JPS6033296A - Pulling device for single crystal semiconductor - Google Patents

Pulling device for single crystal semiconductor

Info

Publication number
JPS6033296A
JPS6033296A JP13925783A JP13925783A JPS6033296A JP S6033296 A JPS6033296 A JP S6033296A JP 13925783 A JP13925783 A JP 13925783A JP 13925783 A JP13925783 A JP 13925783A JP S6033296 A JPS6033296 A JP S6033296A
Authority
JP
Japan
Prior art keywords
single crystal
diameter
magnetic field
crucible
crystal silicon
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP13925783A
Other languages
Japanese (ja)
Inventor
Hidekazu Taji
田路 英一
Mitsuhiro Yamato
充博 大和
Osamu Suzuki
修 鈴木
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Coorstek KK
Original Assignee
Toshiba Ceramics Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Toshiba Ceramics Co Ltd filed Critical Toshiba Ceramics Co Ltd
Priority to JP13925783A priority Critical patent/JPS6033296A/en
Publication of JPS6033296A publication Critical patent/JPS6033296A/en
Pending legal-status Critical Current

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C30CRYSTAL GROWTH
    • C30BSINGLE-CRYSTAL GROWTH; UNIDIRECTIONAL SOLIDIFICATION OF EUTECTIC MATERIAL OR UNIDIRECTIONAL DEMIXING OF EUTECTOID MATERIAL; REFINING BY ZONE-MELTING OF MATERIAL; PRODUCTION OF A HOMOGENEOUS POLYCRYSTALLINE MATERIAL WITH DEFINED STRUCTURE; SINGLE CRYSTALS OR HOMOGENEOUS POLYCRYSTALLINE MATERIAL WITH DEFINED STRUCTURE; AFTER-TREATMENT OF SINGLE CRYSTALS OR A HOMOGENEOUS POLYCRYSTALLINE MATERIAL WITH DEFINED STRUCTURE; APPARATUS THEREFOR
    • C30B15/00Single-crystal growth by pulling from a melt, e.g. Czochralski method
    • C30B15/30Mechanisms for rotating or moving either the melt or the crystal
    • C30B15/305Stirring of the melt

Landscapes

  • Chemical & Material Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Crystallography & Structural Chemistry (AREA)
  • Materials Engineering (AREA)
  • Metallurgy (AREA)
  • Organic Chemistry (AREA)
  • Crystals, And After-Treatments Of Crystals (AREA)
  • Liquid Deposition Of Substances Of Which Semiconductor Devices Are Composed (AREA)

Abstract

PURPOSE:To improve characteristics of a single crystal semiconductor and to control the diameter satisfactorily by impressing magnetic field to molten starting material in a crucible and using simultaneously a solid image pick-up element as a photodetector part of diameter control mechanism. CONSTITUTION:A solid image pick-up element e.g. a CCD image sensor 13 is provided to the outside of a measuring window 9 at the top surface of a chamber 1, and is connected electrically to a diameter control mechanism. Further, an annular superconductive coil 14 is provided to the external periphery of the chamber 1. Since magnetic field in the perpendicular direction is impressed to the molten silicon 11 by the superconductive coil 14 in this pulling device, the component in the horizontal direction of the convection is effectively retarded chiefly. As the result, characteristics in the single crystal silicon 12 are made uniform. Further, since a CCD image sensor 13 is used, influence of the magnetic field is excluded. Moreover, the control of diameter of single crystal silicon 12 is satisfactorily performed even at time of neck down or in vibration of the single crystal silicon 12 due to its superior resolution.

Description

【発明の詳細な説明】 本発明は単結晶半導体引上装置の改良に関する。[Detailed description of the invention] The present invention relates to improvements in single crystal semiconductor pulling equipment.

半導体装置の製造に用いられる単結晶半導体に主にチョ
クラルスキー法(cZ法)によって製造されている。従
来、このcz法には第1図に示すような単結晶半導体引
上装置が用いられている。
Single crystal semiconductors used in the manufacture of semiconductor devices are mainly manufactured by the Czochralski method (cZ method). Conventionally, a single crystal semiconductor pulling apparatus as shown in FIG. 1 has been used in this cz method.

すなわち、図中1は上部と下部が開口したチャンバーで
ある。このチャンバー1の下部開口からは回転自在な支
持棒2が挿入されており、この支持棒2上には黒鉛製保
護体3が支持され、石英ルツボ4を保flit、ている
。前記保護体3の外周には円筒状のヒータ5及び保温筒
6が順次配設されている。また、前記チャンバー1の上
部開口からは例えばチェーン7が吊下されており、種結
晶8を保持している。更zμ1例えばチャンバー1の上
面の所定位置には測定用窓9が設けられており、その外
側には例えばITVカメラ10及びこのITVカメラ1
0と電気的に接続された直径制御溝が設けられている。
That is, numeral 1 in the figure is a chamber whose top and bottom are open. A rotatable support rod 2 is inserted into the lower opening of the chamber 1, and a graphite protector 3 is supported on the support rod 2 to protect the quartz crucible 4. A cylindrical heater 5 and a heat insulating cylinder 6 are sequentially arranged around the outer periphery of the protector 3. Further, a chain 7, for example, is suspended from the upper opening of the chamber 1, and holds a seed crystal 8. For example, a measurement window 9 is provided at a predetermined position on the upper surface of the chamber 1, and outside the measurement window 9, for example, an ITV camera 10 and the ITV camera 1 are provided.
A diameter control groove is provided which is electrically connected to 0.

上記引上装置を用いたCZ法は、単結晶シリコンを製造
する場合を例にとれば、ルツボ4内にシリコン原料を入
れ、ヒータ5によりシリコン原料を溶融させ、この溶融
シリコン11に種結晶8を浸し、ルツボ4と健結晶8と
を逆方向に回転させながらチェーン7を引上げることl
こより単結晶シリコン12を引上げるものである。この
際、前記測定用窓9の外側に設けられた直径制御機構部
の受光部lこより固液界面の液体側の表面に見られる輝
線の位置を検知し、その出力偏差に応じて直径制御機構
によりフィードバックf(If御を行ない、引上速度ま
たはヒータ温度を変化させ、単結晶シリコン12の直径
を制御している。
In the CZ method using the above-mentioned pulling device, for example, when manufacturing single crystal silicon, a silicon raw material is put into a crucible 4, the silicon raw material is melted by a heater 5, and a seed crystal 8 is added to this molten silicon 11. Soak the crucible 4 and crystal 8 in opposite directions while pulling up the chain 7.
From this, the single crystal silicon 12 is pulled up. At this time, the position of the bright line seen on the surface of the liquid side of the solid-liquid interface is detected from the light receiving part l of the diameter control mechanism provided outside the measurement window 9, and the diameter control mechanism The diameter of the single crystal silicon 12 is controlled by performing feedback f (If control) to change the pulling speed or heater temperature.

しかし、従来のITVカメラ等の受光部は解像度が悪い
ために、単結晶シリコン12の揺れによって測定猜度が
落ちたり、引上げ初期の結晶の径を細くする操作(いわ
ゆるネックダウン)時には測定が困難であったり、更に
周囲で高周波を使用するとノイズが増加するという欠点
があった。
However, because the resolution of the light-receiving parts of conventional ITV cameras and the like is poor, measurement accuracy decreases due to shaking of the single-crystal silicon 12, and measurement is difficult during operations to reduce the diameter of the crystal at the initial stage of pulling (so-called neck-down). Furthermore, there was a drawback that noise increased when high frequencies were used in the surrounding area.

一方、従来の引上装置では、単結晶シリコンの引上げ中
において、ルツボ4内の溶融シリコンII中で強制対流
や熱対流が起こり、結晶成長界面近傍における溶融シリ
コン11の温度分布、不純物濃度、酸素濃度が不均一と
なっている。このため、引上げられた単結晶シリコン1
2では成長方向、径方向ともに比抵抗分布、゛酸素濃度
分布の均一性が悪くなり、超LSI用の高品質なウェハ
を供給することが困難であった。
On the other hand, in conventional pulling equipment, forced convection and thermal convection occur in the molten silicon II in the crucible 4 during pulling of single crystal silicon, and the temperature distribution of the molten silicon 11 near the crystal growth interface, impurity concentration, and oxygen The concentration is non-uniform. For this reason, the pulled single crystal silicon 1
In No. 2, the uniformity of resistivity distribution and oxygen concentration distribution was poor in both the growth direction and the radial direction, making it difficult to supply high-quality wafers for VLSI.

そこで、溶融シリコンに水平方向あるいは鉛直方向に磁
場を印加することにより対流を抑制し、単結晶シリコン
の比抵抗分布、酸素濃度分布の均一化を図ることが行な
われている。
Therefore, attempts have been made to suppress convection by applying a magnetic field to molten silicon in the horizontal or vertical direction, thereby making the resistivity distribution and oxygen concentration distribution of single crystal silicon uniform.

しかし、従来の直径制御機構の、受光部として用いられ
ているITVカメラでは、撮像管が使われており真空中
の電子の運動が介在しているため、溶融シリコンに磁場
を印加するとその影響を受け、撮像管が正常に動作せず
1「1径制御が困難となった。特に、強磁場内では影響
が強く、直径制御がほとんど不可能であった。
However, in the ITV camera used as the light receiving part of the conventional diameter control mechanism, an image pickup tube is used and the movement of electrons in vacuum is involved, so applying a magnetic field to molten silicon can eliminate the effect. As a result, the image pickup tube did not operate properly, making it difficult to control the diameter of the tube.The effect was especially strong in a strong magnetic field, making diameter control almost impossible.

本発明は上記事情に鑑みてなされたものであり、単結晶
半導体の物性を向上するとともに、直径を良好に制御し
得る単結晶半導体引上装置を提供しようとするものであ
る。゛ すなわち、本発明の単結晶半導体引上装置は。
The present invention has been made in view of the above circumstances, and it is an object of the present invention to provide a single-crystal semiconductor pulling device that can improve the physical properties of a single-crystal semiconductor and also can control the diameter well.゛That is, the single crystal semiconductor pulling apparatus of the present invention is.

ルツボ内の溶融半導体原料に磁場を印加する手段を設け
るとともに、直径制御機構の受光部として固体撮像素子
を用いたことを特徴とするものである。
The present invention is characterized in that a means for applying a magnetic field to the molten semiconductor raw material in the crucible is provided, and a solid-state image sensor is used as the light receiving section of the diameter control mechanism.

このように直径制御機構の受光部として固体撮像素子(
例えばCCDイメージセンサ)を用いれば、磁場の影響
を受けないので、単結晶半導体の直径制御を良好に行な
うことができる。
In this way, a solid-state image sensor (
For example, if a CCD image sensor (CCD image sensor) is used, the diameter of the single crystal semiconductor can be well controlled because it is not affected by the magnetic field.

以下、本発明の実施例を第2図を参照して説明する。な
お、第1図に示した従来の引上装置と同一の部材には同
一番号を付して説明を省略する。
Hereinafter, embodiments of the present invention will be described with reference to FIG. Note that the same members as those of the conventional lifting device shown in FIG. 1 are designated by the same numbers and their explanations will be omitted.

図中13はチャンバ−1上面の測定用窓9の外側に設け
られたCCDイメージセンサであり、このCCDイメー
ジセンサ13は図示しない直径制御機構と電気的に接続
されている。また。
In the figure, 13 is a CCD image sensor provided outside the measurement window 9 on the upper surface of the chamber 1, and this CCD image sensor 13 is electrically connected to a diameter control mechanism (not shown). Also.

チャンバー1の外周にはリング状の超電導コイル14が
配設されている。この超電導コイル14には図示しない
液体ヘリウム冷凍器から液体ヘリウムが供給される。
A ring-shaped superconducting coil 14 is arranged around the outer periphery of the chamber 1 . This superconducting coil 14 is supplied with liquid helium from a liquid helium refrigerator (not shown).

この引上装置を用いた単結晶シリコン12の引上げは、
超電導コイル14により溶融シリコンIIに磁場を印加
することと、ヒータ5にほぼ直流の電流を通電する以外
は、従来の装置とほぼ同様に行なわれる。
The pulling of single crystal silicon 12 using this pulling device is as follows:
Except for applying a magnetic field to the molten silicon II by the superconducting coil 14 and passing a substantially direct current to the heater 5, the operation is substantially the same as in the conventional apparatus.

しかして、上記引上装置によれば、超電導コイル14に
より溶融シリコン11に鉛直方向の磁場を印加している
ので、主に対流の水平方向の成分を有効に抑制すること
ができる。この結果、単結晶シリコン12中の物性を均
一化することができる。
According to the above-mentioned pulling device, since the superconducting coil 14 applies a vertical magnetic field to the molten silicon 11, it is possible to effectively suppress mainly the horizontal component of convection. As a result, the physical properties within the single crystal silicon 12 can be made uniform.

また、直径制御機構の受光部としてCCDイメージセン
サ13を用いており、磁場の影響を受けることがなく、
シかも解像度が良いのでネックダウン時や単結晶シリコ
ン12が揺れた場合でも良好に単結晶シリコン12の直
径を制御することができる。
In addition, the CCD image sensor 13 is used as the light receiving part of the diameter control mechanism, so it is not affected by magnetic fields.
Since the resolution is good, the diameter of the single crystal silicon 12 can be well controlled even when the neck is down or when the single crystal silicon 12 shakes.

なお、上記実施例では溶融シリコンに磁場を印加する手
段としてリング状の超電導コイルを用いたが、これに限
らず例えばルツボの両側方に対応する位置に2個のtF
ah石を互いに極性の異なる極を対応させて配置し、溶
融シリコンに水平方向の磁場を印加してもよい。
In the above embodiment, a ring-shaped superconducting coil was used as a means for applying a magnetic field to molten silicon, but the present invention is not limited to this. For example, two tF coils were used at positions corresponding to both sides of the crucible.
A horizontal magnetic field may be applied to the molten silicon by arranging the ah stones so that the poles of different polarities correspond to each other.

また、以上の説明では単結晶シリコンを製造する場合に
ついて述べたが、これに限らず例えばGaAs 等の単
結晶を製造する場合にも同様に適用できることは勿論で
ある。
Furthermore, although the above description has been made regarding the case of manufacturing single crystal silicon, it goes without saying that the present invention is not limited to this and can be similarly applied to the case of manufacturing single crystals such as GaAs.

以上詳述した如く、本発明の単結晶半導体引上装置によ
れば、物性が均一化し、かつ直径が良好に制御された高
品質の単結晶半導体を製造することができる等顕著な効
果を奏するものである。
As detailed above, the single crystal semiconductor pulling apparatus of the present invention has remarkable effects such as being able to manufacture high quality single crystal semiconductors with uniform physical properties and well-controlled diameters. It is something.

【図面の簡単な説明】[Brief explanation of the drawing]

第1図は従来の単結晶半導体引上装置の断面図、第2図
は本発明の実施例における単結晶半導体引上装置の断面
図である。 I・・・チャンバー、2・・・支持棒、3・・・保護体
、4ルツボ、5・・・ヒータ、6・・・保温筒、7・・
・チェーン、8・・・種結晶、9・・・測定用窓、11
・・・溶融シリコン、12・・・単結晶シリコン、13
・・・CODイメージセンサ、14・・・超電導コイル
。 出願人代理人 弁理士 鈴 江 武 彦第1図
FIG. 1 is a sectional view of a conventional single crystal semiconductor pulling apparatus, and FIG. 2 is a sectional view of a single crystal semiconductor pulling apparatus in an embodiment of the present invention. I... Chamber, 2... Support rod, 3... Protector, 4 Crucible, 5... Heater, 6... Heat retention cylinder, 7...
・Chain, 8... Seed crystal, 9... Measuring window, 11
... Molten silicon, 12 ... Single crystal silicon, 13
...COD image sensor, 14...superconducting coil. Applicant's agent Patent attorney Takehiko Suzue Figure 1

Claims (1)

【特許請求の範囲】[Claims] チャンバー内にルツボを回転自在に支持し、該ルツボ内
の溶融半導体原料にルツボ上方から回転自在に吊下され
た種結晶を浸して該種結晶を引上げることにより単結晶
半導体を造る装置において、前記ルツボ内の溶融半導体
原料に磁場を印加する手段を設けるとともに、直径制御
機構の受光部として固体撮像素子を用いたことを特徴と
する単結晶半導体引上装置。
In an apparatus for manufacturing a single crystal semiconductor by rotatably supporting a crucible in a chamber, dipping a seed crystal rotatably suspended from above the crucible into the molten semiconductor raw material in the crucible, and pulling up the seed crystal, A single-crystal semiconductor pulling apparatus characterized in that a means for applying a magnetic field to the molten semiconductor raw material in the crucible is provided, and a solid-state image sensor is used as a light receiving section of a diameter control mechanism.
JP13925783A 1983-07-29 1983-07-29 Pulling device for single crystal semiconductor Pending JPS6033296A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP13925783A JPS6033296A (en) 1983-07-29 1983-07-29 Pulling device for single crystal semiconductor

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP13925783A JPS6033296A (en) 1983-07-29 1983-07-29 Pulling device for single crystal semiconductor

Publications (1)

Publication Number Publication Date
JPS6033296A true JPS6033296A (en) 1985-02-20

Family

ID=15241081

Family Applications (1)

Application Number Title Priority Date Filing Date
JP13925783A Pending JPS6033296A (en) 1983-07-29 1983-07-29 Pulling device for single crystal semiconductor

Country Status (1)

Country Link
JP (1) JPS6033296A (en)

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS62256789A (en) * 1986-04-30 1987-11-09 Toshiba Ceramics Co Ltd Device for growing single crystal
JPS62256787A (en) * 1986-04-30 1987-11-09 Toshiba Ceramics Co Ltd Method and device for growing single crystal
JPS62256791A (en) * 1986-04-30 1987-11-09 Toshiba Ceramics Co Ltd Device for growing single crystal
US5725661A (en) * 1995-07-04 1998-03-10 Shin-Etsu Handotai Co., Ltd. Equipment for producing silicon single crystals
CN108872235A (en) * 2018-06-23 2018-11-23 安盛机器人技术(盘锦)有限公司 Broken rice rate and rate of kernels with remained germ analysis machine

Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5560095A (en) * 1978-10-24 1980-05-06 Nec Corp Single crystal growing method
JPS5874594A (en) * 1981-10-26 1983-05-06 Sony Corp Growing method for crystal

Patent Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5560095A (en) * 1978-10-24 1980-05-06 Nec Corp Single crystal growing method
JPS5874594A (en) * 1981-10-26 1983-05-06 Sony Corp Growing method for crystal

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS62256789A (en) * 1986-04-30 1987-11-09 Toshiba Ceramics Co Ltd Device for growing single crystal
JPS62256787A (en) * 1986-04-30 1987-11-09 Toshiba Ceramics Co Ltd Method and device for growing single crystal
JPS62256791A (en) * 1986-04-30 1987-11-09 Toshiba Ceramics Co Ltd Device for growing single crystal
US5725661A (en) * 1995-07-04 1998-03-10 Shin-Etsu Handotai Co., Ltd. Equipment for producing silicon single crystals
CN108872235A (en) * 2018-06-23 2018-11-23 安盛机器人技术(盘锦)有限公司 Broken rice rate and rate of kernels with remained germ analysis machine

Similar Documents

Publication Publication Date Title
US4951104A (en) Solid-state image pick-up device with uniform distribution of dopant therein and production method therefor
JP2007290906A (en) Method of measuring distance between reference reflector and melt surface, method of controlling melt surface level by using the measured result, and apparatus for manufacturing silicon single crystal
CA1336061C (en) High-oxygen-content silicon monocrystal substrate for semiconductor devices and production method therefor
US6423285B1 (en) Method for producing silicon single crystal and production apparatus therefor, as well as single crystal and silicon wafer produced by the method
WO2016163602A1 (en) Device and method for growing silicon monocrystal ingot
WO2023093460A1 (en) Drawing method for monocrystalline silicon rod, and monocrystalline silicon rod
US6607594B2 (en) Method for producing silicon single crystal
JPS6033296A (en) Pulling device for single crystal semiconductor
JP2688137B2 (en) Method of pulling silicon single crystal
JP3760769B2 (en) Method for producing silicon single crystal
JPH0212920B2 (en)
JP2004189559A (en) Single crystal growth method
JP3132412B2 (en) Single crystal pulling method
JPS6033294A (en) Pulling device for single crystal semiconductor
CN114855284A (en) Method for growing monocrystalline silicon
JPH10130100A (en) Apparatus for production of semiconductor single crystal and its production
JP2000239096A (en) Production of silicon single crystal
JP2004182560A (en) Method for growing single crystal
JPS6033297A (en) Pulling device for single crystal semiconductor
JP3018738B2 (en) Single crystal manufacturing equipment
JP4801869B2 (en) Single crystal growth method
JPS6033293A (en) Pulling device for single crystal semiconductor
JPS62256791A (en) Device for growing single crystal
JP2785578B2 (en) Silicon single crystal pulling equipment
JP2000264785A (en) Process and device for producing silicon single crystal