JPS6051690A - Manufacturing apparatus of single crystal - Google Patents

Manufacturing apparatus of single crystal

Info

Publication number
JPS6051690A
JPS6051690A JP15772183A JP15772183A JPS6051690A JP S6051690 A JPS6051690 A JP S6051690A JP 15772183 A JP15772183 A JP 15772183A JP 15772183 A JP15772183 A JP 15772183A JP S6051690 A JPS6051690 A JP S6051690A
Authority
JP
Japan
Prior art keywords
magnetic field
single crystal
crystal
molten body
helmholtz coil
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP15772183A
Other languages
Japanese (ja)
Inventor
Masayuki Watanabe
正幸 渡辺
Shoichi Washitsuka
鷲塚 章一
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Toshiba Corp
Original Assignee
Toshiba Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Toshiba Corp filed Critical Toshiba Corp
Priority to JP15772183A priority Critical patent/JPS6051690A/en
Publication of JPS6051690A publication Critical patent/JPS6051690A/en
Pending legal-status Critical Current

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C30CRYSTAL GROWTH
    • C30BSINGLE-CRYSTAL GROWTH; UNIDIRECTIONAL SOLIDIFICATION OF EUTECTIC MATERIAL OR UNIDIRECTIONAL DEMIXING OF EUTECTOID MATERIAL; REFINING BY ZONE-MELTING OF MATERIAL; PRODUCTION OF A HOMOGENEOUS POLYCRYSTALLINE MATERIAL WITH DEFINED STRUCTURE; SINGLE CRYSTALS OR HOMOGENEOUS POLYCRYSTALLINE MATERIAL WITH DEFINED STRUCTURE; AFTER-TREATMENT OF SINGLE CRYSTALS OR A HOMOGENEOUS POLYCRYSTALLINE MATERIAL WITH DEFINED STRUCTURE; APPARATUS THEREFOR
    • C30B15/00Single-crystal growth by pulling from a melt, e.g. Czochralski method
    • C30B15/30Mechanisms for rotating or moving either the melt or the crystal
    • C30B15/305Stirring of the melt

Abstract

PURPOSE:To manufacture a good-quality single crystal with a convenient and inexpensive equipment by constituting a titled apparatus wherein a single crystal is pulled up after a DC magnetic field is impressed to a molten body surrounded circumferentially by a Helmholtz coil wherein two circular coils are arranged oppositely. CONSTITUTION:A Helmholtz coil, obtained by arranging oppositely two circular solenoid coils 15 and 16 contained respectively in crystals 17 and 18 surrounding circumferentially a molten body 3, is provided to the outside of a heater 2 in a single crystal manufacturing apparatus of the Czochralski method wherein after a seed crystal 4 is dipped in and then pulled up from the molten body 3 obtained by heating a starting material in a crucible 1 with a heater 2 surrounding concentrically the crucible 1, a single crystal 5 is grown in company with the seed crystal 4. A magnetic field is generated by using the Helmholtz coil as a superconducting magnet, and a DC magnetic field 14, which is symmetrical to a crystal-growth axis 7 and has a uniform distribution of magnetic field along the crystal-growth surface, is impressed to the molten body 3. The heat convection in the molten body 3 is restrained in this way, and the high-quality single crystal 5 can be obtained.

Description

【発明の詳細な説明】 〔発明の哨する技術分野〕 この発明は、チョクラルスキー法による単結晶の製造装
置に係り、特に導電性を有する溶融体から成長結晶を得
る装置に関する。
DETAILED DESCRIPTION OF THE INVENTION [Technical field to which the invention pertains] The present invention relates to an apparatus for producing a single crystal using the Czochralski method, and more particularly to an apparatus for producing a grown crystal from a conductive melt.

〔従来技術とその問題点〕[Prior art and its problems]

半導体工業に用いられている8iやGaASなどの単結
晶は主としてチョクラルスキー法によって製造されてい
る。この方法は、第1図に示すように円形のルツボ(1
)内に原料をチャージし、ルツボを同軸的に取り囲こむ
ヒータ(2)による加熱で原料の溶融体(3)を作る。
Single crystals such as 8i and GaAS used in the semiconductor industry are mainly manufactured by the Czochralski method. This method uses a circular crucible (1
) is charged with raw material, and heated by a heater (2) coaxially surrounding the crucible to form a molten material (3).

しかるのち、この溶融体(3)の表面中央に種結晶(4
)を接触させ、種結晶(4)を徐々に引上げることによ
って1種結晶(4)に連続して所望の単結晶(5)を成
長させるものである。
After that, a seed crystal (4) is placed in the center of the surface of this melt (3).
), and by gradually pulling up the seed crystal (4), a desired single crystal (5) is grown continuously from the first seed crystal (4).

ところで、溶融体(3)への加熱は上としてルツボ(1
)の側面から行なわれるので、溶融体(3)内部では外
囲部で高(中央部で低い温度勾配かっ(。このため、溶
融体(3)内部には主に外囲部から中央部に向う熱対流
(6)が生じる。このような熱対流(6)は結晶(5)
の成長界面の温度にゐらぎを与える結果、成長結晶(5
)の特性が不均一になるとか結晶欠陥が発生するとかの
不都合が生じる。
By the way, the heating to the melt (3) is done in the crucible (1).
), inside the melt (3) there is a temperature gradient that is high in the outer part (lower in the center). Therefore, inside the melt (3) there is a temperature gradient mainly from the outer part to the center. Direct heat convection (6) occurs.Such heat convection (6) is caused by crystal (5)
As a result of varying the temperature at the growth interface of the growing crystal (5
) may cause inconveniences such as non-uniform properties and crystal defects.

このような欠点を改良する試みとして、導電性を有する
溶融体から単結晶を成長させる場合においては、外部か
ら溶融体に磁界を印加する方法がJλ限 検討されており、特開昭57−14984などで開示さ
れている。すなわち、磁界を印加することにより、逼気
云導性をもつ流体が磁力線を横切り、その結果、流体の
運動方向と磁場に垂直な方向に電皿が流れ、電流と磁場
に垂直な方向に力が発生する。この力は熱対流とは逆方
向であり、熱対流を抑制する。この方法は以上の原理を
用いるものであり、磁界印加の方法きしては、第2図に
示すように、浴融体(3)をはさむように2個の磁石(
81、+91を配置し、これらの磁石により発生する横
方向の磁界(1,0)を6融体(3)に印加する横磁界
印加と、第3図に示すように、浴融体(3)を同心円的
に囲む円筒形のソレノイド(1υを設け、これに電流を
流すこきによって縦方向磁界(12)を溶融体(3)に
印加する縦磁界印加とに大別されるが、前者の横磁界印
加では、結晶成長軸(7)に対称な磁界分布が得られな
いという欠点があった。また後者の縦磁界印加では結晶
成長軸(71に対称な磁界分布を得ることはできるが、
第4図に示すように溶融体(314M方向のすなわち結
晶成長界面に沿った均一な磁界分布を得ることが困難で
ある。
In an attempt to improve these drawbacks, a method of applying a magnetic field to the melt from the outside when growing a single crystal from a conductive melt has been studied in the Jλ limit, and is disclosed in Japanese Patent Laid-Open No. 57-14984. etc. are disclosed. In other words, by applying a magnetic field, a fluid with conductivity crosses the lines of magnetic field, and as a result, the electric plate flows in a direction perpendicular to the direction of fluid motion and the magnetic field, and a force is generated in the direction perpendicular to the current and magnetic field. occurs. This force is in the opposite direction to thermal convection and suppresses thermal convection. This method uses the above principle, and as shown in Figure 2, the magnetic field is applied using two magnets (
81 and +91 and apply a transverse magnetic field (1,0) generated by these magnets to the bath melt (3). ) is provided with a cylindrical solenoid (1υ) concentrically surrounding it, and a vertical magnetic field (12) is applied to the melt (3) by passing a current through it. Applying a transverse magnetic field had the disadvantage that a magnetic field distribution symmetrical to the crystal growth axis (71) could not be obtained.Also, in the latter application of a longitudinal magnetic field, although it was possible to obtain a magnetic field distribution symmetrical to the crystal growth axis (71),
As shown in FIG. 4, it is difficult to obtain a uniform magnetic field distribution in the molten body (314M direction, that is, along the crystal growth interface).

t 1.K ワチ、 ソレノイドコイル(1υトルツホ
f1) (7)直径の比を十分太き(するなどの工夫に
より結晶成長界面に沿った均一な磁界分布を得ることは
できるか、装置が大型化、大重量化するという問題かあ
り、簡便性に欠ける欠点がある。
t1. K Wachi, Solenoid coil (1υ Tortuho f1) (7) Is it possible to obtain a uniform magnetic field distribution along the crystal growth interface by making the diameter ratio sufficiently thick?Is it possible to obtain a uniform magnetic field distribution along the crystal growth interface? However, there is a problem that it is easy to use, and there is a drawback that it lacks simplicity.

また上記のいずれの方法においても、成長結晶(5)面
内の特注の均一性の向上や結晶欠陥の低減化には限界が
あった。
In addition, in any of the above methods, there is a limit to the ability to custom improve the in-plane uniformity of the grown crystal (5) and reduce crystal defects.

〔発明の目的〕[Purpose of the invention]

この発明は上述の問題点を解決するためになさイtたも
のであり、その目的は結晶成長軸に対称でかつ結晶M、
長而面沿って均一な磁界分布を得ることができる簡便で
安価な磁界印7Ji Q結晶製造装置を提供するこおに
ある。
This invention was made to solve the above-mentioned problems, and its purpose is to form a crystal M, which is symmetrical to the crystal growth axis and
The object of the present invention is to provide a simple and inexpensive magnetic field stamp 7JiQ crystal manufacturing apparatus that can obtain a uniform magnetic field distribution along the long plane.

〔発明の硫安〕[Ammonium sulfate of invention]

この目的を達成するために、この発明においては溶融体
の外部に溶融体を環周する円形コイル2個を相対して配
置した超電導磁界発生用のへルムホルツコイル型磁石を
用ける。これlこよって、第5図に示すように、結晶成
長軸(7)に対称な縦磁界(工4)が得られ、しかも上
下のコイル(15) 、 (16)から発生する磁界の
集束によって第6図に示すようなi55本内の水平方違
すなわち結晶成長面に沿って均一な磁界分布(17)が
実現する。
In order to achieve this object, the present invention uses a Helmholtz coil type magnet for generating a superconducting magnetic field, in which two circular coils surrounding the melt are placed facing each other outside the melt. As a result, as shown in Fig. 5, a longitudinal magnetic field (4) symmetrical to the crystal growth axis (7) is obtained, and due to the convergence of the magnetic fields generated from the upper and lower coils (15) and (16), As shown in FIG. 6, a uniform magnetic field distribution (17) is realized horizontally within the i55 lines, that is, along the crystal growth plane.

〔発明の効果〕〔Effect of the invention〕

以上説明したように本発明の単結晶製造装置によイtば
、チョクラルスキー法tこよる溶融体が導゛屯性を有す
る・肉質の単結晶の製造において、結晶成長−目こ対称
でかつ結晶成長面に沿って均一な磁界分布を得ることが
できるので、1フ融体内の熱対流が効果的に抑制さ?”
Lる。この結果、熱対流を原図とした結晶の不均一性、
結晶欠陥の発生のない良質の単結晶が型造できる。更に
、装置は円形コイルを2個相対して配置tLl単Hな構
成であり、かつ超電導型であるので小型、@量々なって
いる。
As explained above, the single crystal production apparatus of the present invention allows the crystal growth to be symmetrical in the production of a fleshy single crystal in which the melt has conductive properties using the Czochralski method. In addition, it is possible to obtain a uniform magnetic field distribution along the crystal growth surface, so thermal convection within the 1-F melt is effectively suppressed. ”
L. As a result, crystal heterogeneity based on thermal convection,
High-quality single crystals without crystal defects can be molded. Furthermore, the device has a single-H configuration in which two circular coils are placed opposite each other, and is of a superconducting type, so it is small and available in large quantities.

〔発明の実施例〕[Embodiments of the invention]

以下、本発明の実施例1を図面に基づき説明する。第5
図のように、ヒータ(2)の外側に、ヒ〜り(2)の側
壁部を概ね同心円的に取り囲こむ上下の2個のコイル(
15) 、 (16)を相対して配置した。上下2個の
各コイル(15) 、 (16)の巻数を1800%コ
イル断面を30 X 30 m+r+の正方形とし、 
詞兄ii’ CuN i/NbTiの超社導憩に100
A/mm2のコイル電流密度となる゛濾波を流すこaに
よって、M融体内の・熱対流をtlilJ fflする
に十分な1500ガウスの主として縦方向の集束磁界が
1j4 c)れた。上下のコイル(13J 。
Embodiment 1 of the present invention will be described below based on the drawings. Fifth
As shown in the figure, there are two upper and lower coils (
15) and (16) were placed opposite each other. The number of turns of each of the upper and lower two coils (15) and (16) is 1800%.The coil cross section is a square of 30 x 30 m+r+,
100 for the Chosha guide break of Kazu-nii ii' CuN i/NbTi
The filtering, resulting in a coil current density of A/mm2, produced a primarily longitudinal focused magnetic field of 1500 Gauss, sufficient to reduce thermal convection within the M melt. Upper and lower coils (13J.

(14)はそれぞれ別個のクライオスタット(17) 
、 (1B)に収め、これら2個のクライオスタット(
17) 、 (18)を2本のフレキシブルパイプ(1
9) 、 C2(1)で結合シタ。
(14) are each separate cryostat (17)
, (1B) and these two cryostats (
17) and (18) into two flexible pipes (1
9), combined with C2(1).

そのうち1本は上下のコイル(15) 、 (1,6)
を眠気的に直列にするためのパイプであり、他の1本は
液体ヘリウム注入のためのパイプである。第61図はこ
の装置ガにおいて、直径800rnmのコイルの上下の
中間中央部に1500ガウスの埃[1,?界を印加した
ときに得らイtた水平方向の磁界強度分布(17〕であ
り、中央部150mmの領域においてほとんど均一な水
平方向分布が得られた。
One of them is the upper and lower coil (15), (1,6)
The other pipe is for injecting liquid helium. Figure 61 shows that in this device, 1,500 gauss of dust [1,? This is the horizontal magnetic field strength distribution (17) obtained when the field was applied, and an almost uniform horizontal distribution was obtained in the central 150 mm region.

本発明の装置を用いて、内径1’50mmのルツボから
直径76mmの81単結晶を成長させ走ところ、ストリ
エーションのない酸素濃度の面内分布が均一な、従来で
は得らr+、aかった高品質の単結晶が得らイした。
Using the apparatus of the present invention, an 81 single crystal with a diameter of 76 mm was grown from a crucible with an inner diameter of 1'50 mm, and the result was a uniform in-plane distribution of oxygen concentration without striations, which could not be obtained with conventional methods. A high quality single crystal was obtained.

以上説明しズこように1本発明の単結晶M造装置では直
線体内の結晶成長に望ましくない熱対流を仰i:ilJ
するための磁界を均一に浴融体に印加することができる
ので、比較的小磁界印加で均一性のよい、1吉晶欠陥の
少ない高品質結晶の捜造が可能とりる。また二装置的に
も超なL感型の2個の円形コイルを相対して配置すると
いったii4便ζ形で実現できるので、小4W化、軽1
化が可能であり、丁未上の利点が極ヅ)で大きい。
As explained above, in the single crystal M manufacturing apparatus of the present invention, undesirable thermal convection occurs during crystal growth within the linear body.
Since the magnetic field for this purpose can be applied uniformly to the bath melt, it is possible to search for and create high-quality crystals with good uniformity and fewer monomer defects by applying a relatively small magnetic field. In addition, since it can be realized in the II4-type ζ type, in which two circular coils with a super L-sensing type are placed opposite each other, it can be realized as a small 4W, light 1
It is possible to change the method, and the advantages over the previous method are extremely large.

Aお本発明は上記実施例のSi単依晶製造に限らず他の
G a A sやGap7;Jどにおいても同僅に適用
できるものである。
A: The present invention is not limited to the production of Si monocrystals as described in the above embodiments, but is also applicable to other types of GaAs, Gap 7; J, etc.

【図面の簡単な説明】[Brief explanation of the drawing]

i”41図はチョクラルスキー法による単結晶製造の:
京理、凭明!J、 W、112図および第3図は従来の
結晶調@境イを示す図、嘉41菌は従来技術列の説明図
、第5図は本発明に1糸わる結晶製造瑛;1を示すト4
、第6図は本発明技Ji例の説明図である。 1・・・ルツボ、2・・・ヒータ、3・・溶融体、4・
・・種結晶、5・・・単結晶、6・・・熱対流、7・・
・結晶成長軸。 8.9・・・永久磁石、10,12.14・・・磁界、
 11・・・ソレノイドコイル、13.17・・・磁界
強度分布。 15.16・・・ソレノイドコイル、17.18・・・
タライオスタノト% 19.20・・・フレキシブルパ
イプ。 代理人弁理士 則 近 憲 佑(ほか1名〕第4図 第5図 第6図 0 RO o 0 0 0 o 。
Figure 41 shows the production of single crystals using the Czochralski method:
Kyori, Keimei! J, W, Figure 112 and Figure 3 are diagrams showing the conventional crystal tone @ boundary A, Ka41 bacteria is an explanatory diagram of the prior art series, and Figure 5 shows a method for producing crystals; 1 that is different from the present invention. G4
, FIG. 6 is an explanatory diagram of an example of the technique of the present invention. 1... Crucible, 2... Heater, 3... Molten body, 4...
... Seed crystal, 5... Single crystal, 6... Heat convection, 7...
・Crystal growth axis. 8.9...Permanent magnet, 10,12.14...Magnetic field,
11... Solenoid coil, 13.17... Magnetic field strength distribution. 15.16... Solenoid coil, 17.18...
Talaiostanoto% 19.20...Flexible pipe. Representative Patent Attorney Kensuke Chika (and 1 other person) Figure 4 Figure 5 Figure 6 0 RO o 0 0 0 o.

Claims (2)

【特許請求の範囲】[Claims] (1)溶融体に直流磁界を印加してチョクラルスキー法
により単結晶を製造する装置において、上記磁界印加装
置として、上記浴融体を環周する円形コイルを2個相対
して配置したヘルムホルツコイルを設けたことを特徴と
する単結晶の製造装置。
(1) In an apparatus for manufacturing a single crystal by the Czochralski method by applying a direct current magnetic field to a melt, the magnetic field applying device is a Helmholtz coil in which two circular coils circumferentially surrounding the bath melt are arranged opposite each other. A single crystal manufacturing device characterized by being equipped with a coil.
(2)上記磁界印加装置において1円形コイルを2個相
対して配置したヘルムホルツコイルが超這導磁石である
ことを特徴とする特許請求の範囲第1項記載の単結晶の
製造装置。
(2) The apparatus for manufacturing a single crystal according to claim 1, wherein the Helmholtz coil in which two one-circular coils are arranged opposite each other in the magnetic field applying device is a superconducting magnet.
JP15772183A 1983-08-31 1983-08-31 Manufacturing apparatus of single crystal Pending JPS6051690A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP15772183A JPS6051690A (en) 1983-08-31 1983-08-31 Manufacturing apparatus of single crystal

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP15772183A JPS6051690A (en) 1983-08-31 1983-08-31 Manufacturing apparatus of single crystal

Publications (1)

Publication Number Publication Date
JPS6051690A true JPS6051690A (en) 1985-03-23

Family

ID=15655915

Family Applications (1)

Application Number Title Priority Date Filing Date
JP15772183A Pending JPS6051690A (en) 1983-08-31 1983-08-31 Manufacturing apparatus of single crystal

Country Status (1)

Country Link
JP (1) JPS6051690A (en)

Cited By (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS63248793A (en) * 1987-04-03 1988-10-17 Nippon Telegr & Teleph Corp <Ntt> Method and device for growing uniform crystal
US4849065A (en) * 1986-09-25 1989-07-18 Sony Corporation Crystal growing method
JPH01287528A (en) * 1988-05-13 1989-11-20 Tdk Corp Optical isolator and optical circulator
JPH0451214A (en) * 1990-06-20 1992-02-19 Shinkosha:Kk Optical isolator
US5196085A (en) * 1990-12-28 1993-03-23 Massachusetts Institute Of Technology Active magnetic flow control in Czochralski systems
JPH0575726U (en) * 1992-03-19 1993-10-15 並木精密宝石株式会社 Optical isolator
US5278853A (en) * 1991-05-28 1994-01-11 Mitsubishi Gas Chemical Co., Ltd. Optical isolator
US5345329A (en) * 1992-06-19 1994-09-06 Mitsubishi Gas Chemical Company, Inc. Polarization-independent optical isolator
CN114318504A (en) * 2021-12-31 2022-04-12 西安交通大学 Thermomagnetic coupling heating device for growing crystal by Czochralski method and configuration method

Cited By (12)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US4849065A (en) * 1986-09-25 1989-07-18 Sony Corporation Crystal growing method
JPS63248793A (en) * 1987-04-03 1988-10-17 Nippon Telegr & Teleph Corp <Ntt> Method and device for growing uniform crystal
JP2592244B2 (en) * 1987-04-03 1997-03-19 日本電信電話株式会社 Equipment for growing uniform crystals
JPH01287528A (en) * 1988-05-13 1989-11-20 Tdk Corp Optical isolator and optical circulator
JP2572627B2 (en) * 1988-05-13 1997-01-16 ティーディーケイ株式会社 Optical isolator and optical circulator
JPH0451214A (en) * 1990-06-20 1992-02-19 Shinkosha:Kk Optical isolator
US5196085A (en) * 1990-12-28 1993-03-23 Massachusetts Institute Of Technology Active magnetic flow control in Czochralski systems
US5278853A (en) * 1991-05-28 1994-01-11 Mitsubishi Gas Chemical Co., Ltd. Optical isolator
JPH0575726U (en) * 1992-03-19 1993-10-15 並木精密宝石株式会社 Optical isolator
US5345329A (en) * 1992-06-19 1994-09-06 Mitsubishi Gas Chemical Company, Inc. Polarization-independent optical isolator
CN114318504A (en) * 2021-12-31 2022-04-12 西安交通大学 Thermomagnetic coupling heating device for growing crystal by Czochralski method and configuration method
CN114318504B (en) * 2021-12-31 2023-09-26 西安交通大学 Thermomagnetic coupling heating device for crystal growth by Czochralski method and configuration method

Similar Documents

Publication Publication Date Title
JPS6051690A (en) Manufacturing apparatus of single crystal
CN110129890B (en) Coil structure for magnetically controlled Czochralski single crystal and method for magnetically controlled Czochralski single crystal
JPH0212920B2 (en)
JPS62256787A (en) Method and device for growing single crystal
JP7230781B2 (en) Single crystal pulling apparatus and single crystal pulling method
JP5240905B2 (en) Magnetic field applied silicon crystal growth method and apparatus
JPS6081086A (en) Process and apparatus for growing single crystal
JPS6027684A (en) Apparatus for producing single crystal
JPS6036392A (en) Apparatus for pulling single crystal
TW202126868A (en) A semiconductor crystal growth apparatus
Ozaki et al. Design study of superconducting magnets for uniform and high magnetic force field generation
JPS61222985A (en) Production unit for single crystal
JPS6270286A (en) Apparatus for producting single crystal
JPS61186282A (en) Production of single crystal
JPS61251594A (en) Apparatus for producing single crystal
JPS6033297A (en) Pulling device for single crystal semiconductor
JPS6317289A (en) Production of semiconductor single crystal
JP2803606B2 (en) Crystal growing method and crystal growing apparatus
JPS6051691A (en) Growing apparatus of single crystal semiconductor
JPH0160000B2 (en)
JPS6033290A (en) Preparation of single crystal semiconductor
KR20240038957A (en) Manufacturing method of silicon single crystal
JPS62256791A (en) Device for growing single crystal
JPS60251193A (en) Process and device for preparing single crystal
JPS6051689A (en) Manufacturing apparatus of single crystal