JPH0891990A - Production of semi-insulating gallium-arsenic single crystal - Google Patents

Production of semi-insulating gallium-arsenic single crystal

Info

Publication number
JPH0891990A
JPH0891990A JP22198294A JP22198294A JPH0891990A JP H0891990 A JPH0891990 A JP H0891990A JP 22198294 A JP22198294 A JP 22198294A JP 22198294 A JP22198294 A JP 22198294A JP H0891990 A JPH0891990 A JP H0891990A
Authority
JP
Japan
Prior art keywords
gas
furnace
crystal
single crystal
semi
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP22198294A
Other languages
Japanese (ja)
Inventor
Tomoki Inada
知己 稲田
Michinori Wachi
三千則 和地
Takashi Suzuki
隆 鈴木
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Hitachi Cable Ltd
Original Assignee
Hitachi Cable Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Hitachi Cable Ltd filed Critical Hitachi Cable Ltd
Priority to JP22198294A priority Critical patent/JPH0891990A/en
Publication of JPH0891990A publication Critical patent/JPH0891990A/en
Pending legal-status Critical Current

Links

Abstract

PURPOSE: To obtain a semi-insulating GaAs single crystal, hardly changing the carbon concentration and good in uniformity even in the case of a crystal in a continuous length. CONSTITUTION: This method for producing a semi-insulating GaAs single crystal is to bring a seed crystal 2 into contact with a GaAs melt 5 placed in a crucible 7 and pull up the single crystal 3 in a pulling up furnace 20 in a prescribed atmosphere according to a liquid-encapsulated Czochralski method. The pulling up furnace 20 is equipped with a gas introduction port 12 for continuously introducing a gas at a prescribed flow rate into the furnace in the lower part of the pulling up furnace 20. Further, a discharge port 13 for continuously discharging the atmospheric gas in the furnace at the same flow rate as that of the introduced gas is installed in the upper part of the pulling up furnace 20. Mass flow controllers 14 are respectively provided in the introduction port 12 and the discharge port 13 to control the introduced gas and the discharge gas at the prescribed flow rates. Thereby, the carbon concentration in the resultant crystal is controlled constant without causing a disturbance in a redox reactional system.

Description

【発明の詳細な説明】Detailed Description of the Invention

【0001】[0001]

【産業上の利用分野】本発明は、半絶縁性GaAs単結
晶の製造方法に係り、特に長尺結晶中の主要不純物であ
る炭素の制御法に関するものである。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a method for producing a semi-insulating GaAs single crystal, and more particularly to a method for controlling carbon which is a main impurity in a long crystal.

【0002】[0002]

【従来の技術】GaAs単結晶を使った電子素子を作製
する場合には、GaAs単結晶をウェハ状に薄くスライ
スして表面を鏡面状態に研磨したものが使用される。G
aAs基板そのものが電子のチャネル層として用いられ
る場合や、基板上に他の組成の物質を成長させチャネル
層とする場合がある。いずれの場合も、基板上に非常に
小さな素子が多数作製され基板特性がその素子に影響を
与えることから、基板全体の特性の均一性が重要であ
る。
2. Description of the Related Art When manufacturing an electronic device using a GaAs single crystal, a GaAs single crystal is sliced into a thin wafer and the surface thereof is polished to a mirror surface. G
The aAs substrate itself may be used as an electron channel layer, or a substance having another composition may be grown on the substrate to form a channel layer. In either case, a large number of very small elements are formed on the substrate, and the substrate characteristics affect the elements. Therefore, the uniformity of the characteristics of the entire substrate is important.

【0003】GaAs基板そのものが電子のチャネル層
として用いられる場合では、一般に基板にドナーとなる
不純物イオンを打ち込んだ後に熱処理で活性化させる方
法が用いられ、結晶としてはアクセプタとして働く炭素
濃度の制御が重要である。一方、基板上に他の組成の物
質を成長させチャネル層とする場合では、基板側の電流
リークを抑える必要があり、基板の抵抗を支配する炭素
濃度の制御が重要である。このように、結晶中の炭素は
いずれの場合も重要な役割を果たしている。
When the GaAs substrate itself is used as an electron channel layer, a method of implanting impurity ions serving as donors into the substrate and then activating it by heat treatment is generally used, and as a crystal, the concentration of carbon acting as an acceptor can be controlled. is important. On the other hand, when a substance having another composition is grown on the substrate to form a channel layer, it is necessary to suppress the current leakage on the substrate side, and it is important to control the carbon concentration that controls the resistance of the substrate. Thus, the carbon in the crystal plays an important role in all cases.

【0004】一般に半絶縁性GaAs単結晶は液体封止
引上法で作製される。その際、炉内部材として使用され
るグラファイトから発生するCOガスから結晶中に炭素
が取り込まれることがよく知られている(例えば、P.J.
Doering et.al.,"Semi-insulating III-V Materials,19
90" 等)。すなわち、炉内の残留水分や、酸素とグラフ
ァイトが反応してCOガスが発生し、それが封止剤の三
酸化ホウ素と反応し、さらには融液と反応して融液に取
り込まれ、結晶の凝固時に炭素として結晶中に取り込ま
れるのである。
Generally, a semi-insulating GaAs single crystal is produced by a liquid sealing pulling method. At that time, it is well known that carbon is taken into the crystal from CO gas generated from graphite used as a member in the furnace (for example, PJ
Doering et.al., "Semi-insulating III-V Materials, 19
90 ", etc. That is, residual water in the furnace, oxygen reacts with graphite to generate CO gas, which reacts with boron trioxide as a sealant, and further reacts with melt to melt. Are incorporated into the crystal and are incorporated into the crystal as carbon when the crystal is solidified.

【0005】また、上記文献にも報告されているよう
に、炉内のCOガス濃度と結晶中の炭素濃度には正の相
関があることが良く知られている。結晶中の炭素濃度
は、理想的には一定濃度であることが望ましい。そのた
めには、結晶成長中の雰囲気ガスに含まれるCO濃度を
一定にする方法が一般的である。
Further, as reported in the above document, it is well known that the CO gas concentration in the furnace and the carbon concentration in the crystal have a positive correlation. Ideally, the carbon concentration in the crystal should be constant. For that purpose, a method is generally used in which the concentration of CO contained in the atmosphere gas during crystal growth is kept constant.

【0006】ただし、結晶がCOガスと直接反応するわ
けではなく、COガスと三酸化ホウ素、融液との酸化還
元反応を経たのちに炭素として結晶中に取り込まれるた
め、CO濃度と炭素濃度との相関は比較的弱い。成長時
間が長くなるにつれ、CO濃度の影響よりはむしろ酸化
還元反応の影響が強く出てくる嫌いがある。このため、
CO濃度を一定にする方法は比較的短い結晶の成長に制
約される。
However, the crystal does not directly react with the CO gas, but is taken into the crystal as carbon after undergoing an oxidation-reduction reaction between the CO gas, boron trioxide and the melt, so that the CO concentration and the carbon concentration are different from each other. Is relatively weak. As the growth time becomes longer, the effect of the redox reaction becomes stronger than the effect of the CO concentration. For this reason,
The method of keeping the CO concentration constant is restricted to the growth of relatively short crystals.

【0007】GaAs単結晶は、類似の引上法で作製さ
れるSi結晶のような1mクラスの長尺結晶での単結晶
化は不可能と考えられ、少量の原料から比較的短い結晶
(20〜25cm)が生産されていた。このような短尺結
晶は、成長時間も約1日程度であり、上記したCO濃度
を一定にする方法での炭素濃度制御方法が十分実用に供
されてきた。
It is considered that a GaAs single crystal cannot be single-crystallized into a long crystal of 1 m class such as a Si crystal produced by a similar pulling method, and a relatively short crystal (20 ~ 25 cm) was produced. The growth time of such a short crystal is about one day, and the carbon concentration control method by the above-described method of keeping the CO concentration constant has been put to practical use.

【0008】[0008]

【発明が解決しようとする課題】ところが、最近Si結
晶並の長尺なGaAs単結晶が成長できるようになり、
成長時間も3〜4日と長くなってきたため、従来のCO
濃度一定方式では制御できない問題が生じてきた。
However, recently, it has become possible to grow a long GaAs single crystal as long as a Si crystal.
Since the growth time has also become long, 3 to 4 days, the conventional CO
There is a problem that cannot be controlled by the constant concentration method.

【0009】例えば、25cmの短尺結晶では炉内のCO
濃度と結晶中の炭素濃度とは殆ど相関が見られない。し
かし、50cm以上もの長尺結晶ではCO濃度を一定にし
て成長すると、通常特にテール側で濃度が高めとなり、
均一性が悪化する傾向が見られる。そのため、このよう
な長尺結晶でも炭素濃度を均一に制御できる新たな方法
の開発が望まれていた。
For example, for a short crystal of 25 cm, CO in the furnace
Almost no correlation is found between the concentration and the carbon concentration in the crystal. However, in the case of a long crystal of 50 cm or more, if the CO concentration is kept constant and grown, the concentration usually increases especially on the tail side,
The uniformity tends to deteriorate. Therefore, it has been desired to develop a new method capable of uniformly controlling the carbon concentration even in such a long crystal.

【0010】本発明の目的は、上述した従来技術の欠点
を解消して、長尺結晶でも炭素濃度の変化の小さな均一
性の良い半絶縁性GaAs単結晶の製造方法を提供する
ことにある。
An object of the present invention is to solve the above-mentioned drawbacks of the prior art and to provide a method for producing a semi-insulating GaAs single crystal having a long carbon with a small change in carbon concentration and good uniformity.

【0011】[0011]

【課題を解決するための手段】本発明の半絶縁性GaA
s単結晶の製造方法は、液体封止引上法による半絶縁性
GaAs単結晶の成長方法において、結晶成長中の炉内
に一定量の不活性ガスを連続的に導入し、かつ炉内の雰
囲気ガスを上記導入ガス量と同量連続的に排出すること
により、結晶中の炭素濃度を制御するようにしたもので
ある。
Means for Solving the Problems Semi-insulating GaA of the present invention
The method for producing an s single crystal is the same as the method for growing a semi-insulating GaAs single crystal by the liquid encapsulation pulling method, in which a certain amount of an inert gas is continuously introduced into the furnace during crystal growth, and The carbon concentration in the crystal is controlled by continuously discharging the atmospheric gas in the same amount as the amount of the introduced gas.

【0012】[0012]

【作用】炉内のCO濃度と結晶中の炭素濃度との相関を
結晶の部位(シード側、ミドル側、テール側)ごとに分
類したところ、それぞれの部位では、CO濃度と炭素濃
度に比較的強い相関が見られることが分かった。したが
って、各部位に応じたCO濃度に制御すれば炭素濃度を
一定に制御できるはずである。
When the correlation between the CO concentration in the furnace and the carbon concentration in the crystal is classified according to the crystal part (seed side, middle side, tail side), the CO concentration and the carbon concentration are relatively high at each part. It turns out that a strong correlation is seen. Therefore, if the CO concentration is controlled according to each part, the carbon concentration should be controlled to be constant.

【0013】しかしながら、前述したように結晶中の炭
素濃度は、COガス濃度ばかりでなく、成長時間、三酸
化ホウ素中の酸化還元の反応定数、反応温度、融液中の
酸化還元の反応定数、反応温度などの様々な要素との相
関系であるため、それぞれの部位に合った条件にCO濃
度を制御するのは極めて困難で、現実的ではない。
However, as described above, the carbon concentration in the crystal is not limited to the CO gas concentration, but also the growth time, the redox reaction constant in boron trioxide, the reaction temperature, the redox reaction constant in the melt, Since it is a correlation system with various factors such as reaction temperature, it is extremely difficult and unrealistic to control the CO concentration under conditions suitable for each site.

【0014】そこで、現実的かつ簡便な方法として創案
されたのが、炉内ガスを一定量置換する本発明方法であ
る。すなわち、結晶成長中の炉内に一定量のガスを連続
的に導入し、かつ炉内の雰囲気ガスを導入ガス量と同量
連続的に排出することを行い、結晶が成長するにつれて
炉内のCO濃度を徐々に低くすることにより、結晶中の
炭素濃度を制御する方法である。
Then, what was invented as a realistic and simple method is the method of the present invention for replacing a certain amount of gas in the furnace. That is, a certain amount of gas is continuously introduced into the furnace during crystal growth, and the atmospheric gas in the furnace is continuously discharged in the same amount as the amount of introduced gas. This is a method of controlling the carbon concentration in the crystal by gradually lowering the CO concentration.

【0015】この方法では、上記の酸化還元反応系を乱
さずに安定した状態で、テール側へと成長するにつれて
その部位を適正なCO濃度とすることができ、結果とし
て結晶中の炭素濃度を均一に制御できる。
According to this method, the CO concentration at the site can be adjusted to an appropriate CO concentration as it grows toward the tail side in a stable state without disturbing the redox reaction system, and as a result, the carbon concentration in the crystal can be increased. It can be controlled uniformly.

【0016】炉内へ導入するガスは、GaやAsのハロ
ゲン化合物、有機金属化合物、水素化物からなるガスな
どでもよいが、ArやN2 などの不活性ガスがよい。こ
れは、一般にGaAsの結晶成長で不活性ガスが使用さ
れるからであるばかりでなく、上記の酸化還元反応系に
外乱を与えないためである。導入ガス量および排出ガス
量は、単位時間当りの流量によって制御するのがよい。
また、導入ガスおよび排出ガスの流量制御には、簡易の
流量計、定流量バルブなどの使用も可能であるが、酸化
還元反応系に外乱を与えないためには、マスフローコン
トローラを使用することが好ましい。
The gas introduced into the furnace may be a gas containing a halogen compound of Ga or As, an organometallic compound, or a hydride, but an inert gas such as Ar or N 2 is preferable. This is not only because an inert gas is generally used for GaAs crystal growth, but also because it does not disturb the redox reaction system. The amount of introduced gas and the amount of discharged gas are preferably controlled by the flow rate per unit time.
Although a simple flow meter or constant flow valve can be used to control the flow rate of the introduced gas and the exhaust gas, a mass flow controller should be used to prevent disturbance to the redox reaction system. preferable.

【0017】[0017]

【実施例】図1は半絶縁性GaAs単結晶の製造方法を
実施するための液体封止引上法による引上炉20の内部
構造例の模式図である。
EXAMPLE FIG. 1 is a schematic view of an internal structure example of a pulling furnace 20 by a liquid sealing pulling method for carrying out a method of manufacturing a semi-insulating GaAs single crystal.

【0018】11は引上炉20のステンレス内壁であ
る。引上炉20内の中央にPBNルツボ7がルツボ軸8
によって回転自在に軸支されている。ルツボ7の外周に
はヒータ6が設けられ、このヒータ6は上中下の3つに
分割され、各ヒータの出力バランスを変えることで適正
な固液界面形状が制御できるようになっている。このヒ
ータ6の外周にはグラファイト保温部材9が、ホットゾ
ーンを保温するために筒状に設けられる。そして、この
グラファイト保温部材9の上には、結晶温度を適正な温
度に保つために、更にグラファイト上部保温部材10が
上方に延設されている。
Reference numeral 11 denotes a stainless steel inner wall of the pulling furnace 20. The PBN crucible 7 has a crucible shaft 8 in the center of the pulling furnace 20.
It is rotatably supported by. A heater 6 is provided on the outer circumference of the crucible 7, and the heater 6 is divided into upper, middle, and lower three parts, and an appropriate solid-liquid interface shape can be controlled by changing the output balance of each heater. A graphite heat insulating member 9 is provided in a cylindrical shape on the outer circumference of the heater 6 to keep the hot zone warm. A graphite upper heat insulating member 10 is further extended above the graphite heat insulating member 9 in order to keep the crystal temperature at an appropriate temperature.

【0019】ルツボ7内にはGaAs原料及び封止剤で
ある三酸化ホウ素の塊が入れられ、これらはヒータ6に
よって加熱溶融してGaAs融液5、およびGaAs融
液5の表面を覆う液体状の三酸化ホウ素4となる。単結
晶を製造するには、引上軸1の下端に取り付けた種結晶
2をGaAs融液5に接触させてGaAs単結晶3を引
き上げる。
A GaAs raw material and a block of boron trioxide which is a sealant are put in the crucible 7, which are heated and melted by the heater 6 to melt the GaAs melt 5 and a liquid state which covers the surface of the GaAs melt 5. Boron trioxide 4 is obtained. To produce a single crystal, the seed crystal 2 attached to the lower end of the pulling shaft 1 is brought into contact with the GaAs melt 5 to pull up the GaAs single crystal 3.

【0020】このような引上炉20の下部に、引上炉2
0内にガス、例えばArやN2 などの不活性ガスを導入
するガス導入口12を設け、このガス導入口12には、
結晶成長中の炉内に一定量のガスを連続的に導入するた
めに、簡易の流量計、定流量バルブ、あるいはマスフロ
ーコントローラ14を設ける。また、引上炉20の上部
に炉内の雰囲気ガスを排出するガス排出口13を設け、
このガス排出口13には、炉内の雰囲気ガスを導入ガス
量と同量連続的に排出するために、簡易の流量計、定流
量バルブ、あるいはマスフローコントローラ14を設け
る。これらのマスフローコントローラ14などによって
制御される導入ガス量及び排出ガス量である一定量は、
単位時間当たりの量で制御する。
Below the pulling furnace 20, the pulling furnace 2 is provided.
A gas inlet 12 for introducing a gas, for example, an inert gas such as Ar or N 2 is provided in 0, and the gas inlet 12 is
A simple flow meter, constant flow valve, or mass flow controller 14 is provided to continuously introduce a fixed amount of gas into the furnace during crystal growth. In addition, a gas discharge port 13 for discharging the atmospheric gas in the furnace is provided in the upper part of the pulling furnace 20,
The gas outlet 13 is provided with a simple flow meter, a constant flow valve, or a mass flow controller 14 in order to continuously discharge the atmospheric gas in the furnace in the same amount as the introduced gas amount. The fixed amount, which is the amount of introduced gas and the amount of discharged gas controlled by the mass flow controller 14 and the like,
It is controlled by the amount per unit time.

【0021】このように、結晶成長中の炉内に一定量の
ガスを連続的に導入し、かつ炉内の雰囲気ガスを導入ガ
ス量と同量連続的に排出すると、結晶が成長するにつれ
て炉内のCO濃度が徐々に低くなり、しかも酸化還元反
応系を乱さずに安定させた状態でテール側へと成長する
につれてその部位を適正なCO濃度とすることができ
る。したがって、長尺なGaAs結晶であっても、結晶
中の炭素濃度を一定に制御できる。
As described above, when a certain amount of gas is continuously introduced into the furnace during crystal growth and the atmospheric gas in the furnace is continuously discharged in the same amount as the introduced gas, the furnace grows as the crystal grows. The CO concentration in the inside gradually decreases, and moreover, as the CO grows toward the tail side in a stable state without disturbing the redox reaction system, the appropriate CO concentration can be obtained in that portion. Therefore, even with a long GaAs crystal, the carbon concentration in the crystal can be controlled to be constant.

【0022】次に上記したGaAs単結晶の製造方法の
具体例を述べる。
Next, a specific example of the method for producing the above-mentioned GaAs single crystal will be described.

【0023】(実施例1)100気圧耐圧の引上炉を使
用し、GaAs単結晶を作成した。炉内の容量は約10
0リットルである。炉内の部材は、高純度のグラファイ
ト製である。直径28cmのPBN製のルツボに6Nグレ
ードの高純度のGa135000gとAs15000g
をチャージし、その上に封止剤として三酸化ホウ素30
00gをチャージした。これを引上炉内にセットし直接
合成の後、引き続き引上法により直径80mmのGaAs
単結晶を800mm成長させた。雰囲気ガスはArで20
atmとした。
Example 1 A GaAs single crystal was prepared using a pulling furnace having a pressure resistance of 100 atm. The capacity in the furnace is about 10
It is 0 liter. The members in the furnace are made of high-purity graphite. PBN crucible with a diameter of 28 cm, 6N grade high purity Ga135000g and As15000g
Is charged with boron trioxide 30 as a sealing agent.
00g was charged. This was set in a pulling furnace and directly synthesized, and then GaAs with a diameter of 80 mm was drawn by the pulling method.
A single crystal was grown to 800 mm. Atmosphere gas is Ar 20
Atm.

【0024】成長開始時の炉内CO濃度は5000ppm
であった。成長開始時より、炉内に毎分0.5リットル
のArガスを導入し、同時に同一流量で炉内ガスを排出
した。炉内のCO濃度は成長中間時点で約3500ppm
、成長終了直前のテール側では約2000ppm であっ
た。ガスの導入、排出の流量制御には、35atm 耐圧の
マスフローコントローラを使用した。
The CO concentration in the furnace at the start of growth is 5000 ppm
Met. From the start of growth, 0.5 liter / minute of Ar gas was introduced into the furnace, and at the same time, the furnace gas was discharged at the same flow rate. CO concentration in the furnace is about 3500ppm at the middle of growth
On the tail side immediately before the end of growth, it was about 2000 ppm. A 35 atm withstand pressure mass flow controller was used to control the flow rate of gas introduction and discharge.

【0025】得られた結晶の、シード、ミドル、テール
の各部位で炭素濃度を測定したところいずれも1×10
15cm-3と均一性が高いことを認めた。
The carbon concentration was measured at each of the seed, middle and tail portions of the obtained crystal, and was found to be 1 × 10.
It was confirmed that the uniformity was as high as 15 cm -3 .

【0026】(実施例2)実施例1と同一炉で、原料、
成長条件を同一にし、導入、排出のガス流量を簡易のガ
ラス管式流量計を用いて制御した。
(Example 2) In the same furnace as in Example 1, raw materials,
The growth conditions were the same, and the gas flow rates of introduction and discharge were controlled using a simple glass tube type flow meter.

【0027】成長開始時の炉内CO濃度は5000ppm
であった。成長開始時より、炉内に毎分0.5リットル
のArガスを導入し、同時に同一流量で炉内ガスを排出
した。炉内のCO濃度は中間時点で約3500ppm 、成
長終了直前のテール側では約2000ppm であった。
The CO concentration in the furnace at the start of growth is 5000 ppm
Met. From the start of growth, 0.5 liter / minute of Ar gas was introduced into the furnace, and at the same time, the furnace gas was discharged at the same flow rate. The CO concentration in the furnace was about 3500 ppm at the intermediate point and about 2000 ppm on the tail side immediately before the growth was completed.

【0028】得られた結晶の、シード、ミドル、テール
の各部位で炭素濃度を測定したところ、それぞれ、1×
1015cm-3、0.95×1015cm-3、0.95×1015
cm-3となり、実施例1レベルまでにはいかなかったもの
の、満足する結果が得られた。実施例1レベルのような
高い均一性が得られなかったのは、おそらく、流量計の
制御精度が悪いためと推定される。
The carbon concentration of each of the seed, middle and tail portions of the obtained crystal was measured and found to be 1 ×, respectively.
10 15 cm -3 , 0.95 x 10 15 cm -3 , 0.95 x 10 15
The result was cm −3 , and although it did not reach the level of Example 1, satisfactory results were obtained. The reason why it was not possible to obtain such high uniformity as at the level of Example 1 is probably because the control accuracy of the flow meter was poor.

【0029】(比較例1)実施例1と同一炉で、原料、
成長条件を同一にし、導入、排出のガス流量を適宜変化
させることにより、炉内CO濃度を約5000ppm で一
定に制御して、同一長さの結晶を成長させた。
(Comparative Example 1) In the same furnace as in Example 1, raw materials,
By making the growth conditions the same and appropriately changing the gas flow rates of introduction and discharge, the CO concentration in the furnace was controlled to be constant at about 5000 ppm, and crystals of the same length were grown.

【0030】得られた結晶の、シード、ミドル、テール
の各部位で炭素濃度を測定したところ、それぞれ1×1
15cm-3、1.5×1015cm-3、2×1015cm-3と徐々
に高くなることを認めた。
When the carbon concentration was measured at each of the seed, middle and tail portions of the obtained crystal, it was 1 × 1 each.
It was recognized that the values gradually increased to 0 15 cm −3 , 1.5 × 10 15 cm −3 , and 2 × 10 15 cm −3 .

【0031】(比較例2)実施例1と同一炉で、原料、
成長条件を同一にし、導入、排出のガス流量を適宜変化
させながら、炉内CO濃度をシード、ミドル、テールの
各部位でそれぞれ、約5000、3500、2000pp
m となるように制御して、同一長さの結晶を成長させ
た。
(Comparative Example 2) In the same furnace as in Example 1, raw materials,
While keeping the growth conditions the same, and appropriately changing the gas flow rates of introduction and discharge, the CO concentration in the furnace was adjusted to about 5000, 3500, and 2000 pp at the seed, middle, and tail portions, respectively.
The crystal having the same length was grown by controlling so as to be m.

【0032】得られた結晶の、シード、ミドル、テール
の各部位で炭素濃度を測定したところそれぞれ、1×1
15cm-3、1.2×1015cm-3、1.1×1015cm-3
均一性が悪く、実施例1のような均一性を得られなかっ
た。おそらく酸化還元反応系が実施例ほど安定しないた
めと推定される。
The carbon concentration of each of the seed, middle and tail sites of the obtained crystal was measured and found to be 1 × 1.
The uniformity was 0 15 cm −3 , 1.2 × 10 15 cm −3 , 1.1 × 10 15 cm −3, and the uniformity as in Example 1 was not obtained. It is presumed that the redox reaction system is not as stable as in the examples.

【0033】(他の実施例)上記実施例は、いずれも半
絶縁性GaAs単結晶について説明したが、本発明はこ
れに限定されない。例えば、液体封止引上法で作成され
る他の結晶、InPや、GaPなどにおける炉内ガスの
制御にも応用できる。
(Other Embodiments) In the above embodiments, the semi-insulating GaAs single crystal is described, but the present invention is not limited to this. For example, it can be applied to the control of the in-furnace gas in other crystals, InP, GaP, etc., created by the liquid sealing pulling method.

【0034】本実施例は、実用レベルの高均一性を有す
る長尺GaAs単結晶が製造できるため、次のような利
点を持つ。
This embodiment has the following advantages because a long GaAs single crystal having a practically high degree of uniformity can be manufactured.

【0035】(1)1回の原料チャージの手間でより多
くのウェハを取得できる結晶を作成できるので、経済的
な効果がある。
(1) Since a crystal capable of obtaining a larger number of wafers can be formed with one labor of charging the raw material, there is an economical effect.

【0036】(2)結晶中の不純物は偏析現象により固
化率に相関のある濃度分布をするが、結晶長さ方向でみ
ると結晶が長いほど単位長さ当たりの濃度変化が小さい
ことになり、均一性が良いことになる。従って、ウェハ
1枚毎の特性の差の小さなウェハを作製できる。このた
め、目的の仕様の範囲のウェハを制御性良く製造できる
ため経済的効果が大きい。
(2) The impurities in the crystal have a concentration distribution that correlates with the solidification rate due to the segregation phenomenon. When viewed in the crystal length direction, the longer the crystal, the smaller the change in concentration per unit length. The uniformity will be good. Therefore, it is possible to manufacture a wafer having a small difference in characteristics between the individual wafers. For this reason, a wafer having a target specification range can be manufactured with good controllability, which is highly economical.

【0037】[0037]

【発明の効果】本発明によれば、炉内に一定量のガスを
導入し、これと同量の雰囲気ガスを排出して結晶中の炭
素濃度を制御するようにしたので、長尺結晶でも炭素濃
度の変化の小さな均一性の良い単結晶を得ることができ
る。
According to the present invention, a certain amount of gas is introduced into the furnace and the same amount of atmospheric gas is discharged to control the carbon concentration in the crystal. A single crystal with a small change in carbon concentration and good uniformity can be obtained.

【図面の簡単な説明】[Brief description of drawings]

【図1】本発明のGaAs単結晶の製造方法を実施する
ための引上炉の内部を模式的に示した構成図である。
FIG. 1 is a configuration diagram schematically showing the inside of a pulling furnace for carrying out a method for producing a GaAs single crystal of the present invention.

【符号の説明】[Explanation of symbols]

3 GaAs単結晶 5 GaAs融液 7 PBNルツボ 12 ガス導入口 13 ガス排出口 14 マスフローコントローラ 20 引上炉 3 GaAs single crystal 5 GaAs melt 7 PBN crucible 12 gas inlet 13 gas outlet 14 mass flow controller 20 pulling furnace

Claims (3)

【特許請求の範囲】[Claims] 【請求項1】液体封止引上法による半絶縁性GaAs単
結晶の製造方法において、結晶成長中の炉内に一定量の
ガスを連続的に導入し、かつ炉内の雰囲気ガスを上記導
入ガス量と同量連続的に排出することにより、結晶中の
炭素濃度を制御することを特徴とする半絶縁性GaAs
単結晶の製造方法。
1. A method for producing a semi-insulating GaAs single crystal by a liquid-sealing pull-up method, wherein a certain amount of gas is continuously introduced into a furnace during crystal growth, and the atmosphere gas in the furnace is introduced as described above. A semi-insulating GaAs characterized by controlling the carbon concentration in the crystal by continuously discharging the same amount as the gas amount.
Method for producing single crystal.
【請求項2】上記導入ガスはArやN2 などの不活性ガ
スであることを特徴とする請求項1に記載の半絶縁性G
aAs単結晶の製造方法。
2. The semi-insulating G according to claim 1, wherein the introduced gas is an inert gas such as Ar or N 2.
Method for producing aAs single crystal.
【請求項3】上記導入ガスおよび排出ガスの流量制御
に、マスフローコントローラを使用することを特徴とす
る請求項1または2に記載の半絶縁性GaAs単結晶の
製造方法。
3. The method for producing a semi-insulating GaAs single crystal according to claim 1, wherein a mass flow controller is used to control the flow rates of the introduced gas and the exhaust gas.
JP22198294A 1994-09-16 1994-09-16 Production of semi-insulating gallium-arsenic single crystal Pending JPH0891990A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP22198294A JPH0891990A (en) 1994-09-16 1994-09-16 Production of semi-insulating gallium-arsenic single crystal

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP22198294A JPH0891990A (en) 1994-09-16 1994-09-16 Production of semi-insulating gallium-arsenic single crystal

Publications (1)

Publication Number Publication Date
JPH0891990A true JPH0891990A (en) 1996-04-09

Family

ID=16775226

Family Applications (1)

Application Number Title Priority Date Filing Date
JP22198294A Pending JPH0891990A (en) 1994-09-16 1994-09-16 Production of semi-insulating gallium-arsenic single crystal

Country Status (1)

Country Link
JP (1) JPH0891990A (en)

Similar Documents

Publication Publication Date Title
US4040895A (en) Control of oxygen in silicon crystals
CN1936108A (en) Apparatus for growing high quality silicon single crystal ingot and growing method using the same
JPS60251191A (en) Process for growing single crystal of compound having high dissociation pressure
JPH11228286A (en) Production of single crystal
JPH0891990A (en) Production of semi-insulating gallium-arsenic single crystal
US5840115A (en) Single crystal growth method
JPS6221790A (en) Device for crystal growth and method
JPH069290A (en) Method for growing compound semiconductor single crystal
JP2531875B2 (en) Method for producing compound semiconductor single crystal
JPH07133185A (en) Production of single crystal
JP3198897B2 (en) Method for producing GaAs single crystal
JPH09157083A (en) Use method of graphite heater
JPS62230694A (en) Production of gaas single crystal
JPH06345581A (en) Production of multielement compound mixed single crystal
JP2733898B2 (en) Method for manufacturing compound semiconductor single crystal
JP2583811B2 (en) Compound semiconductor single crystal growth method
JP3551607B2 (en) Method for producing GaAs single crystal
JPH07165488A (en) Apparatus for producing single crystal and method therefor
JP2517738B2 (en) Method for producing compound semiconductor single crystal
JPH08208369A (en) Method for growing single crystal
JP2726887B2 (en) Method for manufacturing compound semiconductor single crystal
JPS6011297A (en) Method and device for controlling growth of crystal
JPH09208360A (en) Growth of single crystal
JPH02233588A (en) Growth of single crystal
JPH01290597A (en) Production of semiconductive gaas single crystal