装置を提供することを目的とする。
[0004] The present invention has been made in view of the above problems, and has as its object to provide a squid magnetic imaging apparatus designed to increase the magnetic measurement density.

【0005】[0005]

【課題を解決するための手段】このような課題を解決す
るための本発明の技術的手段は、被検体に磁場を与え
て、該磁場により該被検体を透過し該被検体の複素透磁
率に対応した磁気信号をピックアップコイルを介してス
クイドで検知し、該スクイドの検知結果に基づいて上記
磁気信号を画像化するスクイド磁気画像化装置におい
て、該被検体を設置するステージと、該ステージに設置
された被検体の複数のエリアに夫々磁場を与える励磁源
と、該エリアを選択して該選択したエリアの励磁源の磁
場の周期を可変にする磁場周期可変手段と、上記スクイ
ドが検知した上記磁気信号を上記磁場周期可変手段が選
択した上記エリア毎に抽出する磁気信号抽出手段と、該
磁気信号抽出手段が抽出した磁気信号を上記エリア対応
にマッピングして画像化する画像化手段とを備えた構成
とした。励磁源はエリアに分割され、磁場周期可変手段
によりエリア単位で磁場を発生することも、所定の複数
のエリア領域で同時に磁場を発生することも可能にして
いる。磁場が発生する単位エリア領域を微小にすること
により測定密度が高められる。また、必要に応じ、上記
励磁源を、上記エリアに対応して設けられ、各々独立し
て磁場を発生する複数の励磁用コイルを備えた構成とし
た。エリアから所定周波数特性による磁場を被検体に与
える。個々のエリアから異なる周波数特製の磁場が発生
可能になり、エリア単位で磁気信号の検知を行なう。更
に、必要に応じ、上記励磁源を、上記エリアに対応して
設けられた複数の光電変換素子と、該各光電変換素子に
光を照射した際に光電変換素子が発生する電流を通して
磁場を発生する複数の磁場発生コイルとを備えた構成と
した。電源供給配線を不要にし、電源供給配線により生
じる磁場のノイズを無くする。更にまた、必要に応じ、
上記光電変換素子に光を照射するレーザー発生部を備え
た構成とした。一定周波数の光を供給し、発生する磁場
の安定化が図られる。また、必要に応じ、上記レーザー
発生部を、上記光電変換素子に順次レーザーを照射する
ために照射位置を変化する照射位置変化機構を備えた構
成とした。光電変換に必要なエネルギーを光電変換素子
に選択的に供給する。
The technical means of the present invention for solving the above problems is to apply a magnetic field to an object, transmit the object with the magnetic field, and transmit the complex magnetic permeability of the object. In a squid magnetic imaging apparatus for detecting a magnetic signal corresponding to the squid via a pickup coil and imaging the magnetic signal based on the detection result of the squid, a stage for installing the subject, An excitation source that applies a magnetic field to each of a plurality of areas of the placed subject, a magnetic field cycle variable unit that selects the area and changes the cycle of the magnetic field of the excitation source in the selected area, and the squid detects A magnetic signal extracting means for extracting the magnetic signal for each of the areas selected by the magnetic field cycle varying means, and an image obtained by mapping the magnetic signal extracted by the magnetic signal extracting means in correspondence with the area; And an imaging unit that configured to include a. The excitation source is divided into areas, and it is possible to generate a magnetic field in units of area by the magnetic field period varying means, or to generate a magnetic field simultaneously in a plurality of predetermined area areas. The measurement density can be increased by miniaturizing the unit area where the magnetic field is generated. If necessary, the excitation source is provided corresponding to the area, and has a configuration including a plurality of excitation coils that independently generate a magnetic field. A magnetic field having a predetermined frequency characteristic is applied to the subject from the area. A magnetic field with a different frequency can be generated from each area, and a magnetic signal is detected for each area. Further, if necessary, the excitation source may be provided with a plurality of photoelectric conversion elements provided corresponding to the area, and a magnetic field may be generated through a current generated by the photoelectric conversion elements when each of the photoelectric conversion elements is irradiated with light. And a plurality of magnetic field generating coils. Eliminates the need for power supply wiring and eliminates magnetic field noise caused by power supply wiring. Furthermore, if necessary,
A configuration was provided in which a laser generator for irradiating the photoelectric conversion element with light was provided. Light of a constant frequency is supplied to stabilize the generated magnetic field. Further, if necessary, the laser generating section is provided with an irradiation position changing mechanism for changing an irradiation position in order to sequentially irradiate the photoelectric conversion element with laser. Energy required for photoelectric conversion is selectively supplied to the photoelectric conversion element.

【0006】更に、必要に応じ、上記励磁源を、核四極
共鳴周波数が温度によって連続的に変化する物質と、該
物質に温度勾配を与える温度勾配供与部とを備えて構成
し、上記磁場周期可変手段を、温度勾配が生じた該物質
に共鳴周波数を供与して上記エリア毎に磁場を発生させ
る共鳴周波数供与部とを備えた構成とした。エリアの領
域を所定温度における共鳴領域まで微小化するととも
に、共鳴領域の移動による連続的な磁場発生が行なわれ
る。更にまた、必要に応じ、上記ピックアップコイル
を、上記励磁源が発生する磁場をキャンセルするキャン
セルコイルを備えた構成とした。磁気測定感度を高める
ため励磁源から高磁場を発生させても、高磁場は測定に
おいて相殺されてその磁場変化の信号だけを検知する。
また、必要に応じ、上記ピックアップコイルを、複数方
向の磁場を測定可能に複数設けた構成とした。磁場の検
知方向が増えて検知感度が向上する。
Further, if necessary, the excitation source is provided with a substance whose nuclear quadrupole resonance frequency changes continuously with temperature, and a temperature gradient providing unit for giving a temperature gradient to the substance, The variable means is provided with a resonance frequency providing unit for providing a resonance frequency to the substance having the temperature gradient and generating a magnetic field for each of the areas. The area of the area is miniaturized to a resonance area at a predetermined temperature, and a continuous magnetic field is generated by moving the resonance area. Furthermore, if necessary, the pickup coil is configured to include a cancel coil for canceling a magnetic field generated by the excitation source. Even if a high magnetic field is generated from the excitation source to increase the magnetic measurement sensitivity, the high magnetic field is canceled in the measurement and only the signal of the change in the magnetic field is detected.
Further, if necessary, a plurality of the pickup coils are provided so that magnetic fields in a plurality of directions can be measured. The detection direction of the magnetic field is increased, and the detection sensitivity is improved.

【0007】[0007]

【発明の実施の形態】以下、添付図面に基づいて本発明
の実施の形態に係るスクイド磁気画像化装置を説明す
る。尚、上記と同様のものには同一の符号を付して説明
する。図1に示すように、スクイド磁気画像化装置S
は、ピックアップコイルcとスクイドリングrと磁束ロ
ック回路FLLを備えたスクイド磁気測定部10を備え
るとともに、被検体tを設置するステージ20と、ステ
ージ20に設置された被検体tの複数のエリアaに夫々
磁場を与える励磁源30と、エリアaを選択して選択し
たエリアaの励磁源30の磁場の周期を可変にする磁場
周期可変手段40と、スクイドが検知した磁気信号を磁
場周期可変手段40が選択したエリアa毎に抽出する磁
気信号抽出手段50と、磁気信号抽出手段50が抽出し
た磁気信号を上記エリアa対応にマッピングして画像化
する画像化手段60とを備える。被検体tはここでは金
属板とし、金属板の構造欠損の有無及び欠損領域を調べ
た。被検体tとしては、磁気変化が生じる無機物質及び
有機物質を対象にすることもできる。
BRIEF DESCRIPTION OF THE DRAWINGS FIG. 1 is a perspective view of a magnetic imaging apparatus according to an embodiment of the present invention. Note that the same components as described above are denoted by the same reference numerals and described. As shown in FIG. 1, the SQUID magnetic imaging device S
Includes a pickup coil c, a squid ring r, a squid magnetometer 10 having a magnetic flux lock circuit FLL, a stage 20 on which the subject t is set, and a plurality of areas a of the subject t set on the stage 20. , A magnetic field cycle varying means 40 for selecting the area a and varying the cycle of the magnetic field of the excitation source 30 in the selected area a, and a magnetic field cycle varying means for detecting the magnetic signal detected by the squid. The magnetic signal extracting unit 50 includes a magnetic signal extracting unit 50 for extracting each area a selected by the unit 40, and an imaging unit 60 for mapping the magnetic signal extracted by the magnetic signal extracting unit 50 in correspondence with the area a to form an image. In this case, the subject t was a metal plate, and the presence or absence of the structural defect and the defective region of the metal plate were examined. The subject t may be an inorganic substance or an organic substance that causes a magnetic change.

【0008】スクイド磁気測定部10は、一定の電流で
バイアスされているスクイドリングrと磁束を感知しス
クイドリングrに伝達するピックアップコイルcとスク
イドリングrに一定の電流が流れるように磁束をフィー
ドバックするフィードバックコイル(図示せず)と、こ
れらを低温に保持するデュアdと、磁束のフィードバッ
ク量を制御して磁気信号として出力する磁束ロック回路
FLLとを備えている。スクイドを用いた磁場変化の測
定精度は現存する磁気センサーの中で最も感度が高く、
10fT程度の微弱な磁場を検出することが可能であ
る。ピックアップコイルが差動型(差動型スクイド)に
なっているグラジオメータを使用すると同一距離とみな
される地磁気等のノイズをキャンセルできるので、高価
な磁気シールドルームが無くても被検体tによる磁場変
化を抽出し易い。また、最近の高温超電導材料でつくら
れたスクイドを使用すると、液体窒素による冷却が可能
となり、冷却コストが安く手軽である。ステージ20
は、被検体tを固定するとともに3次元的に変位する機
能を備える。励磁源30は、図2に示すように,複数の
励磁用コイル31をマトリックス配置して構成した。励
磁用コイル31は独立して磁場を発生し、図3に示すよ
うに夫々の励磁用コイル31の磁場発生領域が励磁用コ
イル31対応のエリアaになる。励磁用コイル31を小
型化することによって、エリアaも微小化され磁場発生
領域単位が小さくなり磁気測定密度を高めることができ
る。磁場周期可変手段40は、励磁用コイル31毎に所
定の交流電流を供給する機構を備える。磁場周期可変手
段40によれば、夫々の励磁用コイル31に同時に所定
の周波数の交流電流を供給して磁場を発生させること
や、励磁用コイル31個別に所定の交流電流を供給して
磁場を発生させることができる。磁気信号抽出手段50
は、磁場周期可変手段40が励磁用コイル31に供給し
た周波数に基づいて、励磁用コイル31が発生した磁場
の磁気信号を抽出する。被検体tに磁気的異常がない場
合には供給信号と抽出した磁気信号とは一定の関係を有
する基準状態になる。しかし、被検体tに磁気的異常が
ある場合には振幅及び位相のズレが生じるので、被検体
tの磁気的異常を把握することができる。画像化手段6
0は、励磁源30をエリアa対応で画面表示し、エリア
a毎に磁気的異常の有無を表示する。異常の有無の判断
にあっては振幅及び位相のズレの閾値を定めて行なえば
よい。
The squid magnetism measuring section 10 senses the squid ring r and the magnetic flux biased with a constant current and feeds back the magnetic flux so that a constant current flows through the pickup coil c and the squid ring r which are transmitted to the squid ring r. And a magnetic flux lock circuit FLL that controls the amount of feedback of magnetic flux and outputs it as a magnetic signal. The measurement accuracy of magnetic field change using squid is the highest sensitivity among existing magnetic sensors,
It is possible to detect a weak magnetic field of about 10 fT. If a gradiometer with a pickup coil of a differential type (differential type squid) is used, noise such as terrestrial magnetism that is regarded as the same distance can be canceled, so that a magnetic field change due to the subject t even without an expensive magnetic shield room. Is easy to extract. In addition, when a squid made of a recent high-temperature superconducting material is used, cooling by liquid nitrogen becomes possible, and the cooling cost is low and easy. Stage 20
Has a function of fixing the subject t and displacing it three-dimensionally. As shown in FIG. 2, the excitation source 30 is configured by arranging a plurality of excitation coils 31 in a matrix. The exciting coils 31 independently generate a magnetic field, and the magnetic field generating region of each exciting coil 31 becomes an area a corresponding to the exciting coil 31 as shown in FIG. By reducing the size of the exciting coil 31, the area a is also miniaturized, the unit of the magnetic field generation area is reduced, and the magnetic measurement density can be increased. The magnetic field cycle varying means 40 includes a mechanism for supplying a predetermined alternating current to each of the exciting coils 31. According to the magnetic field cycle varying means 40, an alternating current of a predetermined frequency is simultaneously supplied to each of the exciting coils 31 to generate a magnetic field, or a predetermined alternating current is individually supplied to the exciting coils 31 to generate a magnetic field. Can be generated. Magnetic signal extraction means 50
Extracts the magnetic signal of the magnetic field generated by the exciting coil 31 based on the frequency supplied to the exciting coil 31 by the magnetic field cycle varying means 40. When there is no magnetic abnormality in the subject t, the supply signal and the extracted magnetic signal enter a reference state having a certain relationship. However, if the subject t has a magnetic abnormality, the amplitude and phase are shifted, so that the magnetic abnormality of the subject t can be grasped. Imaging means 6
0 indicates that the excitation source 30 is displayed on the screen corresponding to the area a, and the presence or absence of a magnetic abnormality is displayed for each area a. In determining whether or not there is an abnormality, a threshold value for the deviation between the amplitude and the phase may be determined.

【0009】スクイド磁気画像化装置Sによれば、以下
のようにして磁場の測定を行なうことができる。 (1)各励磁用コイル31に異なる交流周波数を与え、
各励磁用コイル31から独自の磁場を発生させる。励磁
用コイル31の励起は、各励磁用コイル31単位に行な
っても全励磁用コイル31同時に行ってもよい。所定の
エリアaの磁気信号に生じる変化によって磁気的異常が
生じているエリアaを特定することができる。 (2)各励磁用コイル31に同じ交流周波数を与え、各
励磁用コイル31から同じ磁場を発生させる。励磁用コ
イル31の励起は、各励磁用コイル31単位に行なって
も全励磁用コイル31同時に行なってもよい。各励磁用
コイル31単位に行なう場合には、所定のエリアaの磁
気信号に生じる変化によって磁気的異常が生じているエ
リアaを特定することができる。全励磁用コイル31同
時に行なう場合には、励起する励磁用コイル31のエリ
アaを狭めることによって磁気的異常が生じているエリ
アaを特定することが可能になる。
According to the SQUID magnetic imaging apparatus S, the magnetic field can be measured as follows. (1) A different AC frequency is given to each exciting coil 31;
Each excitation coil 31 generates its own magnetic field. Excitation of the excitation coil 31 may be performed for each excitation coil 31 or simultaneously for all the excitation coils 31. The area a where the magnetic abnormality has occurred can be specified by the change occurring in the magnetic signal of the predetermined area a. (2) The same AC frequency is applied to each excitation coil 31 to generate the same magnetic field from each excitation coil 31. Excitation of the excitation coil 31 may be performed for each excitation coil 31 or simultaneously for all the excitation coils 31. When the process is performed for each excitation coil 31, the area a in which the magnetic abnormality has occurred can be specified by the change occurring in the magnetic signal in the predetermined area a. In the case of performing all the excitation coils 31 at the same time, it is possible to identify the area a where the magnetic abnormality has occurred by narrowing the area a of the excitation coil 31 to be excited.

【0010】次に、添付図面に基づいて本発明の他の実
施の形態に係るスクイド磁気画像化装置を説明する。図
4には、励磁源30を、上記スクイド磁気画像化装置S
における励磁用コイル31の代わりに、複数の光電変換
素子32と、各光電変換素子32に光を照射した際に光
電変換素子32が発生する電流を通して磁場を発生する
複数の磁場発生コイル33とを備えたN型基盤34で構
成した例が示される。光電変換素子32は、pn接合の
半導体であり、照射される光の周波数に応じて電流を生
じ磁場発生コイル33に供給する。磁場発生コイル33
は、励磁用コイル31と同様に対応エリアaに磁場を発
生する。光電変換素子32に光を照射する光源として
は、供給する一定のエネルギーを光電変換素子32に供
給することができるレーザー発生部(図示せず)を設け
た。レーザー発生部には、光電変換素子32に順次レー
ザー光を照射するために照射位置を変化する照射位置変
化機構を備えてある。照射位置変化機構には、ポリゴン
ミラーやガルバノミラー等を用いることができる。この
光電変換素子32を用いた励磁源30を備えたスクイド
磁気画像化装置Sは、励磁用コイル31と同様に所定の
エリアa単位の磁気信号に生じる変化によって磁気的異
常が生じているエリアaを特定することができる。特
に、光電変換素子32を用いたスクイド磁気画像化装置
Sでは、電源供給配線が不要であるため励磁用コイル3
1にて生じる電源供給配線によるノイズが生じることが
無く磁気検知を容易にする。更に、半導体の微細加工技
術を利用するので、励磁用コイル31を微小に(例え
ば、一辺を10ミクロン角程度の大きさに加工したも
の)製造することが容易にでき、励磁源30のエリアa
ピッチを狭くすることによって、測定空間分解能を数十
ミクロン程度迄向上させることができる。
Next, a squid magnetic imaging apparatus according to another embodiment of the present invention will be described with reference to the accompanying drawings. FIG. 4 shows that the excitation source 30 is connected to the SQUID magnetic imaging device S
A plurality of photoelectric conversion elements 32 and a plurality of magnetic field generating coils 33 that generate a magnetic field through a current generated by the photoelectric conversion elements 32 when each of the photoelectric conversion elements 32 is irradiated with light. An example is shown in which an N-type base 34 is provided. The photoelectric conversion element 32 is a pn junction semiconductor, generates a current in accordance with the frequency of light to be irradiated, and supplies the current to the magnetic field generating coil 33. Magnetic field generating coil 33
Generates a magnetic field in the corresponding area a as in the case of the exciting coil 31. As a light source for irradiating the photoelectric conversion element 32 with light, a laser generator (not shown) capable of supplying constant energy to be supplied to the photoelectric conversion element 32 was provided. The laser generation unit is provided with an irradiation position changing mechanism that changes the irradiation position in order to sequentially irradiate the photoelectric conversion element 32 with laser light. For the irradiation position changing mechanism, a polygon mirror, a galvanometer mirror, or the like can be used. In the SQUID magnetic imaging apparatus S provided with the excitation source 30 using the photoelectric conversion element 32, as in the case of the excitation coil 31, the area a in which the magnetic abnormality has occurred due to the change occurring in the magnetic signal in the predetermined area a unit Can be specified. In particular, in the squid magnetic imaging device S using the photoelectric conversion element 32, since the power supply wiring is unnecessary, the exciting coil 3 is used.
1 does not generate noise due to the power supply wiring and facilitates magnetic detection. Furthermore, since the semiconductor fine processing technology is used, the excitation coil 31 can be easily manufactured minutely (for example, one side processed into a size of about 10 μm square), and the area a of the excitation source 30 can be easily adjusted.
By reducing the pitch, the measurement spatial resolution can be improved to about several tens of microns.

【0011】次に、添付図面に基づいて本発明のその他
の実施の形態に係るスクイド磁気画像化装置を説明す
る。図5には、励磁源30を、上記スクイド磁気画像化
装置Sにおいて励磁用コイル31の代わりに、核四極共
鳴周波数が温度によって連続的に変化する物質35と、
物質35に温度勾配を与える温度勾配供与部36とを備
えて構成し、磁場周期可変手段40を、温度勾配が生じ
た物質35に共鳴周波数を供与して所定のエリアa毎に
磁場を発生させる共鳴周波数供与部41とを備えて構成
したスクイド磁気画像化装置Sの主要な構成が示され
る。物質35は、核四極共鳴するものであり常温域にて
共鳴周波数帯域が生じる固体であればよくNaClO3
を用いた。物質35の周囲には真空断熱層を設けてい
る。温度勾配供与部36は、ヒータやペルチェ素子を用
いて1次元的な温度勾配を物質に与える。温度勾配は、
2次元的に形成することもできる。温度勾配供与部36
が、所定の温度に達した後は、ヒータやペルチェ素子へ
の供給電源を遮断し磁気ノイズを低減させた。この状態
において、物質35の熱容量で温度変化しない短時間の
間にスクイド磁気測定部10にて磁気変化の計測を行な
った。共鳴周波数供与部41は、共鳴周波数帯域の周波
数を掃引できる掃引発振器を備えたコイルで構成してい
る。励磁源30は、共鳴周波数供与部41の供与する周
波数に温度勾配を生じさせる物質35の共鳴エリアが共
鳴することによりエネルギーを蓄える。共鳴周波数供与
部41は経時的に周波数を変化させていく。共鳴した共
鳴エリアは、共鳴周波数以外の周波数が供与されると一
気に共鳴エネルギーを外部に放出するがこの際共鳴エリ
アから強い磁場が生じる。この共鳴エリアから生じる磁
場の信号を用いて被検体tの磁気的異常の有無を検知す
る。共鳴エリアは、同温状態の原子レベルであることか
ら、測定密度を非常に高めることができ、かつ空間的に
連続した測定をすることができる。
Next, a squeeze magnetic imaging apparatus according to another embodiment of the present invention will be described with reference to the accompanying drawings. In FIG. 5, instead of the excitation coil 31 in the SQUID magnetic imaging device S, the excitation source 30 is replaced with a substance 35 whose nuclear quadrupole resonance frequency changes continuously with temperature.
A temperature gradient providing unit 36 for giving a temperature gradient to the substance 35, and the magnetic field period varying means 40 applies a resonance frequency to the substance 35 having the temperature gradient to generate a magnetic field for each predetermined area a. The main configuration of the squid magnetic imaging apparatus S including the resonance frequency providing unit 41 is shown. Material 35 may NaClO 3 If a solid resonance frequency band occurs at ordinary temperature range that is resonant Nuclear Quadrupole
Was used. A vacuum heat insulating layer is provided around the substance 35. The temperature gradient providing unit 36 applies a one-dimensional temperature gradient to the substance using a heater or a Peltier device. The temperature gradient is
It can also be formed two-dimensionally. Temperature gradient providing unit 36
However, after reaching a predetermined temperature, the power supply to the heater and the Peltier element was cut off to reduce magnetic noise. In this state, the magnetic change was measured by the SQUID magnetometer 10 during a short time in which the temperature did not change due to the heat capacity of the substance 35. The resonance frequency providing unit 41 is configured by a coil including a sweep oscillator that can sweep a frequency in a resonance frequency band. The excitation source 30 stores energy when the resonance area of the substance 35 that causes a temperature gradient in the frequency provided by the resonance frequency providing unit 41 resonates. The resonance frequency providing unit 41 changes the frequency over time. When a frequency other than the resonance frequency is applied to the resonated resonance area, the resonance energy is released to the outside at a stretch. At this time, a strong magnetic field is generated from the resonance area. The presence or absence of a magnetic abnormality in the subject t is detected using a signal of a magnetic field generated from the resonance area. Since the resonance area is at the atomic level in the same temperature state, the measurement density can be greatly increased and spatially continuous measurement can be performed.

【0012】図6(1)には、スクイド磁気画像化装置
Sにて用いるピックアップコイルcの一例が示される。
ピックアップコイルcは、励磁源30が発生する磁場を
キャンセルするように円コイル(キャンセルコイル)を
接続して8の字形に形成した。磁場は円コイルの接続に
より互いに生じる電流を打ち消すことによりキャンセル
される。この場合の磁場の変化の測定は、各円コイルが
受ける磁場の差のみをスクイド磁気測定部10がピック
アップして行なう。従って、励磁源30から強磁場を生
じさせて測定感度を高める場合であっても、磁場の微小
な変化のみを検知することができる。キャンセルコイル
を用いた場合には、スクイドの測定能が飽和するような
強磁場を用いても、磁場をキャンセルして微小の磁場変
化が得られる。図6(2)には、図6(1)に示したピ
ックアップコイルcを用いた場合の磁気測定状態が示さ
れる。ここでは、励磁用のコイルf1,f2,f3を用
いて磁気測定領域に異なる磁場を与えローラで運ばれて
くる被検体tにおける磁場変化を測定している。図6
(3)に示すように、ピックアップコイルcには常に同
一の磁場が与えられているため、被検体tが磁気測定領
域を通過した際の磁場の変化が測定可能になる。
FIG. 6A shows an example of a pickup coil c used in the squid magnetic imaging apparatus S.
The pickup coil c was formed in an eight shape by connecting a circular coil (cancellation coil) so as to cancel the magnetic field generated by the excitation source 30. The magnetic field is canceled by canceling out the currents generated by the connection of the circular coils. The measurement of the change in the magnetic field in this case is performed by the SQUID magnetometer 10 picking up only the difference between the magnetic fields received by the respective circular coils. Therefore, even when a strong magnetic field is generated from the excitation source 30 to increase the measurement sensitivity, only a small change in the magnetic field can be detected. When a cancel coil is used, even if a strong magnetic field that saturates the measurement capability of the squid is used, the magnetic field is canceled and a small change in the magnetic field is obtained. FIG. 6B shows a magnetic measurement state when the pickup coil c shown in FIG. 6A is used. Here, a different magnetic field is applied to the magnetic measurement area using the excitation coils f1, f2, and f3, and the change in the magnetic field in the subject t carried by the roller is measured. FIG.
As shown in (3), since the same magnetic field is always applied to the pickup coil c, a change in the magnetic field when the subject t passes through the magnetic measurement area can be measured.

【0013】図7には、スクイド磁気画像化装置Sにて
用いるピックアップコイルcの配置構成の一例が示され
る。ここで示したピックアップコイルcは、3のピック
アップコイルcを3次元配置することにより複数方向の
磁場を測定可能にし、測定感度を高める。
FIG. 7 shows an example of the arrangement of pickup coils c used in the squid magnetic imaging apparatus S. The pickup coil c shown here enables measurement of magnetic fields in a plurality of directions by arranging three pickup coils c three-dimensionally, and increases measurement sensitivity.

【0014】[0014]

【発明の効果】以上説明したように、本発明のスクイド
磁気画像化装置によれば、被検体を設置するステージ
と、ステージに設置された被検体の複数のエリアに夫々
磁場を与える励磁源と、エリアを選択して選択したエリ
アの励磁源の磁場の周期を可変にする磁場周期可変手段
と、スクイドが検知した磁気信号を磁場周期可変手段が
選択したエリア毎に抽出する磁気信号抽出手段と、磁気
信号抽出手段が抽出した磁気信号をエリア対応にマッピ
ングして画像化する画像化手段とを備えて構成したの
で、励磁源エリア単位の高い空間分解能で磁気的異常を
検知することができる。また、励磁源を、エリアに対応
して設けられ、各々独立して磁場を発生する複数の励磁
用コイルを備えて構成した場合には、一時に生じさせた
磁場からエリア毎の磁気信号を抽出し磁気的異常を検知
することができる。更に、励磁源を、エリアに対応して
設けられた複数の光電変換素子と、各光電変換素子に光
を照射した際に光電変換素子が発生する電流を通して磁
場を発生する複数の磁場発生コイルとを備えて構成した
場合には、不所望なノイズをカットして磁気的異常を検
知することができる。更にまた、光電変換素子に光を照
射するレーザー発生部を備えて構成した場合には、レー
ザーの照射と同時に磁場を与えることができ測定速度を
高速化することができる。また、レーザー発生部を、光
電変換素子に順次レーザーを照射するために照射位置を
変化する照射位置変化機構を備えて構成した場合には、
エリア毎にレーザー光源を設ける必要がなく、かつ磁場
を発生するエリアを選択することができる。
As described above, according to the SQUID magnetic imaging apparatus of the present invention, the stage on which the subject is placed, and the excitation source for applying a magnetic field to each of a plurality of areas of the subject placed on the stage are provided. Magnetic field period varying means for selecting the area and varying the period of the magnetic field of the excitation source in the selected area; and magnetic signal extracting means for extracting the magnetic signal detected by the squid for each area selected by the magnetic field period varying means. And an imaging means for mapping the magnetic signal extracted by the magnetic signal extraction means in accordance with the area and imaging the magnetic signal, so that a magnetic abnormality can be detected with a high spatial resolution of the excitation source area unit. When the excitation source is provided corresponding to the area and includes a plurality of excitation coils each of which independently generates a magnetic field, a magnetic signal for each area is extracted from the magnetic field generated at a time. Magnetic abnormalities can be detected. Further, the excitation source, a plurality of photoelectric conversion elements provided corresponding to the area, and a plurality of magnetic field generating coils that generate a magnetic field through the current generated by the photoelectric conversion element when irradiating each photoelectric conversion element with light In the case of comprising, it is possible to detect unwanted magnetic noise by cutting undesired noise. Furthermore, when the photoelectric conversion element is provided with a laser generator for irradiating light, a magnetic field can be applied at the same time as laser irradiation, and the measurement speed can be increased. In addition, when the laser generator is configured with an irradiation position changing mechanism that changes the irradiation position to sequentially irradiate the laser to the photoelectric conversion element,
There is no need to provide a laser light source for each area, and an area for generating a magnetic field can be selected.

【0015】更に、励磁源を、核四極共鳴周波数が温度
によって連続的に変化する物質と、物質に温度勾配を与
える温度勾配供与部とを備えて構成し、磁場周期可変手
段を、温度勾配が生じた物質に共鳴周波数を供与してエ
リア毎に磁場を発生させる共鳴周波数供与部とを備えて
構成した場合には、エリア領域を微小化して測定密度を
高めることができる。更にまた、ピックアップコイル
を、励磁源が発生する磁場をキャンセルするキャンセル
コイルを備えて構成した場合には、高磁場を発生させて
もスクイドで磁場変化を測定することができるので測定
感度を高めることができる。また、ピックアップコイル
を、複数方向の磁場を測定可能に複数設けて構成した場
合には、磁場の検知方向が増え測定感度を向上すること
ができる。
Further, the excitation source comprises a substance whose nuclear quadrupole resonance frequency changes continuously with temperature and a temperature gradient providing unit for giving a temperature gradient to the substance. In the case where the apparatus is provided with a resonance frequency providing unit that provides a resonance frequency to the generated substance and generates a magnetic field for each area, the area density can be reduced to increase the measurement density. Furthermore, when the pickup coil is configured to include a cancel coil that cancels the magnetic field generated by the excitation source, even if a high magnetic field is generated, the change in the magnetic field can be measured with a squid. Can be. Further, when a plurality of pickup coils are provided so as to be able to measure magnetic fields in a plurality of directions, the number of detection directions of the magnetic field increases and the measurement sensitivity can be improved.

【図面の簡単な説明】[Brief description of the drawings]

【図1】本発明の実施の形態に係るスクイド磁気画像化
装置を示す説明図である。
FIG. 1 is an explanatory diagram showing a squid magnetic imaging device according to an embodiment of the present invention.

【図2】本発明の実施の形態に係るスクイド磁気画像化
装置の励磁源を示す説明図である。
FIG. 2 is an explanatory diagram showing an excitation source of the squid magnetic imaging device according to the embodiment of the present invention.

【図3】本発明の実施の形態に係るスクイド磁気画像化
装置の励磁源とエリアとの関係を示す説明図であり、
(1)は断面図を示し、(2)は平面図を示す。
FIG. 3 is an explanatory diagram showing a relationship between an excitation source and an area of the squid magnetic imaging device according to the embodiment of the present invention;
(1) shows a sectional view, and (2) shows a plan view.

【図4】本発明の実施の形態に係るスクイド磁気画像化
装置で用いることができる他の励磁源を示す説明図であ
り、(1)は平面図を示し、(2)は断面図を示す。
FIG. 4 is an explanatory view showing another excitation source that can be used in the squid magnetic imaging device according to the embodiment of the present invention, wherein (1) shows a plan view and (2) shows a cross-sectional view. .

【図5】本発明の実施の形態に係るスクイド磁気画像化
装置で用いることができるその他の励磁源を示す説明図
である。
FIG. 5 is an explanatory diagram showing another excitation source that can be used in the squid magnetic imaging device according to the embodiment of the present invention.

【図6】本発明の実施の形態に係るスクイド磁気画像化
装置に用いることができるキャンセルコイルを備えたピ
ックアップコイルを示す説明図であり、(1)は平面図
を示し、(2)は測定状態を示し、(3)はピックアッ
プコイルへの磁場供与の状態を示す。
FIG. 6 is an explanatory view showing a pickup coil provided with a cancel coil that can be used in the squid magnetic imaging device according to the embodiment of the present invention, (1) showing a plan view, and (2) showing a measurement. (3) shows a state in which a magnetic field is supplied to the pickup coil.

【図7】本発明の実施の形態に係るスクイド磁気画像化
装置に用いることができる他のピックアップコイルを示
す説明図である。
FIG. 7 is an explanatory diagram showing another pickup coil that can be used in the squid magnetic imaging device according to the embodiment of the present invention.

【図8】従来のスクイドによる磁気測定の構成を示す説
明図である。
FIG. 8 is an explanatory diagram showing a configuration of magnetic measurement using a conventional squid.

【符号の説明】[Explanation of symbols]

S スクイド磁気画像化装置 a エリア c ピックアップコイル r スクイドリング t 被検体 10 スクイド磁気測定部 20 ステージ 30 励磁源 31 励磁用コイル 32 光電変換素子 33 磁場発生コイル 34 基盤 35 物質 36 温度勾配供与部 40 磁場周期可変手段 41 共鳴周波数供与部 50 磁気信号抽出手段 60 画像化手段 S Squid magnetic imaging device a Area c Pickup coil r Squid ring t Subject 10 Squid magnetometer 20 Stage 30 Exciting source 31 Exciting coil 32 Photoelectric conversion element 33 Magnetic field generating coil 34 Base 35 Material 36 Temperature gradient providing unit 40 Magnetic field Period changing means 41 Resonance frequency providing unit 50 Magnetic signal extracting means 60 Imaging means

───────────────────────────────────────────────────── フロントページの続き (72)発明者 志子田 有光 岩手県岩手郡滝沢村鵜飼字鰍森4番地55号 Fターム(参考) 2G017 AA08 AB07 AD32 BA18 2G053 AA11 AB07 AB14 BA02 BA15 BC02 BC13 BC14 CA03 CA10 CB25 DB01  ────────────────────────────────────────────────── ─── Continuing on the front page (72) Inventor Arimitsu Shikoda 4-55, Kajimori, Ukai, Takizawa-mura, Iwate-gun, Iwate Prefecture F-term (reference) 2G017 AA08 AB07 AD32 BA18 2G053 AA11 AB07 AB14 BA02 BA15 BC02 BC13 BC14 CA03 CA10 CB25 DB01

Claims (8)

【特許請求の範囲】[Claims] 【請求項1】 被検体に磁場を与えて、該磁場により該
被検体を透過し該被検体の複素透磁率に対応した磁気信
号をピックアップコイルを介してスクイドで検知し、該
スクイドの検知結果に基づいて上記磁気信号を画像化す
るスクイド磁気画像化装置において、 該被検体を設置するステージと、 該ステージに設置された被検体の複数のエリアに夫々磁
場を与える励磁源と、該エリアを選択して該選択したエ
リアの励磁源の磁場の周期を可変にする磁場周期可変手
段と、 上記スクイドが検知した上記磁気信号を上記磁場周期可
変手段が選択した上記エリア毎に抽出する磁気信号抽出
手段と、 該磁気信号抽出手段が抽出した磁気信号を上記エリア対
応にマッピングして画像化する画像化手段とを備えて構
成したことを特徴とするスクイド磁気画像化装置。
1. A magnetic field is applied to a subject, a magnetic signal corresponding to the complex magnetic permeability of the subject transmitted through the subject by the magnetic field is detected by a squid via a pickup coil, and a detection result of the squid is detected. In the SQUID magnetic imaging apparatus that images the magnetic signal based on: a stage on which the subject is installed, an excitation source that applies a magnetic field to each of a plurality of areas of the subject installed on the stage, and the area Magnetic field period varying means for selecting and varying the period of the magnetic field of the excitation source in the selected area; and magnetic signal extraction for extracting the magnetic signal detected by the squid for each of the areas selected by the magnetic field period varying means And an imaging means for mapping the magnetic signal extracted by the magnetic signal extracting means in correspondence with the area to form an image. Apparatus.
【請求項2】 上記励磁源を、上記エリアに対応して設
けられ、各々独立して磁場を発生する複数の励磁用コイ
ルを備えて構成したことを特徴とする請求項1記載のス
クイド磁気画像化装置。
2. A squid magnetic image according to claim 1, wherein said excitation source comprises a plurality of excitation coils provided corresponding to said areas and each independently generating a magnetic field. Device.
【請求項3】 上記励磁源を、上記エリアに対応して設
けられた複数の光電変換素子と、該各光電変換素子に光
を照射した際に光電変換素子が発生する電流を通して磁
場を発生する複数の磁場発生コイルとを備えて構成した
ことを特徴とする請求項1記載のスクイド磁気画像化装
置。
3. A magnetic field is generated by passing the excitation source through a plurality of photoelectric conversion elements provided corresponding to the area and a current generated by the photoelectric conversion element when each of the photoelectric conversion elements is irradiated with light. 2. The squid magnetic imaging apparatus according to claim 1, comprising a plurality of magnetic field generating coils.
【請求項4】 上記光電変換素子に光を照射するレーザ
ー発生部を備えて構成したことを特徴とする請求項3記
載のスクイド磁気画像化装置。
4. The magnetic imaging apparatus according to claim 3, further comprising a laser generator for irradiating the photoelectric conversion element with light.
【請求項5】 上記レーザー発生部を、上記光電変換素
子に順次レーザーを照射するために照射位置を変化する
照射位置変化機構を備えて構成したことを特徴とする請
求項4記載のスクイド磁気画像化装置。
5. The squid magnetic image according to claim 4, wherein said laser generating section is provided with an irradiation position changing mechanism for changing an irradiation position for sequentially irradiating said photoelectric conversion element with a laser. Device.
【請求項6】 上記励磁源を、核四極共鳴周波数が温度
によって連続的に変化する物質と、該物質に温度勾配を
与える温度勾配供与部とを備えて構成し、上記磁場周期
可変手段を、温度勾配が生じた該物質に共鳴周波数を供
与して上記エリア毎に磁場を発生させる共鳴周波数供与
部とを備えて構成したことを特徴とする請求項1記載の
スクイド磁気画像化装置。
6. The excitation source comprises: a substance whose nuclear quadrupole resonance frequency changes continuously with temperature; and a temperature gradient providing unit for giving a temperature gradient to the substance. 2. The apparatus according to claim 1, further comprising: a resonance frequency providing unit configured to provide a resonance frequency to the substance having the temperature gradient and generate a magnetic field for each of the areas.
【請求項7】 上記ピックアップコイルを、上記励磁源
が発生する磁場をキャンセルするキャンセルコイルを備
えて構成したことを特徴とする請求項1,2,3,4,
5または6記載のスクイド磁気画像化装置。
7. The pickup coil according to claim 1, further comprising a cancel coil for canceling a magnetic field generated by said excitation source.
7. The squid magnetic imaging device according to 5 or 6.
【請求項8】 上記ピックアップコイルを、複数方向の
磁場を測定可能に複数設けたことを特徴とする請求項
1,2,3,4,5,6または7記載のスクイド磁気画
像化装置。
8. The squid magnetic imaging apparatus according to claim 1, wherein a plurality of said pickup coils are provided so as to measure magnetic fields in a plurality of directions.
JP2001101264A 2001-03-30 2001-03-30 Squid magnetic imaging device Expired - Fee Related JP3491017B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2001101264A JP3491017B2 (en) 2001-03-30 2001-03-30 Squid magnetic imaging device

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2001101264A JP3491017B2 (en) 2001-03-30 2001-03-30 Squid magnetic imaging device

Publications (2)

Publication Number Publication Date
JP2002296238A true JP2002296238A (en) 2002-10-09
JP3491017B2 JP3491017B2 (en) 2004-01-26

Family

ID=18954610

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2001101264A Expired - Fee Related JP3491017B2 (en) 2001-03-30 2001-03-30 Squid magnetic imaging device

Country Status (1)

Country Link
JP (1) JP3491017B2 (en)

Cited By (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2005134196A (en) * 2003-10-29 2005-05-26 Nec Electronics Corp Non-destructive analysis method and non-destructive analysis device
JP2008539411A (en) * 2005-04-29 2008-11-13 ユニバーシティー カレッジ ロンドン Apparatus and method for measuring magnetic properties of materials
JP2009216424A (en) * 2008-03-07 2009-09-24 Kobe Steel Ltd Magnet position measuring method and magnetic field measuring instrument
JP2011013181A (en) * 2009-07-06 2011-01-20 Chugoku Electric Power Co Inc:The Nondestructive inspection device
JP2011021904A (en) * 2009-07-13 2011-02-03 Chugoku Electric Power Co Inc:The Non-destructive inspection device
JP2011128001A (en) * 2009-12-17 2011-06-30 Kanazawa Inst Of Technology Micro magnetic two-dimensional distribution detector

Citations (11)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS60190846A (en) * 1984-03-10 1985-09-28 Jeol Ltd Nuclear magnetic reasonance apparatus
JPH02304348A (en) * 1989-05-18 1990-12-18 Nippon Keisoku Kogyo Kk Method for forming two-dimensional image in ac magnetic field and method and device for inspecting article utilizing method concerned
JPH0362305A (en) * 1989-07-29 1991-03-18 Mitsuteru Kimura Magneto-optical element
JPH03158783A (en) * 1989-11-16 1991-07-08 Mitsubishi Electric Corp Superconducting magnetometer
JPH05249209A (en) * 1992-03-06 1993-09-28 Fujitsu Ltd Scanning microscope
JPH063298A (en) * 1992-06-22 1994-01-11 Hitachi Medical Corp Signal measuring method and signal measuring device for pulse nucleus quadrupole resonance
JPH0727743A (en) * 1993-07-12 1995-01-31 Sumitomo Electric Ind Ltd Non-destructive inspecting equipment
JPH07120436A (en) * 1993-10-20 1995-05-12 Seiko Instr Inc Nondestructive examination device
JPH0933489A (en) * 1995-07-24 1997-02-07 Mitsubishi Heavy Ind Ltd Moving exciting coil type eddy current flaw detector employing squid flux meter
JPH10293165A (en) * 1997-04-17 1998-11-04 Hitachi Ltd Superconducting microscope
JP2001050934A (en) * 1999-08-05 2001-02-23 Iwate Prefecture Scanning squid microscope

Patent Citations (11)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS60190846A (en) * 1984-03-10 1985-09-28 Jeol Ltd Nuclear magnetic reasonance apparatus
JPH02304348A (en) * 1989-05-18 1990-12-18 Nippon Keisoku Kogyo Kk Method for forming two-dimensional image in ac magnetic field and method and device for inspecting article utilizing method concerned
JPH0362305A (en) * 1989-07-29 1991-03-18 Mitsuteru Kimura Magneto-optical element
JPH03158783A (en) * 1989-11-16 1991-07-08 Mitsubishi Electric Corp Superconducting magnetometer
JPH05249209A (en) * 1992-03-06 1993-09-28 Fujitsu Ltd Scanning microscope
JPH063298A (en) * 1992-06-22 1994-01-11 Hitachi Medical Corp Signal measuring method and signal measuring device for pulse nucleus quadrupole resonance
JPH0727743A (en) * 1993-07-12 1995-01-31 Sumitomo Electric Ind Ltd Non-destructive inspecting equipment
JPH07120436A (en) * 1993-10-20 1995-05-12 Seiko Instr Inc Nondestructive examination device
JPH0933489A (en) * 1995-07-24 1997-02-07 Mitsubishi Heavy Ind Ltd Moving exciting coil type eddy current flaw detector employing squid flux meter
JPH10293165A (en) * 1997-04-17 1998-11-04 Hitachi Ltd Superconducting microscope
JP2001050934A (en) * 1999-08-05 2001-02-23 Iwate Prefecture Scanning squid microscope

Cited By (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2005134196A (en) * 2003-10-29 2005-05-26 Nec Electronics Corp Non-destructive analysis method and non-destructive analysis device
JP2008539411A (en) * 2005-04-29 2008-11-13 ユニバーシティー カレッジ ロンドン Apparatus and method for measuring magnetic properties of materials
JP2009216424A (en) * 2008-03-07 2009-09-24 Kobe Steel Ltd Magnet position measuring method and magnetic field measuring instrument
JP2011013181A (en) * 2009-07-06 2011-01-20 Chugoku Electric Power Co Inc:The Nondestructive inspection device
JP2011021904A (en) * 2009-07-13 2011-02-03 Chugoku Electric Power Co Inc:The Non-destructive inspection device
JP2011128001A (en) * 2009-12-17 2011-06-30 Kanazawa Inst Of Technology Micro magnetic two-dimensional distribution detector

Also Published As

Publication number Publication date
JP3491017B2 (en) 2004-01-26

Similar Documents

Publication Publication Date Title
EP3629044B1 (en) Diamond magnetic sensor
JP7225545B2 (en) Detection device and detection method
US8159216B2 (en) Method and device for eddy current imaging for the detection and the characterisation of defects hidden in complex structures
KR101009455B1 (en) Method of analyzing defect of a semiconductor chip and apparatus therefor
Abrudan et al. ALICE—An advanced reflectometer for static and dynamic experiments in magnetism at synchrotron radiation facilities
US20110313277A1 (en) Method and device for magnetic induction tomography
JP7095924B2 (en) Non-perturbative measurements of low and null magnetic fields in hot plasmas
JP2002296238A (en) Squid magnetic imaging device
JP7525117B2 (en) Method and system for detecting material response - Patents.com
Shelkovenko et al. Wire core and coronal plasma expansion in wire-array Z pinches with small numbers of wires
JP3175766B2 (en) Non-destructive inspection device and non-destructive inspection method
JP2007517571A (en) Magnetic resonance imaging method and apparatus using real-time magnetic field mapping
Geithner et al. Dark current measurements on a superconducting cavity using a cryogenic current comparator
JP2005134196A (en) Non-destructive analysis method and non-destructive analysis device
Schurig et al. Nondestructive wafer inspection utilizing SQUIDs
JP2007127590A (en) Method and system for inspecting semiconductor device
Zheng et al. Experimental system to detect the electromagnetic response of high-frequency gravitational waves
JP2007064930A (en) Electronic circuit for superconducting quantum interference device, and apparatus using it
JPH1038854A (en) Non-destructive inspection method and device of conductive material
EP2088447A1 (en) Nuclear magnetic resonance imaging device, and imaging system and imaging method using the same
CN114942378A (en) Nondestructive detection system and method for detecting micro-nano magnetic characteristic information in chip
JP2006337203A (en) Positioning method and apparatus
JP4684690B2 (en) Inspection method and apparatus using scanning laser SQUID microscope
Matsunaga et al. Application of a HTS coil with a magnetic sensor to nondestructive testing using a low-frequency magnetic field
Tympel et al. First measurements of a new type of Coreless Cryogenic Current Comparators (4C) for non-destructive intensity diagnostics of charged particles

Legal Events

Date Code Title Description
S111 Request for change of ownership or part of ownership

Free format text: JAPANESE INTERMEDIATE CODE: R313115

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

LAPS Cancellation because of no payment of annual fees