JPS5925726A - Diagnostic observation apparatus - Google Patents
Diagnostic observation apparatusInfo
- Publication number
- JPS5925726A JPS5925726A JP57134330A JP13433082A JPS5925726A JP S5925726 A JPS5925726 A JP S5925726A JP 57134330 A JP57134330 A JP 57134330A JP 13433082 A JP13433082 A JP 13433082A JP S5925726 A JPS5925726 A JP S5925726A
- Authority
- JP
- Japan
- Prior art keywords
- coil
- coils
- compensation
- pickup
- magnetic field
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Granted
Links
Landscapes
- Measuring And Recording Apparatus For Diagnosis (AREA)
- Measurement And Recording Of Electrical Phenomena And Electrical Characteristics Of The Living Body (AREA)
- Measuring Magnetic Variables (AREA)
Abstract
(57)【要約】本公報は電子出願前の出願データであるた
め要約のデータは記録されません。(57) [Summary] This bulletin contains application data before electronic filing, so abstract data is not recorded.
Description
【発明の詳細な説明】
この発明は,スキッド(SQUID)磁力計を用いて,
生体から発生する微弱磁界を検出する診断用観測装置に
関する。[Detailed Description of the Invention] This invention uses a SQUID magnetometer to
The present invention relates to a diagnostic observation device that detects a weak magnetic field generated from a living body.
一般に,心臓の運動に同期して心臓の近傍の組織に電流
が流れ,この電流により磁界が発生していることはすで
によく知られている。しかしこの定が困難であり,スキ
ッド磁力計を用いると測定が可能というのが現状である
。In general, it is already well known that an electric current flows through tissues near the heart in synchronization with the movement of the heart, and that this electric current generates a magnetic field. However, this is difficult to determine, and at present it can be measured using a skid magnetometer.
スキッド磁力計を用いて生体磁界を測定する場合,生体
の心臓近傍にスキッド磁力計のピックアップコイルを接
近させて計測する。しかし生体磁界のような微小磁界を
測定する場合の問題は地磁気ノイズの存在である。地磁
気のノイズは都市部〜80dBも大きく,このS/N比
を改善する必要がある。そのため従来は第1図に示すよ
うな差動形ピックアップコイルを用いたり第2図に示す
ような2次微分形のピックアップコイルを用いている。When measuring biomagnetic fields using a skid magnetometer, the pickup coil of the skid magnetometer is brought close to the heart of the living body. However, a problem when measuring minute magnetic fields such as biomagnetic fields is the presence of geomagnetic noise. Earth's magnetic noise is as high as 80 dB in urban areas, and it is necessary to improve this S/N ratio. Therefore, conventionally, a differential pickup coil as shown in FIG. 1 or a second-order differential pickup coil as shown in FIG. 2 has been used.
第1図に示す場合はいわゆるグラディオメータ(Gra
diometer)であって磁界の勾配を測定している
。すなわちピックアップコイルC1の中心位置P1とピ
ックアップコイルC2の中心位置P2の磁界の強さH1
,H2の差を求め両ピックアップコイル間の距離Xで除
し(H1−H2)/Xを求めるものである。The case shown in Figure 1 is a so-called gradiometer (Gradiometer).
diometer) and measures the gradient of the magnetic field. That is, the strength H1 of the magnetic field at the center position P1 of the pickup coil C1 and the center position P2 of the pickup coil C2
, H2 is calculated and divided by the distance X between both pickup coils to obtain (H1-H2)/X.
また第2図に示す場合は,磁界の勾配の位置的変化を測
定している。この場合はピックアップコイルC1・C2
・C3の各中心位置P1・P2・P3の磁界の強さをH
1・H2・H3として位置P1とP2及びP2とP3の
磁界の勾配を求め,その差(H1−H2)/X1−(H
2−H3)/X2を求めるものである。In the case shown in FIG. 2, positional changes in the gradient of the magnetic field are measured. In this case, pickup coils C1 and C2
・The strength of the magnetic field at each center position P1, P2, and P3 of C3 is H
1・H2・H3, find the gradient of the magnetic field at positions P1 and P2 and P2 and P3, and calculate the difference (H1-H2)/X1-(H
2-H3)/X2.
元来,生体磁気信号を計測するためにピックアップコイ
ルは1次微分形を用いていたが,地磁気防害を避けるこ
とができなかった。そこでこの対策として高透磁率材で
あるパーマロイ等を用いた大型の磁気シールドケースを
採用した。この磁気シールドはスキッド磁力計はもとよ
り人間をも収納する大きさで3重以上のパーマロイ板で
形成されたものであったが,それでもノイズの除去を完
全に達成できずピックアップコイルとして2次微分形が
用いられるようになった。しかしながら一般に磁界の強
さは距離の3乗に反比例するものであるから,1次微分
形の検出出力ΔHが距離の4乗で減衰することになるに
対し,2次微分形の検出出力d(ΔH)は距離の5乗で
減衰することになるので,2次微分形のピックアップコ
イルを用いるとスキッド磁力計のピックアップコイルの
ごく近傍でなければ磁気モーメント又は電流による磁界
を信号として受信できないので生体深部からの磁気信号
が存在するか否かの確証が得られないという問題が残さ
れた。Originally, a first-order differential type pickup coil was used to measure biomagnetic signals, but geomagnetic damage prevention could not be avoided. As a countermeasure to this problem, we adopted a large magnetically shielded case made of permalloy, a material with high magnetic permeability. This magnetic shield was large enough to accommodate not only a skid magnetometer but also a human being, and was made of three or more layers of permalloy plates. However, it still could not completely eliminate noise, and a second-order differential type was used as a pickup coil. started to be used. However, since the strength of the magnetic field is generally inversely proportional to the cube of the distance, the detection output ΔH of the first-order differential type attenuates as the fourth power of the distance, whereas the detection output d( ΔH) will be attenuated by the fifth power of the distance, so if a second-order differential type pickup coil is used, the magnetic moment or the magnetic field due to the current cannot be received as a signal unless it is very close to the pickup coil of the skid magnetometer. The problem remained that it was not possible to confirm whether magnetic signals from deep inside existed.
それゆえにこの発明の目的は,地磁気ノイズの影響を受
けることなく,生体深部より発生される磁気信号をも検
出できる診断羊羹即装置を提供するにある。Therefore, an object of the present invention is to provide a diagnostic device that can detect magnetic signals generated from deep within a living body without being affected by geomagnetic noise.
概説するとこの発明の診断用観測装置は,スキッド磁力
計のピックアップコイルボビンに巻回される差動コイル
により生体磁気を検出するとともに,スキッド磁力計の
ピックアップコイルボビンに巻回される補償用コイルの
出力を帰還して地磁気等,遠方磁界等の変動分を打消す
ようにしたものである。To summarize, the diagnostic observation device of the present invention detects biomagnetism using a differential coil wound around the pickup coil bobbin of a skid magnetometer, and detects the output of a compensation coil wound around the pickup coil bobbin of the skid magnetometer. This is designed to return and cancel out fluctuations in distant magnetic fields such as the earth's magnetism.
以下図面を参照してこの発明をさらに詳細に説明する。The present invention will be explained in more detail below with reference to the drawings.
第3図はこの発明の基本的な一実施例を示す,診断用観
測装置のブロック図である。同図において1は,被検査
者2から発生される微弱磁界Hnを測定するために被検
査者2に近接されるスキッド磁力計のピックアップコイ
ルボビンである。このピックアップコイルボビン1には
補償用コイルCx及び差動コイルCxdが巻かれている
。差動コイルCxdは電子装置3に接続されている。差
動コイルCxdは生体磁界に対応する出力信号を導出し
,その出力信号が電子装置3で増幅され表示されるよう
になっている。この差動コイルCxd及び電子装置3を
含む回路系は高感度に構成されている。FIG. 3 is a block diagram of a diagnostic observation device showing a basic embodiment of the present invention. In the figure, reference numeral 1 denotes a pickup coil bobbin of a skid magnetometer that is brought close to the test subject 2 in order to measure the weak magnetic field Hn generated by the test subject 2. A compensation coil Cx and a differential coil Cxd are wound around this pickup coil bobbin 1. The differential coil Cxd is connected to the electronic device 3. The differential coil Cxd derives an output signal corresponding to the biomagnetic field, and the output signal is amplified by the electronic device 3 and displayed. The circuit system including the differential coil Cxd and the electronic device 3 is configured to be highly sensitive.
コイルCxは増幅器4に接続されており増幅器4は人形
コイル(ヘルムホルツコイルや角形コイル)5a・5b
に接続されている。コイルCxによって検出された磁気
信号は増幅器4で所定の電力に増幅され,大形コイル5
a・5bに加えられ,大形コイル5a・5bに電流を流
す。大型コイル5a・5bは負帰還コイルであり流れる
電流によって生じる磁界により地磁気変動のX−X方向
成分が打消される。そのため被検査生体2よりの磁界H
hのみを差動コイルCxdで受信し,電子装置3で増幅
し表示観測される。ここで,もしコイルCx,増幅器4
,コイル5a・5bの帰還系がないとすると差動コイル
Cxd電子装置3の回路系が高感度なため地磁気変動等
が影響して正確な生体磁界を測定することができないこ
とになる。Coil Cx is connected to amplifier 4, and amplifier 4 is connected to doll coils (Helmholtz coil or rectangular coil) 5a and 5b.
It is connected to the. The magnetic signal detected by the coil Cx is amplified to a predetermined power by the amplifier 4, and then the large coil 5
a and 5b, causing current to flow through the large coils 5a and 5b. The large coils 5a and 5b are negative feedback coils, and the XX direction component of geomagnetic fluctuation is canceled by the magnetic field generated by the flowing current. Therefore, the magnetic field H from the living body 2 to be examined
Only the signal h is received by the differential coil Cxd, amplified by the electronic device 3, and displayed and observed. Here, if coil Cx, amplifier 4
, if there is no feedback system for the coils 5a and 5b, the circuit system of the differential coil Cxd electronic device 3 is highly sensitive, and therefore it is not possible to accurately measure the biomagnetic field due to the influence of geomagnetic fluctuations.
6は定電流源であり,大形コイル5a・5bと並設され
るコイル7a・7bに接続されている。A constant current source 6 is connected to coils 7a and 7b arranged in parallel with the large coils 5a and 5b.
被検査生体2の周辺や差動コイルCxd,コイルCx等
周辺の空間を一定の磁界に設定したい場合がある。たと
えば零磁界や地磁気の大きさの2倍の大きさに磁界を設
定したい場合,あるいは生体と強磁界との関係を測定し
たい場合に定電流源6よりコイル7a・7bに所定電流
を流し,定磁界を設定する。なお定電流源6よりの定電
流はその電流値を任意の値に設定できるように構成され
ている。There are cases where it is desired to set a constant magnetic field in the space around the living body 2 to be inspected, the differential coil Cxd, the coil Cx, etc. For example, if you want to set the magnetic field to zero magnetic field or twice the magnitude of earth's magnetism, or if you want to measure the relationship between a living body and a strong magnetic field, you can apply a predetermined current to the coils 7a and 7b from the constant current source 6, and Set the magnetic field. Note that the constant current from the constant current source 6 is configured so that its current value can be set to an arbitrary value.
第4図はこの発明の一実施例を示す診断観測装置の接続
図である。FIG. 4 is a connection diagram of a diagnostic observation device showing an embodiment of the present invention.
第3図に示した診断観測装置の差動コイルCxd,コイ
ルCx,帰還コイルとしての大形コイル5a・5bの軸
X−X’を地磁気方向に向ければ,地磁気の変動分を打
消すのに第3図に示したX−X’軸のコイル群のように
1軸のシステムで十分である。If the axes X-X' of the differential coil Cxd, coil Cx, and large coils 5a and 5b as return coils of the diagnostic observation device shown in Fig. 3 are oriented in the geomagnetic direction, variations in the geomagnetism can be canceled out. A single-axis system such as the XX'-axis coil group shown in FIG. 3 is sufficient.
しかし被検査者2を載せる台(図示せず)は水平にする
ことが多く,被検査者にコイル等が邪魔にならないよう
にするために,地磁気を3成分に分けてその各成分につ
いてそれぞれ地磁気の変動分を打消す必要がある。第4
図の診断用観測装置は,地磁気を3成分に分けて打消す
ようにしたものである。同図において方形のピックアッ
プコイルボビン1にX軸方向の差動コイルCxd,補償
用コイルCx,Y軸方向の差動コイルCdy,コイルC
y,Z軸方向の差動コイルCdz,コイルCzがそれぞ
れ直交して巻回されており,コイルCxは増幅器4xを
経て帰還コイル5ax・5bxに,コイルCyは増幅器
4yを経て帰還コイル5ay,5byに,コイルCzは
増幅器4zを経て帰還コイル5az,5bzに接続され
ている。なお図示は省略しているが差動コイルCdx,
Cdy,Cdzはそれぞれ検出した生体磁気の3軸成分
を増幅し,表示するための電子装置に接続されている。However, the table (not shown) on which the test subject 2 is placed is often horizontal, and in order to prevent the test subject from getting in the way of coils, etc., the earth's magnetic field is divided into three components, and each component is It is necessary to cancel out the fluctuations in Fourth
The diagnostic observation device shown in the figure is designed to divide geomagnetism into three components and cancel them out. In the figure, a rectangular pickup coil bobbin 1 includes a differential coil Cxd in the X-axis direction, a compensation coil Cx, a differential coil Cdy in the Y-axis direction, and a coil C.
Differential coils Cdz and Cz in the y and Z axis directions are wound orthogonally, respectively. Coil Cx passes through amplifier 4x to feedback coils 5ax and 5bx, and coil Cy passes through amplifier 4y to feedback coils 5ay and 5by. The coil Cz is connected to feedback coils 5az and 5bz via an amplifier 4z. Although not shown, the differential coil Cdx,
Cdy and Cdz are each connected to an electronic device for amplifying and displaying the detected three-axis components of biomagnetism.
ピックアップコイルボビン1に加えられる地磁気の3成
分はそれぞれコイルCx,Cy,Czで検出され増幅器
4x,4y,4zを介して帰還コイル5ax・5bx,
5ay・5by,5az・5bzに帰還されるので地磁
気の変動分を打消す。そのため各帰還コイルで囲まれる
空間の磁界を一定で静かな環境とする。差動コイルCd
x・Cdy・Cdzは各々磁界の勾配を計測し生体から
発生する磁界を深部からのものも含めて,それぞれX軸
,Y軸,Z軸に分けて3成分を検出する。この3成分が
判明すると電子装置で生体中の磁気モーメント等の大き
さや方向が計算される。The three components of the earth's magnetism applied to the pickup coil bobbin 1 are detected by coils Cx, Cy, and Cz, respectively, and sent to feedback coils 5ax, 5bx, and 5bx via amplifiers 4x, 4y, and 4z, respectively.
Since it is returned to 5ay, 5by, 5az, and 5bz, it cancels out the fluctuations in the earth's magnetic field. Therefore, the magnetic field in the space surrounded by each feedback coil is kept constant and quiet. Differential coil Cd
x, Cdy, and Cdz each measure the gradient of the magnetic field, and detect the three components of the magnetic field generated from the living body, including the one from deep inside, by dividing it into the X axis, Y axis, and Z axis. Once these three components are known, an electronic device calculates the magnitude and direction of the magnetic moment, etc. in the living body.
第5図は,この発明の他の実施例を示す診断観測装置の
接続図である。この実施例装置は2つの方形ピックアッ
プコイル1a,1bを設け,一方のピックアップコイル
ボビン1aに生体磁界検出用の差動コイルCdx・Cd
y・Cdzを巻回し,他方のピックアップコイルボビン
1bに地磁気の変動分補償用の検出コイルCx・Cy・
Czを巻回している。ピックアップコイルボビン1aの
周囲には,さらに大形コイル5ax・5bx,5ay・
5by,5az・5bzが設けられ,またピックアップ
コイルボビン1bの周囲にはコイル5ax’・5bx’
,5ay’・5by’,5az’・5bz’が設けられ
ている。コイルCxは増幅器4ax,抵抗Rxを経てコ
イル5ax・5bxに,コイルCyは増幅器4ay,抵
抗Rxを経てコイル5ay・5byに,コイルCzは増
幅器4az,抵抗Rxを経て5az・5bzにそれぞれ
接続されている。また抵抗Rx・Ry・Rzの両端の電
圧は増幅器4Ax・4Ay・4Azを経てそれぞれ大形
コイル5ax・5bx,5ay・5by,5az・5b
zに加えられるようになっている。なお差動コイルCd
x・Cdy・Cdzはそれぞれ電子装置3x・3y・3
zに接続されている。FIG. 5 is a connection diagram of a diagnostic observation device showing another embodiment of the present invention. This embodiment device is provided with two rectangular pickup coils 1a and 1b, and one pickup coil bobbin 1a has differential coils Cdx and Cd for biomagnetic field detection.
y・Cdz is wound, and a detection coil Cx・Cy・Cy・Cdz for compensating for variations in the earth's magnetic field is wound around the other pickup coil bobbin 1b.
Cz is wound. Around the pickup coil bobbin 1a, larger coils 5ax, 5bx, 5ay, and
5by, 5az and 5bz are provided, and coils 5ax' and 5bx' are provided around the pickup coil bobbin 1b.
, 5ay', 5by', 5az' and 5bz' are provided. Coil Cx is connected to coils 5ax and 5bx through amplifier 4ax and resistor Rx, coil Cy is connected to coils 5ay and 5by through amplifier 4ay and resistor Rx, and coil Cz is connected to amplifier 4az and 5az and 5bz through resistor Rx. There is. In addition, the voltages across the resistors Rx, Ry, and Rz are applied to large coils 5ax, 5bx, 5ay, 5by, and 5az, 5b through amplifiers 4Ax, 4Ay, and 4Az, respectively.
It can be added to z. Note that the differential coil Cd
x, Cdy, and Cdz are electronic devices 3x, 3y, and 3, respectively.
connected to z.
第5図の実施例装置においてコイルCx・Cy・Czに
地磁気等の微小磁界が検知されるとその出力がそれぞれ
増幅器4ax・4ay・4azで増幅され抵抗Rx・R
y・Rzを介してコイル5ax’・5bx’,5ay′
・5by′,5az′・5bz’に電流を流し負帰還す
る。またこれらのコイルに流れる電流は抵抗Rx・Ry
・Rzの両端電圧として取り出され,さらに増幅器4A
x・4Ay・4Azで増幅され,差動コイルCdx・C
dy・Cdzの周囲に設けられている大形コイル5ax
・5bx,5ay・5by,5az・5bzに加えられ
,これらの各コイルにコイルCx・CyCzの出力に応
じた電流を流す。そのためピックアップコイルボビン1
aの周辺の磁気的環境はコイルCx・Cy・Czの磁気
的環境と同じになり,均一で静かな磁界が得られる。そ
れゆえ差動コイルCdx・cdy・Cdzは微弱な生体
磁界のみを検出し,その出力が電子装置3x・3b・3
zより導出される。In the embodiment shown in FIG. 5, when a minute magnetic field such as terrestrial magnetism is detected in the coils Cx, Cy, and Cz, the outputs are amplified by amplifiers 4ax, 4ay, and 4az, and are applied to resistors Rx and R.
Coils 5ax', 5bx', 5ay' via y and Rz
・Current flows through 5by', 5az' and 5bz' for negative feedback. Also, the current flowing through these coils is resistors Rx and Ry.
・Taken out as the voltage across Rz, and further connected to the amplifier 4A
x・4Ay・4Az, differential coil Cdx・C
Large coil 5ax installed around dy/Cdz
- It is added to 5bx, 5ay, 5by, 5az, and 5bz, and a current corresponding to the output of coil Cx and CyCz flows through each of these coils. Therefore, pickup coil bobbin 1
The magnetic environment around a is the same as that of the coils Cx, Cy, and Cz, and a uniform and quiet magnetic field is obtained. Therefore, the differential coils Cdx, cdy, and Cdz detect only the weak biomagnetic field, and the output is transmitted to the electronic devices 3x, 3b, and 3.
Derived from z.
なお補償用のコイルCx・Cy・Czを大形コイルから
離して設けているのは,大形コイル内の他の磁気的な影
響を受けることなく真に地磁気等遠方磁界の変動分を検
出するためである。The compensation coils Cx, Cy, and Cz are placed apart from the large coil in order to truly detect fluctuations in distant magnetic fields such as terrestrial magnetism without being influenced by other magnetic fields within the large coil. It's for a reason.
第6図は,この発明のさらに他の実施例を示す診断観測
装置である。この実施例装置も2つのスキッド磁力計の
方形ピックアップコイルボビン1a・1bを設け,一方
のピックアップコイルボビン1aに,生体磁界検出用の
差動コイルCdx・Cdy・Cdzと,コイルCx・C
y・Czを巻回し,他方のピックアップコイルボビン1
bに地磁気の変動分補償用の検出コイルCx’・Cy’
・Cx’を巻回している。これらの検出コイルでCx’
・Cy’・Cz’はそれぞれ増幅器4x・4y・4zに
接続され,増幅器4x・4y・4zの出力は演算機で構
成される変換器8に接続されている。また変換器8は3
軸出力Xa・Ya・Zaを伝達トランスTx・Ty・T
zを介してピックアップコイルボビン1aに巻回される
コイルCx・Cy・Czに加えるように巻回されるコイ
ルCx・Cy・Czに加えるように構成される。また差
動コイルCdx・Cdy・Czはそれぞれ電子装置3x
・3y・3zに接続されている。FIG. 6 shows a diagnostic observation device showing still another embodiment of the present invention. This embodiment device is also provided with two rectangular pickup coil bobbins 1a and 1b of the skid magnetometer, and one pickup coil bobbin 1a is equipped with differential coils Cdx, Cdy, and Cdz for biomagnetic field detection, and coils Cx and C.
Wind the other pickup coil bobbin 1.
Detection coils Cx' and Cy' for compensating for variations in geomagnetism are shown in b.
・Cx' is wound. With these detection coils, Cx'
-Cy' and Cz' are connected to amplifiers 4x, 4y, and 4z, respectively, and the outputs of the amplifiers 4x, 4y, and 4z are connected to a converter 8 composed of a computing machine. Also, the converter 8 is 3
Transmitting shaft output Xa, Ya, Za to transformer Tx, Ty, T
It is configured to be applied to the coils Cx, Cy, and Cz wound around the pickup coil bobbin 1a through the coil z. Also, the differential coils Cdx, Cdy, and Cz are each electronic device 3x.
・Connected to 3y and 3z.
この実施例装置においては,コイルCx・Cy・Czで
地磁気の変動が検知されるとそれぞれの3軸成分が増幅
器4x・4y・4z及び変換器8,伝達トランスTx・
TyTzを経てコイルCx・Cy・Czに加えられ,電
流ixa・iya・izaを流す。この電流ixa・i
ya・izaによって生じる磁界により,ピックアップ
コイルボビン1a周辺に生じる地磁気の変同等によるノ
イズ分が相殺される。なおこの場合ピックアップコイル
ボビン1aと1bの磁気軸が一致しておれば,増幅器4
x・4y・4zの各出力電圧と電流ixa・iya・i
zaの各3軸値か一致するが,ピックアップコイルボビ
ン1aと1bの磁気軸が異なる場合にはixa=kxx
X+kxyY+kxzZiya=kyxX+kyyY+
kyzZiza=kzxX+kzyY+kzzZとなり
これらの電流ixa・iya・izaを決定するために
変換器8により係数kijを,角度差に応じて演算する
。このようにしてピックアップコイルボビン1aの周辺
に侵入する地磁気ノイズを除去することにより差動コイ
ルCdx・Cdy・Cdzには,生体磁界のみが検出さ
れその出力が電子装置9x・9y・9zに導出される。In this embodiment device, when variations in the earth's magnetic field are detected by coils Cx, Cy, and Cz, the respective three-axis components are transmitted to amplifiers 4x, 4y, and 4z, converter 8, and transfer transformers Tx and Cz.
It is applied to the coils Cx, Cy, and Cz via TyTz, causing currents ixa, iya, and iza to flow. This current ixa・i
The magnetic field generated by ya and iza cancels out noise caused by variations in the earth's magnetic field generated around the pickup coil bobbin 1a. In this case, if the magnetic axes of the pickup coil bobbins 1a and 1b match, the amplifier 4
x, 4y, 4z output voltage and current ixa, iya, i
The three axis values of za match, but if the magnetic axes of pickup coil bobbins 1a and 1b are different, then ixa=kxx
X+kxyY+kxzZiya=kyxX+kyyY+
kyzZiza=kzxX+kzyY+kzzZ, and in order to determine these currents ixa, iya, and iza, the converter 8 calculates a coefficient kij according to the angular difference. In this way, by removing the geomagnetic noise that invades the vicinity of the pickup coil bobbin 1a, only the biomagnetic field is detected in the differential coils Cdx, Cdy, and Cdz, and the output thereof is led out to the electronic devices 9x, 9y, and 9z. .
この実施例装置によれば差動コイルが巻回されるピック
アップコイルボビンとは別のピックアップコイルボビン
に巻回される補償用コイルで検出される地磁気成分出力
を差動コイルが巻回されるピックアップコイルボビンに
巻回される補償用コイルに加え,その変動分を補償しノ
イズを除去するものであるから,第3図ないし第5図に
示したようなノイズ除去用の大形のコイルは不要であり
,装置全体を小形化することができる。According to this embodiment, the geomagnetic component output detected by a compensation coil wound on a pickup coil bobbin other than the pickup coil bobbin around which the differential coil is wound is transferred to the pickup coil bobbin around which the differential coil is wound. In addition to the compensation coil wound around it, it also compensates for the variation and eliminates noise, so there is no need for large coils for noise elimination as shown in Figures 3 to 5. The entire device can be downsized.
以上のようにこの発明の診断観測装置は,生体磁界をい
わゆる一次微分形の差動コイルを用いて検出するもので
あるから生体内部より発生される磁界をも検出可能とな
る。また,スキッド磁力計のピックアップコイルボビン
に巻回されるコイルにより検出される地磁気出力を帰還
コイルに負帰還して地磁気変動分を補償するものである
から,地磁気ノイズの影響を受けることなく,微弱な生
体磁界のみを測定することができる。As described above, since the diagnostic observation device of the present invention detects a biomagnetic field using a so-called first-order differential type differential coil, it is also possible to detect a magnetic field generated from inside a living body. In addition, since the geomagnetic output detected by the coil wound around the pickup coil bobbin of the skid magnetometer is negatively fed back to the feedback coil to compensate for geomagnetic fluctuations, it is not affected by geomagnetic noise and can be used to detect weak geomagnetic noise. Only biomagnetic fields can be measured.
第1図は従来の生体磁界測定を説明するための差動形ピ
ックアップコイルを示す図,第2図は同2次微分形ピッ
クアップコイルを示す図,第3図はこの発明の基本的な
一実施例を示す診断観測装置の接続図,第4図,第5図
,第6図は他の実施例を示す診断1覗測装置の匿続図で
ある。
1・1a・1b:ピックアップコイルボビン,2:被検
査者,3・3x・3y・3z:電子装置、4・4ax・
4ay・4az・・4Ax・4Ay・4Az・4x・4
y・4z:増幅器,5a・5b・5ax・5bx・5a
y・5by・5az・5bz・5ax′・5bx’・5
ay′・5by’・5az’・5bz’:人形(帰還)
コイル,Cdx・Cdy・Cdz:差動コイル、Cx・
Cy・Cz・Cx’・Cy′・Cz’:補償用コイル,
8:変換器。Figure 1 is a diagram showing a differential pickup coil for explaining conventional biomagnetic field measurement, Figure 2 is a diagram showing a second-order differential pickup coil, and Figure 3 is a diagram showing a basic implementation of the present invention. 4, 5, and 6 are connection diagrams of a diagnostic observation device showing other embodiments. 1, 1a, 1b: Pickup coil bobbin, 2: Test subject, 3, 3x, 3y, 3z: Electronic device, 4, 4ax,
4ay・4az・・4Ax・4Ay・4Az・4x・4
y・4z: Amplifier, 5a・5b・5ax・5bx・5a
y・5by・5az・5bz・5ax'・5bx'・5
ay', 5by', 5az', 5bz': Doll (return)
Coil, Cdx/Cdy/Cdz: Differential coil, Cx/
Cy・Cz・Cx'・Cy'・Cz': Compensation coil,
8: Converter.
Claims (5)
回される生体磁気検出用の作動コイルと,スキッド磁力
計のピックアップコイルボビンに巻回される補償用コイ
ルと,この補償用コイルよりの出力信号により補償用コ
イルに入力される磁界に対応した電流を流し,前記差動
コイル周辺の還方磁界の変動を打消す期間コイルとより
なることを特徴とする診断用観測装置。(1) An operating coil for biomagnetism detection wound around the pickup coil bobbin of the skid magnetometer, a compensation coil wound around the pickup coil bobbin of the skid magnetometer, and an output signal from this compensation coil used for compensation. A diagnostic observation device characterized by comprising a period coil that flows a current corresponding to a magnetic field input to the coil to cancel fluctuations in a return magnetic field around the differential coil.
ップコイルボビンに巻回されることを特徴とする特許請
求の範囲第1項記載の診断用観測装置。(2) The diagnostic observation device according to claim 1, wherein the operating coil and the compensation coil are wound on the same pickup coil bobbin.
るピックアップコイルボビンに巻回されることを特徴と
する特許請求の範囲第1項記載の診断用観測装置。(3) The diagnostic observation device according to claim 1, wherein the operating coil and the compensation coil are respectively wound on different pickup coil bobbins.
軸方向に複数個設けられ,かつ前記帰還コイルが前記補
償用コイルに対応して複数対設けられることを特徴とす
る特許請求の範囲第1項または第2項または第3項記載
の診断用観測装置。(4) A plurality of the differential coils and the compensation coils are provided in different axial directions, and a plurality of pairs of the feedback coils are provided corresponding to the compensation coils. The diagnostic observation device according to item 1, item 2, or item 3.
ンに巻回される生体磁気検出用の複数個の作動コイルと
,前記第1のスキッド磁力計のピックアップコイルボビ
ンに巻回される複数個の第1の補償用コイルと,第2の
スキッド磁力計のピックアップコイルボビンに巻回され
る複数個の第2の補償用コイルと,これら第2の補償用
コイル出力を受けて混合演算し,その出力信号を前記第
1の補償用コイルに加えて前記作動コイル周辺の遠方磁
界の変動を打消す手段とよりなることを特徴とする診断
用観測装置。(5) a plurality of actuating coils for biomagnetic detection wound around the pickup coil bobbin of the first skid magnetometer; and a plurality of first working coils wound around the pickup coil bobbin of the first skid magnetometer. A compensating coil and a plurality of second compensating coils wound around the pickup coil bobbin of the second skid magnetometer receive the outputs of these second compensating coils and perform a mixing operation, and the output signal is converted to the above-described output signal. A diagnostic observation device comprising, in addition to a first compensation coil, means for canceling fluctuations in a far-field magnetic field around the operating coil.
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP57134330A JPS5925726A (en) | 1982-07-31 | 1982-07-31 | Diagnostic observation apparatus |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP57134330A JPS5925726A (en) | 1982-07-31 | 1982-07-31 | Diagnostic observation apparatus |
Publications (2)
Publication Number | Publication Date |
---|---|
JPS5925726A true JPS5925726A (en) | 1984-02-09 |
JPH0334929B2 JPH0334929B2 (en) | 1991-05-24 |
Family
ID=15125806
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
JP57134330A Granted JPS5925726A (en) | 1982-07-31 | 1982-07-31 | Diagnostic observation apparatus |
Country Status (1)
Country | Link |
---|---|
JP (1) | JPS5925726A (en) |
Cited By (7)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JPH04357481A (en) * | 1991-05-13 | 1992-12-10 | Hoxan Corp | Device for eliminating magnetic noise using squid |
JP2001281311A (en) * | 2000-03-28 | 2001-10-10 | Mti:Kk | Disturbance magnetic field canceling device |
JP2007170880A (en) * | 2005-12-20 | 2007-07-05 | Yokogawa Electric Corp | Magnetic field detecting apparatus |
JP2009216424A (en) * | 2008-03-07 | 2009-09-24 | Kobe Steel Ltd | Magnet position measuring method and magnetic field measuring instrument |
JP2012215499A (en) * | 2011-04-01 | 2012-11-08 | Seiko Epson Corp | Magnetic field measurement device, magnetic field measurement system, and magnetic field measurement method |
JP2015087228A (en) * | 2013-10-30 | 2015-05-07 | Tdk株式会社 | Magnetic field detection device |
JP2015212715A (en) * | 2015-08-26 | 2015-11-26 | セイコーエプソン株式会社 | Magnetic field measurement device, magnetic field measurement system, and magnetic field measurement method |
Citations (1)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JPS53112468U (en) * | 1977-02-15 | 1978-09-07 |
-
1982
- 1982-07-31 JP JP57134330A patent/JPS5925726A/en active Granted
Patent Citations (1)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JPS53112468U (en) * | 1977-02-15 | 1978-09-07 |
Cited By (9)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JPH04357481A (en) * | 1991-05-13 | 1992-12-10 | Hoxan Corp | Device for eliminating magnetic noise using squid |
JP2001281311A (en) * | 2000-03-28 | 2001-10-10 | Mti:Kk | Disturbance magnetic field canceling device |
JP2007170880A (en) * | 2005-12-20 | 2007-07-05 | Yokogawa Electric Corp | Magnetic field detecting apparatus |
JP2009216424A (en) * | 2008-03-07 | 2009-09-24 | Kobe Steel Ltd | Magnet position measuring method and magnetic field measuring instrument |
JP2012215499A (en) * | 2011-04-01 | 2012-11-08 | Seiko Epson Corp | Magnetic field measurement device, magnetic field measurement system, and magnetic field measurement method |
US9024634B2 (en) | 2011-04-01 | 2015-05-05 | Seiko Epson Corporation | Magnetic field measurement apparatus, magnetic field measurement system and magnetic field measurement method |
US9958514B2 (en) | 2011-04-01 | 2018-05-01 | Seiko Epson Corporation | Magnetic field measurement apparatus, magnetic field measurement system and magnetic field measurement method |
JP2015087228A (en) * | 2013-10-30 | 2015-05-07 | Tdk株式会社 | Magnetic field detection device |
JP2015212715A (en) * | 2015-08-26 | 2015-11-26 | セイコーエプソン株式会社 | Magnetic field measurement device, magnetic field measurement system, and magnetic field measurement method |
Also Published As
Publication number | Publication date |
---|---|
JPH0334929B2 (en) | 1991-05-24 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
JP4263544B2 (en) | Magnetic field measuring device | |
JP5535467B2 (en) | Phase correction type active magnetic shield device | |
EP0982597B1 (en) | Method and apparatus for eliminating background interference signals from multichannel detector arrays | |
US20100231222A1 (en) | Very low noise magnetometer | |
JPH0711563B2 (en) | Gradation meter | |
CN105785286B (en) | A kind of fetus heart Magnetic testi probe, system and method | |
US5642045A (en) | Magnetic field gradiometer with improved correction circuits | |
US5686836A (en) | Apparatus for reducing noise due to sensor vibration during measurement of a weak magnetic field | |
US5608320A (en) | Mirror image differential induction amplitude magnetometer | |
JPS5925726A (en) | Diagnostic observation apparatus | |
JP2005003503A (en) | Magnetic-shielding method using induction coil | |
JPH05232202A (en) | Software gradiometer | |
JP2015197401A (en) | magnetic field sensor | |
JP4435255B1 (en) | Active magnetic shield device for AC magnetic field | |
JP2003517734A (en) | How to reduce interference in a magnetically shielded room | |
JP3454238B2 (en) | Biomagnetic field measurement device | |
Ter Brake et al. | Electronic balancing of multichannel SQUID magnetometers | |
JP3451193B2 (en) | Biomagnetic field measurement device | |
JP2001112731A (en) | Magnetic field measuring method | |
EP0899576B1 (en) | System for active compensation of magnetic field disturbances in nuclear magnetic resonance tomography | |
JP3424664B2 (en) | Magnetic field measurement device | |
JP3454237B2 (en) | Biomagnetic field measurement device | |
JP2001332888A (en) | Magnetic filed control system for magnetic-shield room | |
US20220299580A1 (en) | Magnetic-field measuring apparatus | |
JP3379519B2 (en) | Magnetic field measurement device |