JPS62256789A - Device for growing single crystal - Google Patents
Device for growing single crystalInfo
- Publication number
- JPS62256789A JPS62256789A JP10055686A JP10055686A JPS62256789A JP S62256789 A JPS62256789 A JP S62256789A JP 10055686 A JP10055686 A JP 10055686A JP 10055686 A JP10055686 A JP 10055686A JP S62256789 A JPS62256789 A JP S62256789A
- Authority
- JP
- Japan
- Prior art keywords
- crucible
- single crystal
- measuring
- chamber
- temperature holding
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Pending
Links
- 239000013078 crystal Substances 0.000 title claims abstract description 37
- 238000010438 heat treatment Methods 0.000 claims abstract description 23
- 239000000126 substance Substances 0.000 claims abstract description 9
- 238000002844 melting Methods 0.000 claims abstract description 3
- 230000008018 melting Effects 0.000 claims abstract description 3
- 239000007788 liquid Substances 0.000 claims description 3
- 238000005259 measurement Methods 0.000 claims description 3
- 239000000155 melt Substances 0.000 abstract description 24
- 238000000034 method Methods 0.000 abstract description 8
- 230000004907 flux Effects 0.000 description 6
- 238000012423 maintenance Methods 0.000 description 5
- 239000012768 molten material Substances 0.000 description 5
- XUIMIQQOPSSXEZ-UHFFFAOYSA-N Silicon Chemical compound [Si] XUIMIQQOPSSXEZ-UHFFFAOYSA-N 0.000 description 4
- 238000010586 diagram Methods 0.000 description 4
- 229910052710 silicon Inorganic materials 0.000 description 4
- 239000010703 silicon Substances 0.000 description 4
- 238000009826 distribution Methods 0.000 description 3
- 239000002344 surface layer Substances 0.000 description 3
- OKTJSMMVPCPJKN-UHFFFAOYSA-N Carbon Chemical compound [C] OKTJSMMVPCPJKN-UHFFFAOYSA-N 0.000 description 2
- CWYNVVGOOAEACU-UHFFFAOYSA-N Fe2+ Chemical group [Fe+2] CWYNVVGOOAEACU-UHFFFAOYSA-N 0.000 description 2
- VYPSYNLAJGMNEJ-UHFFFAOYSA-N Silicium dioxide Chemical compound O=[Si]=O VYPSYNLAJGMNEJ-UHFFFAOYSA-N 0.000 description 2
- 229910052799 carbon Inorganic materials 0.000 description 2
- 230000000694 effects Effects 0.000 description 2
- 230000002411 adverse Effects 0.000 description 1
- QVGXLLKOCUKJST-UHFFFAOYSA-N atomic oxygen Chemical compound [O] QVGXLLKOCUKJST-UHFFFAOYSA-N 0.000 description 1
- 238000004140 cleaning Methods 0.000 description 1
- 239000004020 conductor Substances 0.000 description 1
- 238000007796 conventional method Methods 0.000 description 1
- 230000007423 decrease Effects 0.000 description 1
- 230000007547 defect Effects 0.000 description 1
- 238000002474 experimental method Methods 0.000 description 1
- 230000003993 interaction Effects 0.000 description 1
- 210000004072 lung Anatomy 0.000 description 1
- 238000004519 manufacturing process Methods 0.000 description 1
- 238000010899 nucleation Methods 0.000 description 1
- 229910052760 oxygen Inorganic materials 0.000 description 1
- 239000001301 oxygen Substances 0.000 description 1
Landscapes
- Liquid Deposition Of Substances Of Which Semiconductor Devices Are Composed (AREA)
- Crystals, And After-Treatments Of Crystals (AREA)
Abstract
Description
【発明の詳細な説明】
[産業上の利用分野]
本発明は、導電性を有する物質を加熱して得られた溶融
体からチョクラルスキー法によって単結晶を引上げる際
、溶融体に磁場を加えて単結晶の品質を改善し得る単結
晶の育成方法及びその装置に関する。Detailed Description of the Invention [Industrial Application Field] The present invention provides a method for applying a magnetic field to the melt when pulling a single crystal by the Czochralski method from the melt obtained by heating a conductive substance. In addition, the present invention relates to a single crystal growing method and apparatus that can improve the quality of the single crystal.
[従来の技術]
従来のシリコン等の単結晶の製造方法としては、チョク
ラルスキー法が知られており、このチョクラルスキー法
は、ルツボ内で溶融された多結晶の溶融液の表面に種子
結晶を接触させ、次に種子結晶を回転さUながらゆっく
り引上げて単結晶を成長させる方法である。この場合、
溶融体には、溶融体の側方から加えられる熱による熱対
流、種子結晶の回転による溶融液の表層部の遠心方向へ
の流れ等の循環流が生ずる。この熱対流及び循環流は単
結晶が成長する界面に温度のゆらぎをもたらし、その結
果、成長した単結晶の内部に特性の不均一性および結晶
の欠陥を生じさせるなどの悪影響を及ぼす。[Prior Art] The Czochralski method is known as a conventional method for manufacturing single crystals such as silicon, and this Czochralski method involves seeding seeds on the surface of a polycrystalline melt melted in a crucible. This method involves bringing the crystals into contact with each other, and then slowly pulling up the seed crystal while rotating it to grow a single crystal. in this case,
Circulating flows occur in the melt, such as thermal convection due to heat applied from the sides of the melt, and centrifugal flow of the surface layer of the melt due to rotation of the seed crystal. This thermal convection and circulating flow bring about temperature fluctuations at the interface where the single crystal grows, resulting in adverse effects such as non-uniformity of properties and crystal defects within the grown single crystal.
そこで、溶融体がシリコンのような導電性を有する物質
である場合には、直流平行磁界を溶融体に対して水平方
向に加えることにより、溶融体に磁気粘性を生じさせて
溶融体の循環流を抑制する。Therefore, when the molten material is a conductive material such as silicon, by applying a direct current parallel magnetic field to the molten material in the horizontal direction, magnetic viscosity is generated in the molten material, causing circulation of the molten material. suppress.
この水平磁界を加える手段としては、有鉄芯電磁石、又
は対向円柱型若しくは対向円板型若しくは対向鞍型の無
鉄芯コイルが使用されている。As a means for applying this horizontal magnetic field, a ferrous core electromagnet, or a ferrous coreless coil of an opposed cylinder type, an opposed disk type, or an opposed saddle type is used.
また、前述の電磁コイルを小型とするためにしばしば超
電導電磁コイルが使用されており、なおかつ一対の電磁
コイルを収容する低温保持手段は、低温保持効率を維持
するために、垂直軸を有する円筒型の形状を有している
。In addition, superconducting electromagnetic coils are often used to make the electromagnetic coils smaller, and the low-temperature holding means that accommodates the pair of electromagnetic coils is a cylindrical type with a vertical axis in order to maintain low-temperature holding efficiency. It has the shape of
[発明が解決しようとする問題点]
しかし乍ら、装置の操作上の観点から低温保持手段には
種々の寸法的制限があり、本発明の目的は、低温保持手
段の大きざを好ましい寸法制限内に収めることにより、
操作し易い単結晶の育成装置を提供することにある。[Problems to be Solved by the Invention] However, from the operational point of view of the device, there are various dimensional restrictions on the low temperature holding means, and the purpose of the present invention is to set the size of the low temperature holding means to desirable dimensional limits. By keeping it within
An object of the present invention is to provide a single crystal growth device that is easy to operate.
[問題点を解決するための手段]
本発明の前記目的は、円筒状ルツボと、このルツボの外
側において前記ルツボの中心軸と同心に配置されており
、前記ルツボ内の導電性を有する物質を加熱しかつ溶融
するための環状の加熱手段と、この加熱手段の外側にお
いて前記ルツボの中心軸に関して対称に対向して配置さ
れており、溶融した前記物質の熱対流を阻止するための
一対の電磁コイルと、下端が前記溶融した物質の液面の
中心部に接するように保持された単結晶と、前記ルツボ
、nN記単結晶及び前記加熱手段を密閉して収容するチ
ャンバと、測定時に前記チャンバの斜め上方に保持され
、前記下端の直径を光学的に測定するための測定手段と
、前記測定手段によって前記下端を視認し得るように前
記チャンバの肩&5にあけられた測定用窓と、前記中心
軸と同心に配置されており、前記一対の電磁コイルを収
容する環状の低温保持手段とからなる前記単結晶を育成
する装置において、前記低温保持手段の上部が、前記測
定手段とこの測定手段の前記測定用窓S−+する視認ス
ペースとに干渉しないように配置されていることを特徴
とする装置によって達成される。[Means for Solving the Problems] The object of the present invention is to provide a cylindrical crucible, a cylindrical crucible arranged outside the crucible concentrically with the central axis of the crucible, and a conductive substance inside the crucible. an annular heating means for heating and melting; and a pair of electromagnetic elements arranged symmetrically opposite to each other with respect to the central axis of the crucible on the outside of the heating means to prevent thermal convection of the molten substance. a coil, a single crystal held so that its lower end is in contact with the center of the liquid surface of the molten substance, a chamber that hermetically accommodates the crucible, the nN single crystal, and the heating means; a measuring means held diagonally above the chamber for optically measuring the diameter of the lower end; a measuring window bored in the shoulder &5 of the chamber so that the lower end can be visually checked by the measuring means; In the apparatus for growing the single crystal, the apparatus comprises an annular low-temperature holding means arranged concentrically with the central axis and housing the pair of electromagnetic coils, wherein an upper part of the low-temperature holding means is connected to the measuring means and the measuring means. This is achieved by a device characterized in that it is arranged so as not to interfere with the viewing space for the measurement window S-+.
[作用]
第1A図及び第1B図は本発明の装置の溶融液の流れ及
び磁場を示す平面図及び置所面図であり、これらの図に
よって本発明の方法及び装置の原理を以下に説明する。[Operation] FIGS. 1A and 1B are a plan view and a location view showing the flow of the melt and the magnetic field of the apparatus of the present invention, and the principles of the method and apparatus of the present invention will be explained below using these figures. do.
円筒形のルツボ1に満たされた溶融体2は通常側方から
加熱されるので、溶融体2の外側部の温度は中心部の温
度より高くなり、溶融体2の外周部には、第1A図及び
第1B図に示すように対流3が発生する。一方、シリコ
ン単結晶4の回転によって、溶融体2の表層部の連れ回
りが生起され、これに起因して前記表層部に遠心方向の
流れ及び溶融体の中心部の上昇流による循環流5が発生
する。本発明の装置では、これらの対流3及び循環流5
を阻止するために、磁束線6がルツボ1の外周及び底部
にほぼ沿って加えられており、これによって、磁束線6
は溶融体2の広範囲な領域に渡って対流3及び循環流5
とほぼ直交し、溶融体2の流れの抑制が効率よく行なわ
れる。Since the melt 2 filled in the cylindrical crucible 1 is usually heated from the side, the temperature of the outer part of the melt 2 is higher than the temperature of the center, and the 1A Convection 3 occurs as shown in FIG. 1 and FIG. 1B. On the other hand, the rotation of the silicon single crystal 4 causes the surface layer of the melt 2 to rotate, and as a result, a circulating flow 5 is generated in the surface layer due to a centrifugal flow and an upward flow in the center of the melt. Occur. In the device of the present invention, these convection flow 3 and circulation flow 5
In order to prevent the magnetic flux lines 6
is a convection current 3 and a circulation flow 5 over a wide area of the melt 2.
The flow of the melt 2 is effectively suppressed.
第2図は、溶融体に磁界を与えるコイルの半径と、対向
するコイルの間隔との関係を示す説明図であり、半径r
を有する同型のコイル7の夫々が、間隔1を保つと共に
中心が2軸上に位置するように対向している。この時、
Z軸上の磁界強度Bの強さは第3図のグラフのようにな
る。r−jの時、夫々のコイル7の中心O付近でほぼ平
坦な磁界強度Bの分布が得られ、N>rの時は、中心0
付近の磁界強度Bは低下する。一方、ρ〈rの時は、中
心0付近の磁界強度BIfii大である。こうして、一
様な磁界強度Bを得るためには、コイルの半径rと対向
するコイルの間隔1をできるだけ等しくするのが望まし
いと言える。しかしながら、コイルのlSi!置の制限
からN>rとなるのが通常である。FIG. 2 is an explanatory diagram showing the relationship between the radius of a coil that applies a magnetic field to a molten material and the interval between opposing coils, and the radius r
The coils 7 having the same shape are opposed to each other with an interval of 1 and their centers are located on two axes. At this time,
The strength of the magnetic field strength B on the Z-axis is as shown in the graph of FIG. r-j, a nearly flat distribution of magnetic field strength B is obtained near the center O of each coil 7, and when N>r, the distribution of the magnetic field strength B is approximately flat near the center O of each coil 7.
The magnetic field strength B in the vicinity decreases. On the other hand, when ρ<r, the magnetic field strength BIfii near the center 0 is large. Thus, in order to obtain a uniform magnetic field strength B, it is desirable to make the radius r of the coil and the distance 1 between the opposing coils as equal as possible. However, the lSi of the coil! Normally, N>r due to space limitations.
[具体例]
以下、本発明の単結晶の育成装置の一興体例について述
べる。[Specific Example] Hereinafter, an example of the single crystal growth apparatus of the present invention will be described.
第4A図及び第4B図は、溶融体に加えられる磁束線を
示す本発明の装置の要部の立面部分断面図及び平面部分
断面図である炭素製ルツボ支持部10の中に半径rの石
英ガラス製ルツボ11が内挿されており、その中に溶融
体12が満たされている。FIGS. 4A and 4B are partial elevation and partial cross-sectional views of the main parts of the apparatus of the present invention, showing lines of magnetic flux applied to the melt. A crucible 11 made of quartz glass is inserted and filled with a melt 12.
石英ガラス製ルツボ11の底部の曲率半径はrbである
。一方、直径りの育成シリコン単結晶13の下面が溶融
体12の表面に接するように結晶引上げ用ワイヤ14に
懸吊されている。前述のルツボ11は半径rhの円筒状
電熱ヒータ15に収容され、ヒータ15は炭素製円筒状
保温部材16に収容されている。The radius of curvature of the bottom of the quartz glass crucible 11 is rb. On the other hand, a diameter-sized grown silicon single crystal 13 is suspended from a crystal pulling wire 14 so that its lower surface is in contact with the surface of the melt 12. The crucible 11 described above is housed in a cylindrical electric heater 15 having a radius rh, and the heater 15 is housed in a cylindrical heat insulating member 16 made of carbon.
半径r。の平板状超電導コイル17が低温保持手段18
と共に保温部材16の両側に間隔りを保って対向してお
り、コイル17の半径r ルツボ11の底部Cゝ
半径r 及びコイル17の間隔りを適宜に選択ずb・
ることによって、コイル17の磁束線19は、ルツボ1
1の外側部に沿って通ると共にルツボ11の底部に沿っ
て通り得る。Radius r. The flat superconducting coil 17 serves as a low temperature maintenance means 18.
By appropriately selecting the radius r of the coil 17, the radius r of the bottom C of the crucible 11, and the spacing between the coils 17, the coils 17 are The magnetic flux lines 19 are the crucible 1
1 and along the bottom of the crucible 11.
磁束線19がルツボ11の外側部及び底部に沿って通る
ための条件について更に詳細に述べると、磁力線19の
曲率半径Rと、ルツボ11の外形半径F
r並びにルツボ11の底部半径rbの間に夫々、rS
RMF ≦4r
r ≦R≦4r
MFb
このような条件を満たすには、コイル17の半径rcに
r c−(1,5〜5)r
の関係があるのが望ましい。To describe in more detail the conditions for the lines of magnetic flux 19 to pass along the outside and bottom of the crucible 11, there is a gap between the radius of curvature R of the lines of magnetic force 19, the outer radius F r of the crucible 11, and the bottom radius rb of the crucible 11. respectively, rS
RMF ≦4r r ≦R≦4r MFb In order to satisfy such conditions, it is desirable that the radius rc of the coil 17 has a relationship of rc-(1,5-5)r.
一方、溶融体の加熱手段は、通常、ルツボの外側におい
てルツボの中心軸と同心に配置された環状の炭素部材か
ら成り、この環状の加熱手段には、上端からのスリット
と下端からのスリットが周方向に沿って交互に設けられ
ている。したがって、加熱電流は加熱手段の中を、加熱
手段の長手方向に関してジグザグ状に流れ、この電流と
磁場との作用で生ずるヒータ15の振動を避けるために
、ヒータ15の加熱電流のリップル値は(框力小さい方
が好ましい。しかし、通常、加熱電流には3〜5%のリ
ップルが存在し、この範囲の電流値の変動がある場合に
、コイル17とヒータ15とが近接して配変動電流によ
ってヒータ15に大きな繰返し応力が高温状態で作用す
るため、ヒータ15の寿命が短くなる。On the other hand, the means for heating the melt usually consists of an annular carbon member placed concentrically with the central axis of the crucible on the outside of the crucible, and this annular heating means has a slit from the upper end and a slit from the lower end. They are provided alternately along the circumferential direction. Therefore, the heating current flows through the heating means in a zigzag pattern with respect to the longitudinal direction of the heating means, and in order to avoid vibrations of the heater 15 caused by the interaction of this current and the magnetic field, the ripple value of the heating current of the heater 15 is ( It is preferable that the heating current is small.However, there is usually a ripple of 3 to 5% in the heating current, and when the current value fluctuates within this range, the coil 17 and heater 15 are close to each other and the distribution fluctuation current As a result, a large repeated stress acts on the heater 15 at high temperatures, resulting in a shortened lifespan of the heater 15.
実験の結果によれば、ヒータ15の半径をrh1コイル
17の半径をr。、対向するコイル17間の距離をLと
して
r c > r h 及びL>3rhとなるように、
コイル17の半径r0及びコイル17間の間隔りを選定
すると、加熱電流のリップル値が4%時にr ≦r 又
はL≦3rhの場合にh
比べて、ヒータ15の耐用使用回数が20%〜30%増
大した。According to the experimental results, the radius of the heater 15 is rh1, and the radius of the coil 17 is r. , the distance between the opposing coils 17 is L, so that r c > r h and L > 3 rh.
When the radius r0 of the coil 17 and the spacing between the coils 17 are selected, the number of durable uses of the heater 15 is 20% to 30% compared to h when the ripple value of the heating current is 4% or when r≦r or L≦3rh. % increased.
ところで、溶融体に磁界が加えられた状態で単結晶の引
上げを安定的に行なうために、単結晶13の直径りとル
ツボ11の直径2rの間にD/2r<0.75の関係が
あるのが望ましく、さらに実験の結果によれば、育成単
結晶13中のI!ti1m度は、D/2rの値に関係し
ていることが判明した。By the way, in order to stably pull a single crystal while a magnetic field is applied to the melt, there is a relationship between the diameter of the single crystal 13 and the diameter 2r of the crucible 11 of D/2r<0.75. According to the experimental results, I! in the grown single crystal 13 is desirable. It was found that the ti1m degree is related to the value of D/2r.
すなわち、溶融体12に3000ガウスの磁界が加えら
れた状態において、Q/2r<0.7以下の時は容易に
単結晶の酸素濃度を10x 10 atoms/cl
R3以下とし得、D/2r<0.6以下の時ハ5X10
17atOIS/aR3以下トし得た。好ましくは、D
/2r〈0.5以下とするのがよく、この場合はwi素
a度はi x 10 atoms/cm3とし得た。That is, when a magnetic field of 3000 Gauss is applied to the melt 12, when Q/2r<0.7, the oxygen concentration of the single crystal can be easily reduced to 10x 10 atoms/cl.
It can be R3 or less, and when D/2r<0.6 or less, 5X10
17atOIS/aR3 or less. Preferably, D
/2r<0.5 or less, and in this case, the wi elementary degree could be set to i x 10 atoms/cm3.
但し、以上の実験で、単結晶13の直径りは100順φ
以上である。However, in the above experiment, the diameter of the single crystal 13 is in the order of 100φ
That's all.
第5図は、低温保持手段の高さの制限を示す説明図であ
り、引上げ結晶20は引上げチャンバ21内に配置され
ている。コイル22の中心線23は溶融体の液面24に
ほぼ一致している。この低温保持手段25においてコイ
ル22の直径を大きくすると、対向する平板状超電導コ
イルのための垂直軸を有する円筒型低温保持手段25の
外径、及び高さが増大する。この円筒型低温保持手段を
装備した実験装置では、低温保持手段の高さは、コイル
の上端に300Mを加えた値とするのが望ましく、低温
保持手段の内径は少なくともコイル間圧@Lより 10
0#l#I以上小さい値であると共に外径は望ましい。FIG. 5 is an explanatory diagram showing the limit on the height of the low temperature holding means, and the pulled crystal 20 is placed in the pulled chamber 21. The centerline 23 of the coil 22 substantially coincides with the liquid level 24 of the melt. Increasing the diameter of the coil 22 in this low temperature holding means 25 increases the outer diameter and height of the cylindrical low temperature holding means 25 having a vertical axis for the opposing flat superconducting coils. In an experimental apparatus equipped with this cylindrical low temperature holding means, it is desirable that the height of the low temperature holding means is equal to the upper end of the coil plus 300M, and the inner diameter of the low temperature holding means is at least 10 mm higher than the inter-coil pressure @L.
It is desirable that the outer diameter is smaller than 0#l#I.
また、装置の操作上の観点から大型の低温保持手段は望
ましくなく、測定用窓26が充分°に機能するような高
さに制限されるのが望ましい。すなわち、単結晶20の
直径を光学的に測定する測定手段27の外形寸法は10
αX10αX30α又は71φ×10α程度であり、引
上げ単結晶20を視認するためには、測定手段27の保
持位置が単結晶の界面の中心と測定用窓2Gの中心を結
ぶIl!28上になければならず、その高さは引上げチ
ャンバ20の7ランジ上200鯨が下限である。したが
って、低温保持手段ワC,/7)ft −’r n
)IITI lfl ++ ’W CFa
I−b IJ 1 シ% 、 Jj
QA^−−11!下であり、この範囲であれば、低温保
持手段25の取付は及び測定手段27の操作に支承はな
い。Further, from the operational point of view of the apparatus, a large-sized cryogenic maintenance means is undesirable, and it is desirable that the height be limited so that the measurement window 26 can function sufficiently. That is, the external dimensions of the measuring means 27 for optically measuring the diameter of the single crystal 20 are 10
αX 10 α 28 above, and its height has a lower limit of 200 points above 7 lunges of the pulling chamber 20. Therefore, the low temperature holding means C, /7) ft -'r n
) IITI lfl ++ 'W CFa
I-b IJ 1 %, Jj
QA^--11! Within this range, there is no support for mounting the low temperature holding means 25 and operating the measuring means 27.
当然ながら、低温保持手段25の形状は種々変形しても
よく、例えば分離型の低温保持手段を使用することによ
り、上述のような制限は緩和される。また、低温保持手
段の外形が円筒状でもよく、内部が円筒状であって外部
が角柱筒としてもよい。この場合、ルツボの最大径45
0馴φ用の低温保持手段の寸法及び重量の一例としては
、内部円筒径は900履、外部角柱寸法は1350#l
(中)× ・1460m (奥行) x 1135M
(高さ)であり、総重里は2.61であった。Naturally, the shape of the low temperature holding means 25 may be modified in various ways. For example, by using a separate type low temperature holding means, the above-mentioned restrictions can be alleviated. Further, the outside shape of the low temperature holding means may be cylindrical, or the inside may be cylindrical and the outside may be a prismatic cylinder. In this case, the maximum diameter of the crucible is 45
As an example of the dimensions and weight of the low temperature holding means for 0mm diameter, the internal cylinder diameter is 900mm, and the external prismatic dimension is 1350#l.
(Medium) x ・1460m (Depth) x 1135M
(height), and the total weight was 2.61.
第6Δ図は、昇降可能な低温保持手段を装着した単結晶
の育成装置の説明図であり、引上げチャンバ31に対向
して低温保持手段32が配置されている。ヒータ等のホ
ットゾーン構成部品交換時、ル%17−1j11a f
ft ダ吐日31 ++ −1%4 M a jt
m it 11 イ−シバ内面清浄時のような保守時
には、第6B図に示すように低温保持手段32が引上げ
チャンバ31の下方に下げられ(9て保守性を向上させ
ている。さらに引上げチャンバ31は回転支柱33及び
回転支持腕34に支持されており、前述の保守時には、
第6B図の如く引上げチャンバ31を回転支柱33の回
りに回転させて、ホットゾーン構成部品35を露出させ
て、作業性を向上させている。FIG. 6A is an explanatory diagram of a single crystal growth apparatus equipped with a low temperature holding means that can be raised and lowered, and the low temperature holding means 32 is placed opposite the pulling chamber 31. When replacing hot zone components such as heaters, %17-1j11a f
ft day 31 ++ -1%4 M a jt
mit 11 During maintenance such as when cleaning the inside of the e-shiba, the low temperature holding means 32 is lowered below the pulling chamber 31 as shown in FIG. 6B (9 to improve maintainability. is supported by a rotating column 33 and a rotating support arm 34, and during the above-mentioned maintenance,
As shown in FIG. 6B, the pulling chamber 31 is rotated around the rotating column 33 to expose the hot zone component 35 and improve workability.
[発明の効果]
本発明のVL置によれば、低温保持手段の大きさを好ま
しい寸法制限内に収めることにより、装置を操作し易く
し得る。[Effects of the Invention] According to the VL device of the present invention, by keeping the size of the low temperature holding means within preferred dimensional limits, the device can be easily operated.
第1A図は本発明の装置の溶融体の流れ及び磁場を示す
平面図、第1B図は第1A図の置所面図、第2図は溶融
体に磁界を与えるコイルの半径と対向するコイルの間隔
との関係を示す説明図、第3図は第2図におけるZ軸上
の磁界の強さを示すグラフ、第4A図は溶融体に加えら
れる磁束線を示す本発明の装置の要部の立面部分断面図
、第4B図は第4A図の平面部分断面図、第5間は低温
保持手段の高さの制限を示す概略図、第6A図及び第6
B図は昇降可能な低温保持手段を装着した単結晶の育成
装置の説明図である。
1.11・・ルツボ、2,12・・溶融体、3.19・
・磁束線、15・・ヒータ、17・・コイル、25・・
低温保持手段。
第1A図
第18図
第4A図
第48図
第5図
第6B図Fig. 1A is a plan view showing the flow of the melt and the magnetic field of the device of the present invention, Fig. 1B is a plan view of the location of Fig. 1A, and Fig. 2 is a coil facing the radius of the coil that applies the magnetic field to the melt. 3 is a graph showing the strength of the magnetic field on the Z-axis in FIG. 2, and FIG. 4A is a graph showing the magnetic flux lines applied to the melt, the main parts of the device of the present invention. FIG. 4B is a partial plan view of FIG. 4A, FIG.
Figure B is an explanatory diagram of a single crystal growth apparatus equipped with a low temperature holding means that can be raised and lowered. 1.11... Crucible, 2,12... Molten body, 3.19...
・Magnetic flux lines, 15... Heater, 17... Coil, 25...
Low temperature maintenance means. Figure 1A Figure 18 Figure 4A Figure 48 Figure 5 Figure 6B
Claims (3)
ルツボの中心軸と同心に配置されており、前記ルツボ内
の導電性を有する物質を加熱しかつ溶融するための環状
の加熱手段と、この加熱手段の外側において前記ルツボ
の中心軸に関して対称に対向して配置されており、溶融
した前記物質の熱対流を阻止するための一対の電磁コイ
ルと、下端が前記溶融した物質の液面の中心部に接する
ように保持された単結晶と、前記ルツボ、前記単結晶及
び前記加熱手段を密閉して収容するチャンバと、測定時
に前記チャンバの斜め上方に保持され、前記下端の直径
を光学的に測定するための測定手段と、前記測定手段に
よつて前記下端を視認し得るように前記チャンバの肩部
にあけられた測定用窓と、前記中心軸と同心に配置され
ており、前記一対の電磁コイルを収容する環状の低温保
持手段とからなる前記単結晶を育成する装置において、
前記低温保持手段の上部が、前記測定手段とこの測定手
段の前記測定用窓を介する視認スペースとに干渉しない
ように配置されていることを特徴とする装置。(1) a cylindrical crucible; an annular heating means disposed outside the crucible concentrically with the central axis of the crucible for heating and melting a conductive substance within the crucible; A pair of electromagnetic coils are disposed symmetrically opposite to each other with respect to the central axis of the crucible on the outside of the heating means to prevent thermal convection of the molten substance, and a lower end thereof is located at the center of the liquid surface of the molten substance. a chamber that seals and accommodates the crucible, the single crystal, and the heating means; and a chamber that is held obliquely above the chamber during measurement and that measures the diameter of the lower end optically. a measuring means for measuring, a measuring window formed in the shoulder of the chamber so that the lower end can be visually recognized by the measuring means, and a measuring window arranged concentrically with the central axis, In the apparatus for growing the single crystal, which comprises an annular low-temperature holding means housing an electromagnetic coil,
An apparatus characterized in that the upper part of the low temperature holding means is arranged so as not to interfere with the measuring means and the viewing space of the measuring means through the measuring window.
徴とする特許請求の範囲第1項に記載の装置。(2) The apparatus according to claim 1, wherein the external shape of the low temperature holding means is cylindrical.
特徴とする特許請求の範囲第1項に記載の装置。(3) The apparatus according to claim 1, wherein the external shape of the low temperature holding means is a prismatic cylinder.
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP10055686A JPS62256789A (en) | 1986-04-30 | 1986-04-30 | Device for growing single crystal |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP10055686A JPS62256789A (en) | 1986-04-30 | 1986-04-30 | Device for growing single crystal |
Publications (1)
Publication Number | Publication Date |
---|---|
JPS62256789A true JPS62256789A (en) | 1987-11-09 |
Family
ID=14277207
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
JP10055686A Pending JPS62256789A (en) | 1986-04-30 | 1986-04-30 | Device for growing single crystal |
Country Status (1)
Country | Link |
---|---|
JP (1) | JPS62256789A (en) |
Cited By (1)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP2009216424A (en) * | 2008-03-07 | 2009-09-24 | Kobe Steel Ltd | Magnet position measuring method and magnetic field measuring instrument |
Citations (3)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JPS6033296A (en) * | 1983-07-29 | 1985-02-20 | Toshiba Ceramics Co Ltd | Pulling device for single crystal semiconductor |
JPS6036391A (en) * | 1983-08-05 | 1985-02-25 | Toshiba Corp | Apparatus for pulling single crystal |
JPS6153189A (en) * | 1984-08-21 | 1986-03-17 | Toshiba Corp | Device for pulling up single crystal |
-
1986
- 1986-04-30 JP JP10055686A patent/JPS62256789A/en active Pending
Patent Citations (3)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JPS6033296A (en) * | 1983-07-29 | 1985-02-20 | Toshiba Ceramics Co Ltd | Pulling device for single crystal semiconductor |
JPS6036391A (en) * | 1983-08-05 | 1985-02-25 | Toshiba Corp | Apparatus for pulling single crystal |
JPS6153189A (en) * | 1984-08-21 | 1986-03-17 | Toshiba Corp | Device for pulling up single crystal |
Cited By (1)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP2009216424A (en) * | 2008-03-07 | 2009-09-24 | Kobe Steel Ltd | Magnet position measuring method and magnetic field measuring instrument |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
JP6436031B2 (en) | Single crystal pulling apparatus and single crystal pulling method | |
US9822466B2 (en) | Crystal growing systems and crucibles for enhancing heat transfer to a melt | |
EP2876189B1 (en) | APPARATUS FOR PRODUCING SiC SINGLE CRYSTAL AND METHOD FOR PRODUCING SiC SINGLE CRYSTAL | |
JP2561072B2 (en) | Single crystal growth method and apparatus | |
WO2000055393A1 (en) | Method for producing silicon single crystal and apparatus for producing the same, and single crystal and wafer produced with the method | |
US5968266A (en) | Apparatus for manufacturing single crystal of silicon | |
US5769944A (en) | Vertical gradient freeze and vertical Bridgman compound semiconductor crystal growth apparatus capable of applying axial magnetic field | |
JP2556966B2 (en) | Single crystal growing equipment | |
JPS6153187A (en) | Device for growing single crystal | |
JPS62256789A (en) | Device for growing single crystal | |
JP2556967B2 (en) | Single crystal growing equipment | |
JP6354615B2 (en) | Method for producing SiC single crystal | |
JP7230781B2 (en) | Single crystal pulling apparatus and single crystal pulling method | |
TWI751726B (en) | A semiconductor crystal growth apparatus | |
JP2004091240A (en) | Method for pulling silicon single crystal under magnetic field application | |
JP2633057B2 (en) | Silicon single crystal manufacturing equipment | |
JPS63215587A (en) | Production of single crystal | |
JPS61261288A (en) | Apparatus for pulling up silicon single crystal | |
KR102665191B1 (en) | Single crystal growth device and single crystal growth method of using the same | |
JPS6270286A (en) | Apparatus for producting single crystal | |
JPH03193694A (en) | Crystal growing device | |
JP2000264771A (en) | Single crystal pulling method and single crystal production device using the same | |
JPH0142916B2 (en) | ||
JPS6011295A (en) | Crystal growing device | |
JPS6011296A (en) | Crystal growing device |