JPH06345581A - Production of multielement compound mixed single crystal - Google Patents

Production of multielement compound mixed single crystal

Info

Publication number
JPH06345581A
JPH06345581A JP13465993A JP13465993A JPH06345581A JP H06345581 A JPH06345581 A JP H06345581A JP 13465993 A JP13465993 A JP 13465993A JP 13465993 A JP13465993 A JP 13465993A JP H06345581 A JPH06345581 A JP H06345581A
Authority
JP
Japan
Prior art keywords
raw material
crystal
single crystal
solute
material melt
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP13465993A
Other languages
Japanese (ja)
Inventor
Kenji Kohiro
健司 小廣
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Eneos Corp
Original Assignee
Japan Energy Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Japan Energy Corp filed Critical Japan Energy Corp
Priority to JP13465993A priority Critical patent/JPH06345581A/en
Publication of JPH06345581A publication Critical patent/JPH06345581A/en
Pending legal-status Critical Current

Links

Landscapes

  • Crystals, And After-Treatments Of Crystals (AREA)
  • Liquid Deposition Of Substances Of Which Semiconductor Devices Are Composed (AREA)

Abstract

PURPOSE:To grow and produce a multielement compd. mixed single crystal of uniform composition by VGF with a high reproducibility. CONSTITUTION:A multielement material is placed in a crucible 2, heated by heaters 3a, 3b and 3c and melted, a solute material 5 is supplied from the upper surface of the molten material 8, the outputs of the heaters 3a, 3b and 3c are adjusted so that the the temp. of the molten material 8 is gradually lowered toward the lower part from the upper part, and hence the molten material 8 is gradually solidified toward the upper part from the lower part to grow a multielement compd. mixed single crystal 9. The weight decrease of the solute material 5 per unit time is detected, the outputs of the heaters 3a, 3b and 3c are controlled in accordance with the decrease, and the growth rate of the crystal 9 is adjusted. Consequently, the crystal is grown from the molten matrial of constant composition, and a uniform mixed single crystal of desired composition is produced with a high reproducibility.

Description

【発明の詳細な説明】Detailed Description of the Invention

【0001】[0001]

【産業上の利用分野】本発明は、少なくとも3種の構成
元素よりなる多元系化合物混晶単結晶の製造方法に関
し、特に少なくとも2種の化合物を混合することで得ら
れる化学組成を有する物質、例えば(In,Ga)S
b、(In,Ga)P、(In,Ga)As若しくはI
n(As,P)等の二元系化合物半導体の固溶体である
三元系化合物半導体、或はLi2O・(B233、Li
2O・(B234等の如く、少なくとも2種の無水酸化
物が異なる比率で混じり合った化学組成を有するイオン
結晶等のような混晶の単結晶を、原料融液に溶質原料を
供給しながら縦型温度勾配凝固法(以下、「VGF法」
と略記する。)により成長させる製造方法に関する。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a method for producing a multi-component compound mixed crystal single crystal composed of at least three kinds of constituent elements, and in particular, a substance having a chemical composition obtained by mixing at least two kinds of compounds, For example, (In, Ga) S
b, (In, Ga) P, (In, Ga) As or I
A ternary compound semiconductor which is a solid solution of a binary compound semiconductor such as n (As, P), or Li 2 O. (B 2 O 3 ) 3 , Li
A mixed crystal single crystal such as an ionic crystal having a chemical composition in which at least two kinds of anhydrous oxides are mixed in different ratios such as 2 O · (B 2 O 3 ) 4 is dissolved in a raw material melt. Vertical temperature gradient solidification method (hereinafter referred to as "VGF method") while supplying raw materials
Is abbreviated. ).

【0002】[0002]

【従来の技術】多元系化合物混晶は、少なくとも3種の
元素よりなるもので、例えば(In,Ga)Sb、(I
n,Ga)P、(In,Ga)As若しくはIn(A
s,P)等の二元系化合物半導体の固溶体である三元系
化合物半導体、或はLi2O・(B233、Li2O・
(B234等の如く、少なくとも2種の無水酸化物が
異なる比率で混じり合った化学組成を有するイオン結晶
等のように、少なくとも2種の化合物を混合することで
得られる化学組成を有する物質の結晶であり、2種類の
構成元素のみからなる二元系化合物と異なり、その混晶
組成(化学組成)を変えることにより禁制帯幅等の特性
(物性)や格子定数等の結晶学的構造を変えることがで
きるため、エピタキシャル成長用の基板などの有用性が
注目されている。そのような多元系化合物混晶の製造方
法として、所定の化学組成を有する原料及び液体封止剤
をるつぼ内で融解してなる原料融液の上面に種結晶を接
触させ、その種結晶を回転させながら徐々に引き上げる
ことにより単結晶を育成する液体封止チョクラルスキー
法(以下、「LEC法」と略記する。)が知られてい
る。
2. Description of the Related Art A multi-component compound mixed crystal is composed of at least three kinds of elements, for example, (In, Ga) Sb, (I
n, Ga) P, (In, Ga) As or In (A
s, P), a ternary compound semiconductor that is a solid solution of a binary compound semiconductor, such as Li 2 O. (B 2 O 3 ) 3 or Li 2 O.
A chemical composition obtained by mixing at least two kinds of compounds such as an ionic crystal having a chemical composition in which at least two kinds of anhydrous oxides are mixed in different ratios such as (B 2 O 3 ) 4 and the like. Is a crystal of a substance that has a difference in properties, such as a band gap and other properties (physical properties), and a lattice constant, by changing the mixed crystal composition (chemical composition) of the compound, unlike binary compounds composed of only two types of constituent elements. Since it is possible to change the biological structure, the usefulness of a substrate for epitaxial growth has attracted attention. As a method for producing such a multi-component compound mixed crystal, a seed crystal is brought into contact with the upper surface of a raw material melt obtained by melting a raw material having a predetermined chemical composition and a liquid sealant in a crucible, and the seed crystal is rotated. A liquid-encapsulated Czochralski method (hereinafter abbreviated as “LEC method”) is known in which a single crystal is grown by gradually pulling it up.

【0003】従来、このLEC法により多元系化合物混
晶の単結晶を育成する場合には、原料融液中の偏析係数
の大きい、即ち偏析し易い構成元素(成分)が優先的に
育成中の結晶に取り込まれ、原料融液中におけるその構
成元素の濃度は次第に減少してしまい、均一な組成、特
に結晶の成長方向に均一な組成の結晶を得るのは困難で
あった。これを解決するために、結晶育成中に、原料融
液に偏析係数の大きい当該成分を供給することにより、
原料融液中の成分の変化を抑制する方法が提案されてい
るが(特開昭62−3097号)、この方法においては
偏析係数の大きい成分の供給源となる少なくとも当該構
成元素よりなる溶質原料をるつぼ下面に充填しているた
め、原料融液中への溶質原料の溶解速度を制御し難く、
安定して均一な目標とする組成の混晶単結晶を育成する
ことが困難であった。
Conventionally, when a single crystal of a multi-component compound mixed crystal is grown by this LEC method, a constituent element (component) having a large segregation coefficient in the raw material melt, that is, a segregation-prone element is preferentially grown. It was difficult to obtain a crystal having a uniform composition, particularly a composition having a uniform composition in the growth direction of the crystal, because the concentration of the constituent elements in the raw material melt gradually decreased as it was taken into the crystal. In order to solve this, by supplying the component having a large segregation coefficient to the raw material melt during crystal growth,
A method for suppressing the change of components in the raw material melt has been proposed (Japanese Patent Laid-Open No. 62-3097), but in this method, a solute raw material which is a supply source of a component having a large segregation coefficient, and which is at least the constituent element Since the lower surface of the crucible is filled, it is difficult to control the dissolution rate of the solute raw material in the raw material melt,
It was difficult to grow a mixed crystal single crystal having a stable and uniform target composition.

【0004】そこで、本出願人は、ヒータの出力を調整
して原料融液中に結晶育成方向の温度勾配を設け、るつ
ぼの底部から上面に向かって結晶を成長させるVGF法
において、原料融液の上部に溶質原料を浸漬し溶解させ
て不足する当該成分を供給する方法を先に提案した(特
願平5−46081号)。この方法によれば、溶質原料
を原料融液の上面から溶かし込むため、上述したLEC
法における場合に較べて溶質原料の供給量の制御が比較
的容易であり、しかも結晶の成長界面(即ち、育成され
た結晶と原料融液との固液界面)の位置と溶質原料の供
給位置とが異なるため、溶質原料の供給による成長界面
への影響を小さくでき、均一な組成の混晶単結晶を安定
して成長させることができる。
Therefore, the applicant has adjusted the output of the heater to provide a temperature gradient in the crystal growth direction in the raw material melt, and in the VGF method of growing crystals from the bottom to the upper surface of the crucible, the raw material melt A method was previously proposed in which the solute raw material was immersed in the upper part of the solution to dissolve and supply the insufficient component (Japanese Patent Application No. 5-46081). According to this method, since the solute raw material is melted from the upper surface of the raw material melt, the above-mentioned LEC
It is relatively easy to control the supply amount of the solute raw material as compared with the method, and the position of the crystal growth interface (that is, the solid-liquid interface between the grown crystal and the raw material melt) and the solute raw material supply position Therefore, the influence of the supply of the solute material on the growth interface can be reduced, and a mixed crystal single crystal having a uniform composition can be stably grown.

【0005】[0005]

【発明が解決しようとする課題】しかしながら、その後
の我々の研究により上述した特願平5−46081号に
おいて提案した発明にあっては、原料融液と溶質原料と
の界面(固液界面)の温度即ち、原料融液上面の温度が
許容範囲よりも低すぎると、原料融液上部に所定の速度
で浸漬する溶質原料は溶解せずにそのまま原料融液中に
押し込まれてしまい、原料融液中の不足した成分を補う
ことができず、均一な目標とする組成の混晶単結晶を再
現性よく製造することができない虞のあることがわかっ
た。
However, in the invention proposed in Japanese Patent Application No. 5-46081 mentioned above by our research thereafter, the interface (solid-liquid interface) between the raw material melt and the solute raw material is If the temperature, that is, the temperature of the upper surface of the raw material melt is lower than the allowable range, the solute raw material immersed in the upper part of the raw material melt at a predetermined speed is not melted and is pushed into the raw material melt as it is, and the raw material melt It was found that there was a possibility that the lacking component in the inside could not be compensated and that a mixed crystal single crystal having a uniform target composition could not be produced with good reproducibility.

【0006】本発明は、上記問題点を解決するためにな
されたもので、VGF法により均一な目標とする混晶組
成の多元系化合物混晶単結晶を再現性よく成長させるこ
とを可能ならしめる多元系化合物混晶単結晶の製造方法
を提供することを目的としている。
The present invention has been made in order to solve the above problems, and makes it possible to grow reproducibly a uniform multi-component compound mixed crystal single crystal having a target mixed crystal composition by the VGF method. An object of the present invention is to provide a method for producing a multi-component compound mixed crystal single crystal.

【0007】[0007]

【課題を解決するための手段】本発明は、少なくとも3
種の元素よりなる多元系化合物混晶単結晶を、当該多元
系化合物混晶を構成する前記の少なくとも3種の元素よ
りなる所定の化学組成を有する原料融液を用いて融液成
長するにあたり、るつぼ内に保持する前記原料融液の上
面から当該多元系化合物混晶を構成する元素のうち少な
くとも1種の元素よりなる溶質原料を供給しながら、前
記原料融液の上部から下部にむかって次第に低温となる
ようにヒータの出力を制御して、該原料融液の下部から
上部に向かって徐々に固化させて当該多元系化合物混晶
の単結晶成長を行い、その単結晶の育成中に前記溶質原
料の単位時間当りの重量減少量を検知し、その重量減少
量に応じて前記ヒータの出力を制御して、前記単結晶の
成長速度を調整することを提案するものである。
The present invention comprises at least 3
In the multi-component compound mixed crystal single crystal consisting of the elements of the melt, in the melt growth using a raw material melt having a predetermined chemical composition consisting of the at least three elements constituting the multi-component compound mixed crystal, While supplying a solute raw material made of at least one element of the elements forming the multi-component compound mixed crystal from the upper surface of the raw material melt held in the crucible, the raw material melt gradually increases from the upper portion to the lower portion. The output of the heater is controlled so that the temperature is low, and the raw material melt is gradually solidified from the lower part to the upper part to perform single crystal growth of the multi-component compound mixed crystal, and the single crystal is grown during the growth of the single crystal. It is proposed to detect the weight reduction amount of the solute raw material per unit time and control the output of the heater according to the weight reduction amount to adjust the growth rate of the single crystal.

【0008】具体的には、例えば図1に一例として示す
装置のように、高圧容器1中にるつぼ2が設置可能とな
っており、そのるつぼ2を囲むようにヒータ3a,3
b,3cが設けられ、さらにそれらヒータ3a,3b,
3cは制御装置4により夫々の出力が制御可能となって
いる従来と同様な構成の縦型温度勾配凝固装置に、溶質
原料5をその中心軸線を回転軸として回転可能且つ昇降
可能に吊り下げるロット軸6を設け、そのロット軸6の
上部に重量センサ7を取り付けるとともに、そのセンサ
7及びロット軸6を前記制御装置4に接続してなる装置
を用いる。なお、るつぼ2はサセプタ10を介してるつ
ぼロット軸11に支持されており、その中心軸線を回転
軸として回転可能となっている。また、制御装置4に接
続された複数の温度センサ15がるつぼ2とヒータ3
a,3b,3cとの間に設けられており、このセンサ1
5(図1には、一つのみを例示する)からの情報に基づ
いてヒータ3a,3b,3cの各出力が制御される。さ
らに、るつぼ2の底部には種結晶20が納められる。
又、るつぼ2には、所定の化学組成を有する原料融液を
得るため、当該多元系化合物混晶を構成する元素の内少
なくとも2種の元素よりなる化合物のうち、少なくとも
2種の化合物の所定の比率で混合したもの(以下、「多
元系混合物原料」と呼ぶ)が納められる。或は、るつぼ
2に、前記の少なくとも2種の化合物を所定の比率で混
合したもの(多元系混合物原料)を予め融解して、固化
させることで得られる固溶体を用いてもよい。
Specifically, for example, like a device shown in FIG. 1 as an example, a crucible 2 can be installed in a high-pressure vessel 1, and heaters 3a, 3 are provided so as to surround the crucible 2.
b, 3c are provided, and the heaters 3a, 3b,
3c is a lot in which a solute raw material 5 is rotatably and vertically movable around its central axis as a rotation axis in a vertical temperature gradient solidification apparatus having the same structure as that of the conventional one, whose outputs can be controlled by a control device 4. A shaft 6 is provided, a weight sensor 7 is attached to the upper part of the lot shaft 6, and the sensor 7 and the lot shaft 6 are connected to the control device 4. The crucible 2 is supported by a crucible lot shaft 11 via a susceptor 10 and is rotatable about its central axis as a rotation axis. Further, a plurality of temperature sensors 15 connected to the control device 4 include a crucible 2 and a heater 3.
It is provided between a, 3b and 3c, and this sensor 1
Each output of the heaters 3a, 3b, 3c is controlled based on the information from 5 (only one is illustrated in FIG. 1). Further, the seed crystal 20 is housed in the bottom of the crucible 2.
Further, in order to obtain a raw material melt having a predetermined chemical composition, the crucible 2 has a predetermined content of at least two compounds among compounds composed of at least two elements of the multi-component compound mixed crystal. The mixture (hereinafter referred to as "multi-component mixture raw material") is stored in the ratio. Alternatively, a solid solution obtained by previously melting and solidifying a mixture of the above-mentioned at least two compounds in a predetermined ratio (raw material for multi-component system) in the crucible 2 may be used.

【0009】そして、その重量センサ7により溶質原料
5の単位時間当りの重量減少量を検知し、制御装置4に
おいてその重量減少量を所定の目標減少量と比較し、検
知した重量減少量が所定の目標減少量よりも大きい場合
に、溶質原料5の溶解速度よりも混晶単結晶9の成長速
度の方が速く、溶質原料5は溶解しきれずに原料融液8
中に浸漬していると判断する。つまり、検知した重量減
少量が所定の目標減少量よりも大きい場合には、溶質原
料5は溶解せずに原料融液8内に押し込まれ、溶質原料
5に作用する浮力により溶質原料5の重量が見掛け上過
度に小さくなったと考えられるからである。
Then, the weight sensor 7 detects the weight reduction amount of the solute raw material 5 per unit time, and the controller 4 compares the weight reduction amount with a predetermined target reduction amount, and the detected weight reduction amount is predetermined. When the amount of the solute raw material 5 is larger than the target decrease amount, the growth rate of the mixed crystal single crystal 9 is faster than the dissolution rate of the solute raw material 5, the solute raw material 5 cannot be completely dissolved, and the raw material melt 8
Judge that it is immersed in. That is, when the detected weight reduction amount is larger than the predetermined target reduction amount, the solute raw material 5 is pushed into the raw material melt 8 without being melted, and the weight of the solute raw material 5 is increased by the buoyancy acting on the solute raw material 5. Is apparently too small.

【0010】上述したように溶質原料5が溶解しきれて
いないと判断した場合に、結晶の成長速度が小さくなる
ようにヒータ3a,3b,3cの出力を制御する。即
ち、原料融液8全体の温度の降下速度をおそくしたり、
原料融液8と既に育成された混晶単結晶9との固液界面
付近の温度勾配を少なくする。ここで、溶質原料5の重
量の所定の目標減少量は、設定した結晶成長速度で目標
とする組成の結晶を成長させた場合に、原料融液8中に
おいて不足する成分を補充するために供給すべき溶質原
料5の重量を計算により求め、それに基いて算出したも
のである。即ち、単位時間当りに供給すべき重量に相当
する。なお、ロット軸6を制御装置4に接続して、ロッ
ト軸6の下降速度、即ち溶質原料5の下降速度を制御装
置4で制御してもよいのはいうまでもない。
As described above, when it is determined that the solute raw material 5 is not completely dissolved, the outputs of the heaters 3a, 3b and 3c are controlled so that the crystal growth rate becomes small. That is, to slow down the temperature of the entire raw material melt 8,
The temperature gradient near the solid-liquid interface between the raw material melt 8 and the already grown mixed crystal single crystal 9 is reduced. Here, the predetermined target reduction amount of the weight of the solute raw material 5 is supplied in order to supplement the deficient component in the raw material melt 8 when the crystal having the target composition is grown at the set crystal growth rate. The weight of the solute raw material 5 to be obtained is calculated and calculated based on the weight. That is, it corresponds to the weight to be supplied per unit time. It goes without saying that the lot shaft 6 may be connected to the control device 4 and the lowering speed of the lot shaft 6, that is, the lowering speed of the solute material 5 may be controlled by the control device 4.

【0011】[0011]

【作用】上記手段によれば、溶質原料の重量変化即ち、
単位時間当りの重量減少量を検知し、その重量減少量と
結晶成長速度に基づき予め求めてなる所定の目標減少量
との比較より、原料融液に溶質原料が適正に溶解し供給
されているか否かを推測することができる。そして、溶
質原料が溶解せずに原料融液中に押し込まれていると判
断された場合に、結晶成長速度を小さくするようにヒー
タの出力が制御されることにより、原料融液中における
溶質原料の未溶解部分が溶解して原料融液中の不足成分
が補われるまで、結晶成長が抑制される。従って、常に
一定の組成の原料融液中から結晶が融液成長するので、
均一な目標とする組成の混晶単結晶が再現性よく得られ
る。
According to the above means, the weight change of the solute raw material, that is,
Detecting the amount of weight reduction per unit time and comparing the amount of weight reduction with the predetermined target amount of reduction determined in advance based on the crystal growth rate, confirms that the solute raw material is properly dissolved and supplied to the raw material melt. You can guess whether or not. Then, when it is determined that the solute raw material is not melted and is pushed into the raw material melt, the solute raw material in the raw material melt is controlled by controlling the output of the heater so as to reduce the crystal growth rate. The crystal growth is suppressed until the undissolved portion of is melted and the insufficient component in the raw material melt is compensated. Therefore, since the crystal is always melt-grown from the raw material melt having a constant composition,
A mixed crystal single crystal having a uniform target composition can be obtained with good reproducibility.

【0012】[0012]

【実施例】以下に、実施例及び比較例を挙げて本発明に
係る多元系化合物混晶単結晶の製造方法を詳細に説明す
る。なお、実施例及び比較例においては、一例として
(In0.35Ga0.65)Pの三元系化合物半導体単結晶の
製造を、図1に示した装置を用いて、原料融液8の揮発
を防ぐために雰囲気ガス圧を印加して行った。
EXAMPLES Hereinafter, the method for producing a multi-component compound mixed crystal single crystal according to the present invention will be described in detail with reference to Examples and Comparative Examples. In the examples and comparative examples, as an example, the production of a ternary compound semiconductor single crystal of (In 0.35 Ga 0.65 ) P was carried out by using the apparatus shown in FIG. 1 in order to prevent volatilization of the raw material melt 8. The atmosphere gas pressure was applied.

【0013】ここで、るつぼ2内に入れる多元系混合物
原料に付いては、その化学組成は図2に示した(In,
Ga)Pの擬二元系状態図において温度Tにおける固相
線S上の組成である(In0.35Ga0.65)Pと平衡する
液相線L上の組成となる(In0.90Ga0.10)Pであ
り、予め合成した二元系化合物半導体InPとGaPと
をそれぞれ所定量混合することにより用意した。そし
て、その多元系混合物原料を液体封止剤12とともにる
つぼ2内に入れ、出発原料とした。この出発原料をヒー
タ3a,3b,3cにより加熱して前記温度Tより少し
高い所定の温度TOで融解して、均一な所定の化学組成
を有する融液、即ち原料融液8を得た。この際、種結晶
20と原料融液8との界面の温度が前記温度Tよりも僅
かに高くなるようにした。
Here, the chemical composition of the multi-component mixture raw material placed in the crucible 2 is shown in FIG. 2 (In,
In the pseudo-binary phase diagram of Ga) P, the composition on the solid line S at temperature T (In 0.35 Ga 0.65 ) P and the composition on the liquidus line L equilibrating (In 0.90 Ga 0.10 ) P Yes, it was prepared by mixing a predetermined amount of binary compound semiconductors InP and GaP synthesized in advance. Then, the raw material of the multi-component mixture was put into the crucible 2 together with the liquid sealant 12 to make a starting raw material. This starting material was heated by the heaters 3a, 3b, 3c and melted at a predetermined temperature T O slightly higher than the temperature T to obtain a melt having a uniform predetermined chemical composition, that is, a raw material melt 8. At this time, the temperature of the interface between the seed crystal 20 and the raw material melt 8 was set to be slightly higher than the temperature T.

【0014】溶質原料5としては、上記の原料融液8を
構成する3種の元素In,Ga及びPのうちでGaの偏
析係数が最も大きいので、原料融液8中に不足するGa
を補うために、1辺2.2cmの正方形断面の四角柱状に
成形したGaよりなる化合物であるGaP多結晶を用い
た。なお、上記出発原料を融解する際には、溶質原料5
をヒータ3a,3b,3cにより加熱され難い場所に配
置させた。また、種結晶20としては、育成方位が(1
00)のGaP単結晶(直径4mm)を用いた。そして、
るつぼ2の回転数を0rpmとし、結晶の成長速度を当初
1時間当り1mmに設定した。
As the solute raw material 5, the segregation coefficient of Ga is the largest among the three elements In, Ga and P constituting the raw material melt 8 described above.
In order to supplement the above, a GaP polycrystal, which is a compound made of Ga and formed into a quadrangular prism having a square cross section with a side of 2.2 cm, was used. When melting the above-mentioned starting material, the solute material 5
Was placed in a place where it was difficult to be heated by the heaters 3a, 3b, 3c. Further, the seed crystal 20 has a growth orientation of (1
The GaP single crystal of (00) (diameter 4 mm) was used. And
The rotation speed of the crucible 2 was 0 rpm, and the crystal growth rate was initially set to 1 mm per hour.

【0015】ここで、溶質原料5を下降させる速度を以
下のようにして決めた。即ち、目標とする組成(In
0.35Ga0.65)Pの結晶の成長する速度が上記した結晶
成長速度(1mm/時)の場合、その成長速度値とるつぼ
2の形状(即ち、径)とを考慮して原料融液8より結晶
成長により失われる量の時間的変化を計算により求め、
図3に示す計算値に基づいて原料融液8中において不足
するGaPの量(換言すれば、原料融液8中に供給すべ
きGaPの量)の経時変化を算出した。その算出値を図
7中に計算値(目標値)として示す。さらに、図7に示
す計算値(目標値)に基づいて、溶質原料5の断面の面
積を考慮して溶質原料5の下降速度を計算により求め
た。その計算値をグラフ化したのが図4である。従っ
て、この図4における曲線を満たすように制御装置4に
より制御して溶質原料5を下降させた。
Here, the rate of lowering the solute material 5 was determined as follows. That is, the target composition (In
When the crystal growth rate of 0.35 Ga 0.65 ) P is the above-mentioned crystal growth rate (1 mm / hour), the crystal is formed from the raw material melt 8 in consideration of the growth rate value and the shape (that is, the diameter) of the crucible 2. Calculate the change over time in the amount lost due to growth,
Based on the calculated values shown in FIG. 3, the change over time in the amount of GaP deficient in the raw material melt 8 (in other words, the amount of GaP to be supplied in the raw material melt 8) was calculated. The calculated value is shown as a calculated value (target value) in FIG. 7. Further, the descending speed of the solute raw material 5 was calculated based on the calculated value (target value) shown in FIG. 7 in consideration of the cross-sectional area of the solute raw material 5. FIG. 4 is a graph of the calculated values. Therefore, the solute raw material 5 was lowered by controlling the controller 4 so as to satisfy the curve in FIG.

【0016】以上のような条件において、ヒータ3a,
3b,3cの出力を制御することにより、種結晶20と
原料融液8との界面の温度を徐々に下降させて上記温度
Tとし、さらにるつぼ2の底部から上方に向けて所定の
温度勾配を設けつつ次第に温度を下げて混晶単結晶9を
成長さた。具体的には、るつぼ2の底部に配置する直径
4mmの種結晶20を用い結晶成長を開始し、高さ約28
mmの概ね円錐状の肩部とそれに続く直胴部を含め結晶長
さが約80mmに達した時、原料融液8の供給する溶質原
料5が尽き、成長を終了し、直径約2インチで長さ50
mmの直胴部を有する混晶単結晶を得た。なお、結晶育成
の開始時には、種結晶20と原料融液8との界面(育成
開始店16)の温度を前記の温度Tとし、原料融液8と
溶質原料5の接する固液界面(即ち、原料融液8の上
面)18の温度を出発原料を融解したときの温度(前記
温度Tよりも少し高い所定温度T0)として、原料融液
8の上部から下部にむかって次第に温度が低くなるよう
にした。その後、結晶育成時には、原料融液8の上面1
8の温度は前記温度Tよりも少し高い所定温度T0に保
ちつつ、前記育成開始点16の温度を温度Tより徐々に
降下させ、育成した混晶単結晶9と原料融液8の固液界
面17を前記の温度Tにし、結晶育成を原料融液8の下
部から上部にむかって進行させた。このとき、結晶育成
が進につれ、原料融液8の総量が減少し、前記混晶単結
晶9と原料融液8の固液界面17より原料融液8の上面
18までの距離が狭まることとなる。結果として、原料
融液8中に形成される温度勾配は、結晶育成が進むにつ
れ徐々に大きくなる。
Under the above conditions, the heaters 3a,
By controlling the outputs of 3b and 3c, the temperature of the interface between the seed crystal 20 and the raw material melt 8 is gradually lowered to the above temperature T, and a predetermined temperature gradient is further applied upward from the bottom of the crucible 2. The mixed crystal single crystal 9 was grown by gradually lowering the temperature while being provided. Specifically, the seed crystal 20 having a diameter of 4 mm arranged at the bottom of the crucible 2 is used to start the crystal growth, and the height is about 28 mm.
When the crystal length including the substantially conical shoulder part of mm and the straight body part following it reaches about 80 mm, the solute raw material 5 supplied by the raw material melt 8 is exhausted, the growth is completed, and the diameter is about 2 inches. Length 50
A mixed crystal single crystal having a straight body part of mm was obtained. At the start of crystal growth, the temperature of the interface between the seed crystal 20 and the raw material melt 8 (growth start store 16) is set to the temperature T, and the solid-liquid interface (that is, The temperature of the upper surface 18 of the raw material melt 8 is set as the temperature when the starting raw material is melted (a predetermined temperature T 0 slightly higher than the temperature T), and the temperature gradually decreases from the upper part of the raw material melt 8 to the lower part. I did it. Then, at the time of crystal growth, the upper surface 1 of the raw material melt 8
While maintaining the temperature of No. 8 at a predetermined temperature T 0 slightly higher than the temperature T, the temperature of the growth starting point 16 is gradually lowered from the temperature T to grow a solid-liquid mixture of the mixed crystal single crystal 9 and the raw material melt 8. The interface 17 was brought to the temperature T and the crystal growth was advanced from the lower part of the raw material melt 8 to the upper part. At this time, as the crystal growth progresses, the total amount of the raw material melt 8 decreases, and the distance from the solid-liquid interface 17 between the mixed crystal single crystal 9 and the raw material melt 8 to the upper surface 18 of the raw material melt 8 decreases. Become. As a result, the temperature gradient formed in the raw material melt 8 gradually increases as the crystal growth progresses.

【0017】(実施例)重量センサ7により溶質原料5
の重量減少量を検知しながら結晶を成長させた。この
際、上述したように、当初結晶成長速度を1mm/時に設
定し、図4に基いて溶質原料5を下降させ結晶育成を開
始したところ、重量センサ7において検知された重量減
少量は、本来1mm/時の結晶成長速度において溶質原料
5の供給が適正になされた場合(即ち、過不足なく溶質
原料5が原料融液8中に溶解した場合)における所定の
目標減少量(図7において目標値として示す)よりも大
きくなり、制御装置4による結晶成長速度の調整が結晶
成長の開始から終了に至るまでなされた。その結果、結
晶成長速度は、上記の当初設定された結晶成長速度の1
mm/時よりも遅くなるように調整され、その平均は0.
5mm/時となった。具体的には、上記のヒータ3a,3
b,3cの出力を制御することで、結晶育成の開始時に
おいて種結晶20と原料融液8との界面が形成されてい
た位置(育成開始点16)の温度を下降する速度を遅く
し、結晶成長速度を平均0.5mm/時とした。育成開始
点16の温度を下降する速度が遅くなると、原料融液8
中に形成される温度勾配の増大する速度が遅くなり、結
果として、温度Tとなる位置が上方に移動する速度、即
ち混晶単結晶9と原料融液8の固液界面17の移動する
速度が上記の0.5mm/時に調整された。更に、溶質原
料5の下降速度も、調整された結晶の成長速度が0.5
mm/時となるに伴い、その結晶の成長速度において適正
とされる速度に調整がなされた。
(Example) Solute raw material 5 by weight sensor 7
The crystals were grown while detecting the amount of weight loss of. At this time, as described above, when the crystal growth rate was initially set to 1 mm / hour and the solute raw material 5 was lowered to start crystal growth based on FIG. 4, the weight reduction amount detected by the weight sensor 7 was originally A predetermined target reduction amount (target in FIG. 7) when the solute raw material 5 is properly supplied at the crystal growth rate of 1 mm / hour (that is, when the solute raw material 5 is dissolved in the raw material melt 8 without excess or deficiency) (Shown as a value), the control device 4 adjusted the crystal growth rate from the start to the end of the crystal growth. As a result, the crystal growth rate is one of the above initially set crystal growth rates.
It was adjusted to be slower than mm / hour, and the average is 0.
It became 5 mm / hour. Specifically, the above heaters 3a, 3
By controlling the outputs of b and 3c, the speed of lowering the temperature at the position where the interface between the seed crystal 20 and the raw material melt 8 was formed at the start of crystal growth (growth start point 16) was slowed, The average crystal growth rate was 0.5 mm / hour. When the rate of lowering the temperature of the growth start point 16 becomes slow, the raw material melt 8
The increasing rate of the temperature gradient formed therein becomes slower, and as a result, the rate at which the temperature becomes T moves upward, that is, the rate at which the solid-liquid interface 17 between the mixed crystal single crystal 9 and the raw material melt 8 moves. Was adjusted to 0.5 mm / hour above. Further, the descending speed of the solute raw material 5 is also 0.5% when the adjusted crystal growth speed is 0.5.
With the increase in mm / hour, the growth rate of the crystal was adjusted to an appropriate speed.

【0018】図5に、本実施例における溶質原料5の重
量減少量(実測値)の経時変化曲線を示す。併せて、結
晶の成長速度を0.5mm/時として計算により求めた重
量減少量の理想曲線(目標値)も図5に示す。同図よ
り、両曲線は略一致しており、本発明に係る結晶成長速
度の制御が有効に作用して、結晶の成長速度が0.5mm
/時に調整された時に、原料融液8中に溶質原料5が最
適な状態で溶解していることがわかる。なお、実測値の
曲線が計算値による理想曲線(目標値)よりも僅かに上
側に位置しているのには、原料融液8の上面における表
面張力により溶質原料5に僅かに下向きの力が作用して
いるためと推測される。
FIG. 5 shows a time-dependent change curve of the weight reduction amount (measured value) of the solute raw material 5 in this example. In addition, FIG. 5 also shows an ideal curve (target value) of the weight reduction amount calculated by setting the crystal growth rate to 0.5 mm / hour. From the figure, the two curves are substantially coincident with each other, and the control of the crystal growth rate according to the present invention effectively works, and the crystal growth rate is 0.5 mm.
It can be seen that the solute raw material 5 is dissolved in the raw material melt 8 in an optimum state when adjusted to / hour. It should be noted that the curve of the actual measurement value is located slightly above the ideal curve (target value) based on the calculated value, because the surface tension on the upper surface of the raw material melt 8 causes a slight downward force on the solute raw material 5. It is presumed that it is working.

【0019】また、得られた混晶単結晶の育成方向の組
成の分布をEPMA(エレクトロンプローブ微量分析)
法により評価した。その結果を図6に示す。図6におい
て、横軸は結晶の育成開始点16を起点とした育成方向
の相対的位置を示しており、育成開始点16より測った
結晶長さに基づき、その位置までの結晶重量を求め、当
初の原料融液8の重量に対する比率(便宜的に「固化
率」と記す)を用いて示す。即ち、固定率が0の点が、
育成開始点16の位置であり、固化率が増す方向が育成
の進行する方向を示している。本実施例並びに下記の比
較例の場合には、図6に示す固化率が0.6の点は、結
晶成長を終了した位置であり、育成開始点16より測っ
た結晶長さが約80mmの位置に相当する。なお、固化率
が0.6を越える部分は、結晶成長を終了した後に、残
された原料融液8が冷却時に固化した部分に当たる。ま
た、固化率が凡そ0.1以下の部分が、上記の高さ約2
8mmの概ね円錐状の肩部であり、固化率が0.1を越え
る部分が上記の直胴部である。同図より、本実施例で得
られた結晶では育成方向における混晶(In1-x,Ga
x)P中のGa組成xは0.65±0.03の範囲に入
っており、目標組成である0.65に略一致し、バラツ
キも小さい。従って、結晶育成中に、溶質原料5が原料
融液8中に適正に溶け込み、原料融液8において不足す
るGaが十分に補われ、原料融液の組成変動が抑えられ
ているのがわかる。
Further, the composition distribution in the growing direction of the obtained mixed crystal single crystal is determined by EPMA (electron probe microanalysis).
It was evaluated by the method. The result is shown in FIG. In FIG. 6, the horizontal axis indicates the relative position in the growth direction starting from the growth start point 16 of the crystal. Based on the crystal length measured from the growth start point 16, the crystal weight up to that position is calculated, It is shown by using the ratio to the initial weight of the raw material melt 8 (for convenience, referred to as "solidification rate"). That is, the point where the fixed rate is 0 is
It is the position of the growth start point 16, and the direction in which the solidification rate increases indicates the direction in which the growth progresses. In the case of this example and the following comparative examples, the point where the solidification rate is 0.6 shown in FIG. 6 is the position where the crystal growth was completed, and the crystal length measured from the growth starting point 16 was about 80 mm. Corresponds to position. The portion where the solidification rate exceeds 0.6 corresponds to the portion where the raw material melt 8 left after the crystal growth is solidified during cooling. Further, the portion where the solidification rate is about 0.1 or less is the above-mentioned height of about 2 or less.
A shoulder portion having a substantially conical shape of 8 mm, and a portion where the solidification rate exceeds 0.1 is the straight body portion. From the figure, in the crystal obtained in this example, a mixed crystal (In 1- x, Ga) in the growth direction was obtained.
x) The Ga composition x in P is in the range of 0.65 ± 0.03, which is substantially the same as the target composition of 0.65, and the variation is small. Therefore, it is understood that the solute raw material 5 is appropriately dissolved in the raw material melt 8 during the crystal growth, Ga that is insufficient in the raw material melt 8 is sufficiently compensated, and the composition fluctuation of the raw material melt is suppressed.

【0020】(比較例)重量センサ7により溶質原料5
の重量減少量の検知に付いてのみ行い、検知した溶質原
料5の重量減少量に基づく結晶成長速度の町背は行わず
に結晶を成長させた。具体的には、結晶成長速度を上述
した当初設定された結晶成長速度の1mm/時に保つとと
もに、図4に基づいて溶質原料5を下降させた。即ち、
結晶成長速度の変更はせず、育成中1mm/時と一定速度
に保ち、又溶質原料5の下降速度を制御装置4により制
御し、図4に示す下降速度と一致させた。その他の条件
に付いては上記実施例と同じであった。
(Comparative Example) The solute raw material 5 is measured by the weight sensor 7.
Was performed only for the detection of the weight reduction amount of No. 3, and the crystal was grown without performing the crystal growth rate based on the detected weight reduction amount of the solute material 5. Specifically, the crystal growth rate was maintained at 1 mm / hour, which is the initially set crystal growth rate, and the solute material 5 was lowered based on FIG. That is,
The crystal growth rate was not changed and kept constant at 1 mm / hour during the growth, and the descending speed of the solute raw material 5 was controlled by the controller 4 to match the descending speed shown in FIG. The other conditions were the same as in the above-mentioned example.

【0021】図7に、比較例における溶質原料5の重量
減少量(実測値)の経時変化曲線を示す。なお、結晶の
成長速度を1.0mm/時として計算により求めた重量減
少量の理想曲線(目標値)も図7に併せて示す。同図よ
り、実測値の曲線は計算値による理想曲線よりも下側に
位置しており、溶質原料5が溶解せずに原料融液8中に
押し込まれているのがわかる。また、得られた混晶単結
晶の育成方向の組成の分布をEPMA法により評価した
結果、図6に示すように、比較例において得られた結晶
では育成が進むにつれGa組成xは目標組成である0.
65から徐々にずれていることがわかった。
FIG. 7 shows a time-dependent change curve of the weight reduction amount (measured value) of the solute raw material 5 in the comparative example. The ideal curve (target value) of the weight reduction amount calculated by setting the crystal growth rate to 1.0 mm / hour is also shown in FIG. From the figure, it can be seen that the curve of the actual measurement value is located below the ideal curve of the calculated value, and the solute raw material 5 is pushed into the raw material melt 8 without being dissolved. Further, as a result of evaluating the composition distribution in the growing direction of the obtained mixed crystal single crystal by the EPMA method, as shown in FIG. 6, in the crystal obtained in the comparative example, the Ga composition x is the target composition as the growing progresses. There is 0.
It turned out that it deviated gradually from 65.

【0022】なお、上記実施例においては、(In0.35
Ga0.65)Pの三元系化合物半導体単結晶を製造する場
合について説明したが、組成の異なる(In,Ga)P
の結晶成長にも利用可能であるだけでなく、III−V族化
合物半導体に属するその他の多元系混晶の結晶成長にも
利用できるのはいうまでもないし、またII−VI族化合物
半導体に属する多元系混晶の結晶成長にも利用できるの
は勿論である。さらに、化合物半導体に限らず、Li2
O・(B233、Li2O・(B234等のように種
々化学組成を有する無水酸の金属塩である酸化物単結晶
の結晶成長にも利用可能であるのは勿論である。
In the above embodiment, (In 0.35
The case of producing a Ga 0.65 ) P ternary compound semiconductor single crystal has been described, but (In, Ga) P having different compositions is described.
It is needless to say that it can be used not only for the crystal growth of the above, but also for the crystal growth of other multi-element mixed crystals belonging to the III-V group compound semiconductor, and also belongs to the II-VI group compound semiconductor. Of course, it can also be used for crystal growth of multi-element mixed crystals. In addition to compound semiconductors, Li 2
It can also be used for crystal growth of oxide single crystals, which are metal salts of anhydrides having various chemical compositions, such as O. (B 2 O 3 ) 3 and Li 2 O. (B 2 O 3 ) 4. Of course.

【0023】さらにまた、上記実施例においては、るつ
ぼ2の底部に種結晶20を配置しているが、種結晶20
を設けずに混晶単結晶9をるつぼ2の底部から自然発生
させてもよい。また、本発明の実施に使用される単結晶
の製造装置に付いては、重量センサ7及び制御装置4に
よりヒータ3a,3b,3cの出力を制御することがで
きるようになっていれば、種々設計変更可能であるのは
いうまでもない。
Furthermore, in the above embodiment, the seed crystal 20 is arranged at the bottom of the crucible 2.
Alternatively, the mixed crystal single crystal 9 may be naturally generated from the bottom of the crucible 2 without providing the above. Further, the single crystal manufacturing apparatus used for carrying out the present invention can be variously provided as long as the weight sensor 7 and the controller 4 can control the outputs of the heaters 3a, 3b, 3c. It goes without saying that the design can be changed.

【0024】[0024]

【発明の効果】本発明に係る多元系化合物混晶単結晶の
製造方法によれば、溶質原料の単位時間当りの重量減少
量を検知し、その重量減少量に応じてヒータの出力を制
御するようになっているため、原料融液中における溶質
原料の未溶解部分が溶解して原料融液中の不足成分が補
われるまで、結晶成長を抑制することができる。従っ
て、一定の組成の原料融液中から結晶を融液成長させる
ことができるので、均一な組成の混晶単結晶を再現性よ
く製造することができる。
According to the method for producing a multi-component compound mixed crystal single crystal according to the present invention, the weight reduction amount of the solute raw material per unit time is detected, and the output of the heater is controlled according to the weight reduction amount. Therefore, the crystal growth can be suppressed until the undissolved portion of the solute raw material in the raw material melt is dissolved and the insufficient component in the raw material melt is compensated. Therefore, since the crystal can be melt-grown from the raw material melt having a constant composition, a mixed crystal single crystal having a uniform composition can be produced with good reproducibility.

【図面の簡単な説明】[Brief description of drawings]

【図1】本発明に係る製造方法を説明するための模式図
である。
FIG. 1 is a schematic diagram for explaining a manufacturing method according to the present invention.

【図2】(In,Ga)Pの擬二元系状態図の模式図で
ある。
FIG. 2 is a schematic diagram of a pseudo-binary phase diagram of (In, Ga) P.

【図3】結晶成長速度の設定値が1mm/時の場合に結晶
成長に伴う原料融液の減少量(即ち、育成された結晶重
量)の経時変化を表す特性図である。
FIG. 3 is a characteristic diagram showing a time-dependent change in the amount of decrease in the raw material melt (that is, the weight of the grown crystal) accompanying the crystal growth when the set value of the crystal growth rate is 1 mm / hour.

【図4】図3に基づいて求めた溶質原料GaPの下降速
度を表す特性図である。
FIG. 4 is a characteristic diagram showing the descending speed of the solute raw material GaP obtained based on FIG.

【図5】実施例における溶質原料GaPの重量変化量を
表す特性図である。
FIG. 5 is a characteristic diagram showing a weight change amount of a solute raw material GaP in an example.

【図6】実施例及び比較例において得られた各結晶のE
PMA法により評価した結晶育成方向の組成分布を表す
特性図である。
FIG. 6 E of each crystal obtained in Examples and Comparative Examples
It is a characteristic view showing the composition distribution of the crystal growth direction evaluated by the PMA method.

【図7】比較例における溶質原料GaPの重量変化量を
表す特性図である。
FIG. 7 is a characteristic diagram showing a weight change amount of a solute raw material GaP in a comparative example.

【符号の説明】[Explanation of symbols]

2 るつぼ 3a,3b,3c ヒータ 5 溶質原料 8 原料融液 9 多元系化合物混晶単結晶 2 Crucible 3a, 3b, 3c Heater 5 Solute raw material 8 Raw material melt 9 Multi-component compound mixed crystal Single crystal

Claims (1)

【特許請求の範囲】[Claims] 【請求項1】 少なくとも3種の元素よりなる多元系化
合物混晶単結晶を、当該多元系化合物混晶を構成する前
記の少なくとも3種の元素よりなる所定の化学組成を有
する原料融液を用いて融液成長するにあたり、るつぼ内
に保持する前記原料融液の上面から当該多元系化合物混
晶を構成する元素のうち少なくとも1種の元素よりなる
溶質原料を供給しながら、前記原料融液の上部から下部
にむかって次第に低温となるようにヒータの出力を制御
して、該原料融液の下部から上部に向かって徐々に固化
させて当該多元系化合物混晶の単結晶成長を行い、その
単結晶の育成中に前記溶質原料の単位時間当りの重量減
少量を検知し、その重量減少量に応じて前記ヒータの出
力を制御して、前記単結晶の成長速度を調整することを
特徴とする多元系化合物混晶単結晶の製造方法。
1. A raw material melt having a predetermined chemical composition composed of the at least three elements forming the multi-component compound mixed crystal is prepared from a multi-component compound mixed crystal single crystal composed of at least three elements. In the melt growth by supplying the solute raw material consisting of at least one element of the elements forming the multi-component compound mixed crystal from the upper surface of the raw material melt held in the crucible, The output of the heater is controlled so that the temperature gradually decreases from the upper part to the lower part, and the raw material melt is gradually solidified from the lower part to the upper part to perform single crystal growth of the multi-component compound mixed crystal. Detecting the weight reduction amount of the solute raw material per unit time during the growth of the single crystal, controlling the output of the heater according to the weight reduction amount, and adjusting the growth rate of the single crystal, Multi-dimensional system Method for producing compound mixed crystal single crystal.
JP13465993A 1993-06-04 1993-06-04 Production of multielement compound mixed single crystal Pending JPH06345581A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP13465993A JPH06345581A (en) 1993-06-04 1993-06-04 Production of multielement compound mixed single crystal

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP13465993A JPH06345581A (en) 1993-06-04 1993-06-04 Production of multielement compound mixed single crystal

Publications (1)

Publication Number Publication Date
JPH06345581A true JPH06345581A (en) 1994-12-20

Family

ID=15133559

Family Applications (1)

Application Number Title Priority Date Filing Date
JP13465993A Pending JPH06345581A (en) 1993-06-04 1993-06-04 Production of multielement compound mixed single crystal

Country Status (1)

Country Link
JP (1) JPH06345581A (en)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO1999050481A1 (en) * 1998-03-31 1999-10-07 Japan Energy Corporation Method of manufacturing compound semiconductor single crystal
EP1740331B1 (en) * 2004-04-13 2009-07-29 Helmholtz-Zentrum Berlin für Materialien und Energie GmbH Method and arrangement for crystal growth from fused metals or fused solutions
CN103160934A (en) * 2011-12-18 2013-06-19 洛阳金诺机械工程有限公司 Device and method of temperature gradient control in growth process of crystal material

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO1999050481A1 (en) * 1998-03-31 1999-10-07 Japan Energy Corporation Method of manufacturing compound semiconductor single crystal
US6334897B1 (en) 1998-03-31 2002-01-01 Japan Energy Corporation Method of manufacturing compound semiconductor single crystal
EP1740331B1 (en) * 2004-04-13 2009-07-29 Helmholtz-Zentrum Berlin für Materialien und Energie GmbH Method and arrangement for crystal growth from fused metals or fused solutions
CN103160934A (en) * 2011-12-18 2013-06-19 洛阳金诺机械工程有限公司 Device and method of temperature gradient control in growth process of crystal material

Similar Documents

Publication Publication Date Title
KR102312204B1 (en) Method for controlling resistivity and n-type silicon single crystal
JP5049544B2 (en) Silicon single crystal manufacturing method, silicon single crystal manufacturing control device, and program
US4040895A (en) Control of oxygen in silicon crystals
US5454346A (en) Process for growing multielement compound single crystal
JP5111104B2 (en) Si-doped GaAs single crystal ingot and method for producing the same
CA2681353A1 (en) Method and apparatus for manufacturing silicon ingot
JPS61163188A (en) Process for doping impurity in pulling method of silicon single crystal
JP3924604B2 (en) Gallium arsenide single crystal
JP4586154B2 (en) Gallium arsenide single crystal manufacturing equipment
JPH06345581A (en) Production of multielement compound mixed single crystal
US5704974A (en) Growth of silicon crystal from melt having extraordinary eddy flows on its surface
EP0266227B1 (en) Method for growing compound semiconductor crystals
JP4168115B2 (en) Method for producing Si-doped GaAs single crystal
Kremer et al. Composition gradients and segregation in Hg1− xMnxTe
JP2682600B2 (en) (III) -Method for producing group V compound semiconductor single crystal
JPH07133185A (en) Production of single crystal
JP2517738B2 (en) Method for producing compound semiconductor single crystal
JP2010030868A (en) Production method of semiconductor single crystal
JPH09175892A (en) Production of single crystal
JPH0637358B2 (en) Indium phosphide single crystal and method for producing the same
JP5050184B2 (en) Si-doped GaAs single crystal
JPS63144191A (en) Production of compound semiconductor single crystal and apparatus therefor
JP2005112685A (en) Compound semiconductor crystal production method, compound semiconductor single crystal, and production apparatus therefor
JP2977297B2 (en) Crystal manufacturing method
JPH0891990A (en) Production of semi-insulating gallium-arsenic single crystal