JPH08239292A - Growth of crystal - Google Patents

Growth of crystal

Info

Publication number
JPH08239292A
JPH08239292A JP9430496A JP9430496A JPH08239292A JP H08239292 A JPH08239292 A JP H08239292A JP 9430496 A JP9430496 A JP 9430496A JP 9430496 A JP9430496 A JP 9430496A JP H08239292 A JPH08239292 A JP H08239292A
Authority
JP
Japan
Prior art keywords
crystal
crucible
magnetic field
oxygen concentration
single crystal
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP9430496A
Other languages
Japanese (ja)
Other versions
JP2734445B2 (en
Inventor
Nobuyuki Izawa
伸幸 伊沢
Toshihiko Suzuki
利彦 鈴木
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Sony Corp
Original Assignee
Sony Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Sony Corp filed Critical Sony Corp
Priority to JP8094304A priority Critical patent/JP2734445B2/en
Publication of JPH08239292A publication Critical patent/JPH08239292A/en
Application granted granted Critical
Publication of JP2734445B2 publication Critical patent/JP2734445B2/en
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Landscapes

  • Liquid Deposition Of Substances Of Which Semiconductor Devices Are Composed (AREA)
  • Crystals, And After-Treatments Of Crystals (AREA)

Abstract

PURPOSE: To enable the precise control so as to provide the oxygen concentration in a single crystal with a medium one by limiting the application direction of a magnetic field, rotative direction and speed of a crystal add a crucible in growing a semiconductor single crystal according to the magnetic field-applied type Czochralski process. CONSTITUTION: The following means are used in growing a semiconductor single crystal according to the magnetic field-applied type Czochralski process: That is, (1) the application direction of the magnetic field is a transverse magnetic field in which the direction intersects the pulling up direction of the crystal at right angles and (2) the rotative direction of a crucible is in-phase with that of the crystal; the rotational frequency of the crucible is 2-16r.p.m. and the rotational speed of the crystal is higher than that of the crucible. The oxygen concentration in the crystal is controlled to 1.0-1.8×10<18> cm<-3> according to the above means.

Description

【発明の詳細な説明】Detailed Description of the Invention

【0001】[0001]

【発明の属する技術分野】本発明は、結晶成長方法、特
にシリコンを結晶成長させる場合に好適な結晶成長方法
に係わる。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a crystal growth method, and more particularly to a crystal growth method suitable for crystal growth of silicon.

【0002】[0002]

【従来の技術】従来、チョクラルスキー法によるシリコ
ンの単結晶成長方法において、磁場を印加しながら行う
ことによりシリコン中の酸素濃度を制御しようとする方
法が提案されている(特公昭58−50953号公報参
照)。
2. Description of the Related Art Conventionally, a method of growing a silicon single crystal by the Czochralski method has been proposed which attempts to control the oxygen concentration in silicon by applying a magnetic field (Japanese Patent Publication No. S58-50953). (See the official gazette).

【0003】[0003]

【発明が解決しようとする課題】上記特公昭58−50
953号公報等には、横磁場中すなわち、シリコン単結
晶の引き上げ方向と直交する方向に磁場を印加する方法
が例示されている。この方法によれば、通常シリコン融
液を収容するるつぼの回転方向とシリコン単結晶の回転
方向とは反対方向(逆相)であり、シリコン中への酸素
の特に低濃度(1.0×1017〜1.0×1018
-3)及び高濃度(1.8×1018〜2.5×1018
-3)の制御性に優れている。しかし、中濃度(1.0
×1018〜1.8×1018cm-3)の酸素の制御性につ
いては必ずしも良好な結果が得られなかった。なお、シ
リコン中に酸素を導入することにより、ゲッタリング作
用を持たせることができるため、ゲッタリングの点から
は酸素濃度は高い方が好ましいが、高過ぎると欠陥の問
題が生じるため、適当な中程度の濃度に抑えている。本
発明は、上記問題点を解決することができる結晶成長方
法を提供するものである。
DISCLOSURE OF THE INVENTION Problems to be Solved by the Invention
Japanese Patent Publication No. 953 and the like exemplify a method of applying a magnetic field in a transverse magnetic field, that is, in a direction orthogonal to the pulling direction of a silicon single crystal. According to this method, the direction of rotation of the crucible containing the silicon melt is generally opposite to the direction of rotation of the silicon single crystal (reverse phase), and particularly low concentration of oxygen (1.0 × 10 17 ~ 1.0 x 10 18 c
m −3 ) and high concentration (1.8 × 10 18 to 2.5 × 10 18 c
Excellent controllability of m -3 ). However, medium concentration (1.0
× 10 18 ~1.8 × 10 18 cm -3) always good results for the control of oxygen could not be obtained. It should be noted that, by introducing oxygen into silicon, a gettering action can be provided, and therefore, from the viewpoint of gettering, it is preferable that the oxygen concentration be high, but if it is too high, a problem of defects occurs, so that it is appropriate. It is kept at a medium concentration. The present invention provides a crystal growth method capable of solving the above problems.

【0004】[0004]

【課題を解決するための手段】すなわち、本発明におい
ては、上述したように従来の横磁場中、つまり融液から
の結晶引き上げ方向に直交する方向の横磁場を印加しな
がら行うチョクラルスキー法による結晶成長方法におい
て、本発明では、融液を収容するるつぼの回転方向と、
引き上げる単結晶の回転方向とを同相として、結晶の回
転速度をるつぼの回転速度より大きくすることにより、
引き上げ単結晶中の酸素濃度を中濃度の1.0×1018
cm-3〜1.8×1018cm-3に制御することを特徴と
する。
That is, in the present invention, as described above, the Czochralski method is performed in the conventional transverse magnetic field, that is, while applying the transverse magnetic field in the direction orthogonal to the crystal pulling direction from the melt. In the crystal growth method according to the present invention, in the present invention, the rotation direction of the crucible containing the melt,
By making the rotation direction of the single crystal to be in phase with the rotation direction of the crystal higher than the rotation speed of the crucible,
The oxygen concentration in the pulled single crystal was set to 1.0 × 10 18 of the medium concentration.
and controlling the cm -3 ~1.8 × 10 18 cm -3 .

【0005】また、本発明は、上述したように融液に磁
場を結晶の引き上げ方向に直交する方向である横磁場に
印加しながら行うチョクラルスキー法による結晶成長方
法において、融液を収容するるつぼの回転方向と引き上
げるシリコン単結晶の回転方向とを同相として、るつぼ
の回転速度を、2〜16rpmとし、結晶の回転速度を
るつぼの回転速度より大きくすることにより、引き上げ
単結晶中の酸素濃度を中濃度の1.0×1018cm-3
1.8×1018cm-3に制御することを特徴とする。
Further, according to the present invention, the melt is accommodated in the crystal growth method by the Czochralski method which is performed while applying the magnetic field to the melt in the transverse magnetic field which is the direction orthogonal to the pulling direction of the crystal as described above. By setting the rotation direction of the crucible and the rotation direction of the silicon single crystal to be pulled as the same phase, and setting the rotation speed of the crucible to 2 to 16 rpm and making the rotation speed of the crystal larger than the rotation speed of the crucible, the oxygen concentration in the pulled single crystal is increased. With a medium concentration of 1.0 × 10 18 cm −3
It is characterized by controlling to 1.8 × 10 18 cm −3 .

【0006】本発明によれば、良く知られているよう
に、横磁場の印加による場合の、引き上げ成長された単
結晶体の半径方向の酸素濃度分布の均一性の効果と共
に、融液を収容するるつぼの回転方向と単結晶の回転方
向とを従来に反対方向ではなく、同じ方向とし、結晶の
回転速度をるつぼの回転速度より大きくし、また、るつ
ぼの回転速度を、2〜16rpmとしたことにより、中
程度の酸素濃度の制御を精密に行うことが可能になる。
According to the present invention, as is well known, the effect of the uniformity of the oxygen concentration distribution in the radial direction of the pull-grown single crystal body when the transverse magnetic field is applied is contained, and the melt is accommodated. The rotation direction of the crucible and the rotation direction of the single crystal are not the opposite directions to the conventional one but the same direction, the rotation speed of the crystal is made larger than the rotation speed of the crucible, and the rotation speed of the crucible is set to 2 to 16 rpm. This makes it possible to precisely control the medium oxygen concentration.

【0007】[0007]

【発明の実施の形態】BEST MODE FOR CARRYING OUT THE INVENTION

〔実施例〕図1において、曲線Aは本発明に基づき、シ
リコン(Si)の融液に磁場を結晶の引き上げ方向に直
交する方向(横磁場)に印加しながら行うチョクラルス
キー法による単結晶シリコンの成長方法において、シリ
コンに導入すべき酸素の濃度を1.3〜1.5×1018
cm-3(換算係数ASTM F121−79)として、
シリコン融液を収容するるつぼの回転方向(回転速度
3.2rpm)と引き上げるシリコン単結晶の回転方向
(回転速度25rpm)を同じにして、結晶成長を開始
してから終了するまでのシリコン単結晶内の長さ方向に
対する断面部分における実際に導入された酸素の濃度を
測定したものである。このグラフにより、本発明によれ
ば、横磁場中、るつぼとシリコン単結晶の回転方向を同
相とし、結晶の回転速度をるつぼの回転速度より大きく
したことにより、結晶中の酸素濃度を所望の範囲内に制
御することができることがわかる。なお、結晶の直径に
ついても規定の125mmに保たれていた。
[Example] In FIG. 1, a curve A is a single crystal according to the present invention by the Czochralski method performed by applying a magnetic field to a melt of silicon (Si) in a direction (transverse magnetic field) orthogonal to the pulling direction of the crystal. In the method of growing silicon, the concentration of oxygen to be introduced into silicon is 1.3 to 1.5 × 10 18.
As cm -3 (conversion coefficient ASTM F121-79),
Within the silicon single crystal from the start to the end of crystal growth, the rotation direction (rotation speed 3.2 rpm) of the crucible containing the silicon melt and the rotation direction (rotation speed 25 rpm) of the pulled silicon single crystal are the same. Is a measurement of the concentration of oxygen actually introduced in the cross-section portion with respect to the length direction. According to the present invention, according to the present invention, in the transverse magnetic field, the rotational directions of the crucible and the silicon single crystal were in phase, and the rotational speed of the crystal was set to be higher than the rotational speed of the crucible, so that the oxygen concentration in the crystal was within a desired range. It turns out that it can be controlled within. The diameter of the crystal was also kept at the specified 125 mm.

【0008】〔比較例〕また、比較例として図1の一点
鎖線Bに示すように、導入すべき酸素濃度、るつぼとシ
リコン単結晶の回転速度は、上記実施例と同じである
が、るつぼとるつぼと単結晶の回転方向は従来通り逆方
向としてシリコン単結晶の成長開始から終了までにおけ
る結晶内の長さ方向に対する断面部分における酸素濃度
を測定したものである。このグラフによれば、シリコン
単結晶中の酸素濃度は、所定の濃度範囲から大幅にずれ
ている部分があり、最大では2.0×1018cm-3を越
えていた。そして、この酸素濃度が所定値からずれた不
良部分の長さは5mm〜150mm位にもわたってい
た。これにより良品率が著しく減少すると共に、有転位
化し易くなることも判明した。なお、結晶の直径は規定
の125mmに対して132mmと突然増大し、その後
122mmと減少し、そして規定の125mmに戻っ
た。
[Comparative Example] As a comparative example, as shown by the chain line B in FIG. 1, the oxygen concentration to be introduced and the rotation speeds of the crucible and the silicon single crystal are the same as those in the above-mentioned embodiment. The rotation directions of the crucible and the single crystal are opposite to each other as in the conventional method, and the oxygen concentration in the cross-section portion with respect to the length direction in the crystal from the start to the end of the growth of the silicon single crystal is measured. According to this graph, the oxygen concentration in the silicon single crystal has a portion that deviates significantly from the predetermined concentration range, and exceeds 2.0 × 10 18 cm −3 at the maximum. The length of the defective portion in which the oxygen concentration deviated from the predetermined value was about 5 mm to 150 mm. It was also found that this resulted in a significant decrease in the non-defective rate and facilitated the formation of dislocations. The diameter of the crystal suddenly increased to 132 mm from the specified 125 mm, then decreased to 122 mm, and returned to the specified 125 mm.

【0009】上記実施例と比較例におけるるつぼの回転
速度は、いずれも3.2rpmであるが、速度を5.6
rpmに上げた場合にも、酸素濃度と結晶の直径につい
て略同じ結果がえられた。
The rotation speeds of the crucibles in the above-mentioned Examples and Comparative Examples are both 3.2 rpm, but the speed is 5.6.
Even when the speed was increased to rpm, almost the same results were obtained for the oxygen concentration and the crystal diameter.

【0010】次に図2に示すように、るつぼとシリコン
単結晶の回転方向は同相であるが、るつぼの回転速度を
変えてシリコン単結晶中の酸素濃度との関係を測定し
た。同図で、実線の領域Cは本実施例に係るシリコン単
結晶中における酸素濃度を示す。このグラフより、るつ
ぼの回転速度が16rpmまでは酸素濃度を精密に制御
することができるが、シリコン単結晶中の酸素濃度を
2.0×1018cm-3にするために、るつぼの回転速度
を16rpmより大きくしたところ、逆にシリコン融液
の流れが変化して酸素濃度のみならず、結晶の直径も変
動した。従って、1.0〜1.8×1018cm-3の酸素
濃度を得るには、るつぼの回転速度は2〜16rpmと
する。
Next, as shown in FIG. 2, although the rotation directions of the crucible and the silicon single crystal are in phase, the rotation speed of the crucible was changed and the relationship with the oxygen concentration in the silicon single crystal was measured. In the same figure, the solid line region C shows the oxygen concentration in the silicon single crystal according to this example. From this graph, it is possible to precisely control the oxygen concentration up to the crucible rotation speed of 16 rpm, but in order to set the oxygen concentration in the silicon single crystal to 2.0 × 10 18 cm −3 , the crucible rotation speed When the value was higher than 16 rpm, on the contrary, the flow of the silicon melt changed and not only the oxygen concentration but also the diameter of the crystal fluctuated. Therefore, in order to obtain the oxygen concentration of 1.0 to 1.8 × 10 18 cm −3 , the rotation speed of the crucible is set to 2 to 16 rpm.

【0011】なお、同図で一点鎖線の領域Dは、上記実
施例のるつぼと単結晶の回転方向を従来と同じ逆方向と
して、るつぼの回転速度に対する酸素濃度の制御性につ
いて測定したものである。このグラフより、従来の逆相
回転によれば、るつぼの回転速度が2rpm未満および
16rpmより大きい場合では酸素濃度の制御が可能で
あるが、2〜16rpmの範囲では所望の中程度の酸素
濃度の制御が困難であることがわかる。
In the region D indicated by the alternate long and short dash line in the figure, the controllability of the oxygen concentration with respect to the rotation speed of the crucible is measured with the rotation direction of the crucible and the single crystal in the above-mentioned embodiment being the same as the conventional reverse direction. . From this graph, according to the conventional reverse phase rotation, the oxygen concentration can be controlled when the rotation speed of the crucible is less than 2 rpm and greater than 16 rpm, but in the range of 2 to 16 rpm, the desired medium oxygen concentration It turns out that it is difficult to control.

【0012】[0012]

【発明の効果】本発明によれば、半導体融液に横磁場を
印加しながら行うチョクラルスキー法による結晶成長方
法において、単結晶半導体中への中程度の濃度の酸素の
導入を精密に制御することが容易になる。そして、結晶
の直径が所定の値に制御され、かつ転位のない良好な半
導体結晶が得られる。
According to the present invention, in the crystal growth method by the Czochralski method while applying a transverse magnetic field to the semiconductor melt, the introduction of medium concentration oxygen into the single crystal semiconductor is precisely controlled. Easy to do. Then, the crystal diameter is controlled to a predetermined value, and a good semiconductor crystal free from dislocation can be obtained.

【図面の簡単な説明】[Brief description of drawings]

【図1】シリコン単結晶の長さ方向に対する断面部分の
酸素濃度を測定したグラフを示す。
FIG. 1 is a graph showing measurement of oxygen concentration in a cross-section of a silicon single crystal in the lengthwise direction.

【図2】るつぼの回転速度に対する酸素濃度を測定した
グラフを示す。
FIG. 2 is a graph showing the measured oxygen concentration with respect to the rotation speed of the crucible.

Claims (2)

【特許請求の範囲】[Claims] 【請求項1】 半導体融液に磁場を印加しながら行うチ
ョクラルスキー法による結晶成長方法において、 上記磁場の印加方向が、結晶引き上げ方向に直交する方
向である横磁場であって、 上記半導体融液を収容するるつぼの回転方向と、結晶の
回転方向とを同相として、上記結晶の回転速度をるつぼ
の回転速度より大きくすることにより、上記結晶中の酸
素濃度を1.0〜1.8×1018cm-3に制御すること
を特徴とする結晶成長方法。
1. A crystal growth method according to the Czochralski method, which is performed while applying a magnetic field to a semiconductor melt, wherein a direction of applying the magnetic field is a transverse magnetic field which is a direction orthogonal to a crystal pulling direction. By setting the rotation direction of the crucible containing the liquid and the rotation direction of the crystal to be in phase, and setting the rotation speed of the crystal to be higher than the rotation speed of the crucible, the oxygen concentration in the crystal is 1.0 to 1.8 ×. A crystal growth method characterized by controlling to 10 18 cm −3 .
【請求項2】 半導体融液に磁場を印加しながら行うチ
ョクラルスキー法による結晶成長方法において、 上記磁場の印加方向が、結晶引き上げ方向に直交する方
向である横磁場であって、 上記半導体融液を収容するるつぼの回転方向と、結晶の
回転方向とを同相として、上記るつぼの回転数を、2〜
16rpmとし、上記結晶の回転速度をるつぼの回転速
度より大きくすることにより、上記結晶中の酸素濃度を
1.0〜1.8×1018cm-3に制御することを特徴と
する結晶成長方法。
2. A crystal growth method according to the Czochralski method, which is performed while applying a magnetic field to a semiconductor melt, wherein the magnetic field is applied in a transverse magnetic field which is a direction orthogonal to the crystal pulling direction. With the rotation direction of the crucible containing the liquid and the rotation direction of the crystal being in phase, the rotation speed of the crucible was set to 2 to
The crystal growth method is characterized in that the oxygen concentration in the crystal is controlled to 1.0 to 1.8 × 10 18 cm −3 by setting the rotation speed of the crystal to 16 rpm and making the rotation speed of the crystal higher than the rotation speed of the crucible. .
JP8094304A 1996-04-16 1996-04-16 Crystal growth method Expired - Lifetime JP2734445B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP8094304A JP2734445B2 (en) 1996-04-16 1996-04-16 Crystal growth method

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP8094304A JP2734445B2 (en) 1996-04-16 1996-04-16 Crystal growth method

Related Parent Applications (1)

Application Number Title Priority Date Filing Date
JP16192887A Division JPS645992A (en) 1987-06-29 1987-06-29 Method for growing crystal

Publications (2)

Publication Number Publication Date
JPH08239292A true JPH08239292A (en) 1996-09-17
JP2734445B2 JP2734445B2 (en) 1998-03-30

Family

ID=14106543

Family Applications (1)

Application Number Title Priority Date Filing Date
JP8094304A Expired - Lifetime JP2734445B2 (en) 1996-04-16 1996-04-16 Crystal growth method

Country Status (1)

Country Link
JP (1) JP2734445B2 (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE112009003583T5 (en) 2008-12-04 2012-05-24 Shin-Etsu Handotai Co., Ltd. Single crystal production process and single crystal production device

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5874594A (en) * 1981-10-26 1983-05-06 Sony Corp Growing method for crystal
JPS6033289A (en) * 1983-07-29 1985-02-20 Toshiba Corp Preparation of single crystal of silicon
JPS61141694A (en) * 1985-11-05 1986-06-28 Sony Corp Method of growing crystal

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5874594A (en) * 1981-10-26 1983-05-06 Sony Corp Growing method for crystal
JPS6033289A (en) * 1983-07-29 1985-02-20 Toshiba Corp Preparation of single crystal of silicon
JPS61141694A (en) * 1985-11-05 1986-06-28 Sony Corp Method of growing crystal

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE112009003583T5 (en) 2008-12-04 2012-05-24 Shin-Etsu Handotai Co., Ltd. Single crystal production process and single crystal production device
US9200380B2 (en) 2008-12-04 2015-12-01 Shin-Etsu Handotai Co., Ltd. Single-crystal manufacturing method and single-crystal manufacturing apparatus

Also Published As

Publication number Publication date
JP2734445B2 (en) 1998-03-30

Similar Documents

Publication Publication Date Title
US6592662B2 (en) Method for preparing silicon single crystal and silicon single crystal
US6045610A (en) Methods of manufacturing monocrystalline silicon ingots and wafers by controlling pull rate profiles in a hot zone furnance
US6472040B1 (en) Semi-pure and pure monocrystalline silicon ingots and wafers
US4040895A (en) Control of oxygen in silicon crystals
EP1209259A3 (en) Low defect density, self-interstitial dominated silicon
EP1688519A3 (en) Low defect density silicon having a vacancy-dominated core substantially free of oxidation induced stacking faults
CA1191075A (en) Method for regulating concentration and distribution of oxygen in czochralski grown silicon
EP0943703A3 (en) Silicon single crystal and method for producing the same
JP2688137B2 (en) Method of pulling silicon single crystal
JPH10167892A (en) Method for pulling silicon single crystal
JPH08239292A (en) Growth of crystal
JP4013324B2 (en) Single crystal growth method
US5215620A (en) Method for pulling a silicon single crystal by imposing a periodic rotation rate on a constant rotation rate
EP0429847B1 (en) Method for pulling up single crystal silicon
EP0419061B1 (en) Method for pulling a silicon single crystal
JP2005145724A (en) Method for manufacturing silicon single crystal and silicon single crystal
JP3152322B2 (en) Twinless (Nd, La) GaO3 single crystal and method for producing the same
KR100221087B1 (en) Silicon single crystal and its growing method
JPH03232790A (en) Quartz crucible for apparatus for pulling up silicon single crystal
TWI772863B (en) Method for producing semiconductor wafers of monocrystalline silicon
JP3011085B2 (en) Single crystal growth method
JPS62182190A (en) Production of compound semiconductor single crystal
JPS5933558B2 (en) Method of manufacturing GGG single crystal
JPS62197398A (en) Method for pulling up single crystal
JPH0891990A (en) Production of semi-insulating gallium-arsenic single crystal

Legal Events

Date Code Title Description
EXPY Cancellation because of completion of term
FPAY Renewal fee payment (prs date is renewal date of database)

Free format text: PAYMENT UNTIL: 20080109

Year of fee payment: 10