JP5050184B2 - Si-doped GaAs single crystal - Google Patents

Si-doped GaAs single crystal Download PDF

Info

Publication number
JP5050184B2
JP5050184B2 JP2008090528A JP2008090528A JP5050184B2 JP 5050184 B2 JP5050184 B2 JP 5050184B2 JP 2008090528 A JP2008090528 A JP 2008090528A JP 2008090528 A JP2008090528 A JP 2008090528A JP 5050184 B2 JP5050184 B2 JP 5050184B2
Authority
JP
Japan
Prior art keywords
single crystal
solidification rate
carrier concentration
value
crystal
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Lifetime
Application number
JP2008090528A
Other languages
Japanese (ja)
Other versions
JP2008230963A (en
Inventor
良一 中村
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Dowa Electronics Materials Co Ltd
Original Assignee
Dowa Electronics Materials Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Dowa Electronics Materials Co Ltd filed Critical Dowa Electronics Materials Co Ltd
Priority to JP2008090528A priority Critical patent/JP5050184B2/en
Publication of JP2008230963A publication Critical patent/JP2008230963A/en
Application granted granted Critical
Publication of JP5050184B2 publication Critical patent/JP5050184B2/en
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Images

Landscapes

  • Crystals, And After-Treatments Of Crystals (AREA)

Description

本発明は、受発光素子等の素材として利用されるSiドープGaAs単結晶に関するThe present invention relates to a Si-doped GaAs single crystal used as a material for a light emitting / receiving element or the like.

受発光素子、高速演算素子、マイクロ波素子等の素材として用いられるn型導電性GaAs(ガリウム砒素)単結晶は、一般にSi(シリコン)がドーパントとして用いられ、結晶中の転位密度を小さくするため横型ボート法や縦型ボート法を用いて製造されている。特に縦型ボート法においては、(100)方位の結晶成長が育成可能であるばかりでなく、円形で大口径の結晶が得られる利点があり、縦型温度傾斜法(VGF法)や縦型ブリッジマン法(VB法)による結晶成長が行われている。   An n-type conductive GaAs (gallium arsenide) single crystal used as a material for a light emitting / receiving element, a high-speed arithmetic element, a microwave element or the like generally uses Si (silicon) as a dopant to reduce the dislocation density in the crystal. It is manufactured using the horizontal boat method and the vertical boat method. In particular, the vertical boat method has the advantage that not only crystal growth of (100) orientation can be grown, but also a circular and large-diameter crystal can be obtained. The vertical temperature gradient method (VGF method) and the vertical bridge Crystal growth is performed by the Mann method (VB method).

ところで、上記GaAs単結晶の原料の1つであるV族元素のAsは、揮発成分であるため、結晶からの解離や分解を防ぐ目的等のために液体封止剤としてB23 酸化ホウ素)が用いられている。ところが、B23を液体封止剤として用いる場合、ドーパントであるSiがB23と反応して酸化シリコン(SiO2又はSiO)を形成して結晶中のSi濃度が制御しにくくなる。このため、所望の好ましいキャリア濃度分布を有するSiドープGaAs単結晶を常に安定して製造することが困難である。この欠点を除去すべく、本発明者等は、予めSi酸化物をドープしたB23を用いて再現性良く所望のキャリア濃度分布を有するSiドープGaAs単結晶を成長させる方法を提案した(特許文献1参照)。 By the way, as the V group element As, which is one of the raw materials of the GaAs single crystal, is a volatile component, B 2 O 3 ( oxidation) is used as a liquid sealant for the purpose of preventing dissociation and decomposition from the crystal. Boron) is used. However, when B 2 O 3 is used as the liquid sealant, Si as a dopant reacts with B 2 O 3 to form silicon oxide (SiO 2 or SiO), making it difficult to control the Si concentration in the crystal. . For this reason, it is difficult to always stably produce a Si-doped GaAs single crystal having a desired preferable carrier concentration distribution. In order to eliminate this defect, the present inventors proposed a method of growing a Si-doped GaAs single crystal having a desired carrier concentration distribution with good reproducibility using B 2 O 3 previously doped with Si oxide ( Patent Document 1).

しかしながら、上記提案にかかる発明でも、所定のキャリア濃度分布が所定の範囲にある結晶を歩留まり良く製造することは困難である。そこで本発明者らは、歩留まりを向上させるべく予めSi酸化物をドープしたB23とSi酸化物をドープしていないB23の2種類以上のB23を用い、これらを適正な時期に撹拌することによりキャリア濃度分布を制御する方法を提案した(特許文献2参照)。図6はこの提案にかかる従来の製造方法で製造したSiドープGaAs単結晶の固化率をgとして(1−g)の対数値を横軸にとり、単結晶中のキャリア濃度の対数値を縦軸にとった図である。図6に示されるように、キャリア濃度と固化率との関係を示す曲線が極小値又は極大値を持って変化しており、キャリア濃度分布が結晶成長方向で極小値又は極大値を持って変化している。この様な分布は結晶として極めて好ましくないものである。 However, even in the invention according to the above proposal, it is difficult to manufacture a crystal having a predetermined carrier concentration distribution in a predetermined range with a high yield. The present inventors, using two or more kinds of B 2 O 3 of B 2 O 3 not doped with B 2 O 3 and Si oxides doped with previously Si oxide to improve the yield, these A method of controlling the carrier concentration distribution by stirring at an appropriate time has been proposed (see Patent Document 2). FIG. 6 shows the logarithmic value of (1-g) on the horizontal axis and the logarithmic value of the carrier concentration in the single crystal on the vertical axis, where g is the solidification rate of the Si-doped GaAs single crystal manufactured by the conventional manufacturing method according to this proposal. It is the figure which was taken. As shown in FIG. 6, the curve indicating the relationship between the carrier concentration and the solidification rate changes with a minimum value or a maximum value, and the carrier concentration distribution changes with a minimum value or a maximum value in the crystal growth direction. is doing. Such a distribution is extremely undesirable as a crystal.

特公平3−57079号公報Japanese Patent Publication No. 3-57079 特願平9−96799号明細書Japanese Patent Application No. 9-96799

本発明は、上述の背景のもとでなされたものであり、良好なキャリア濃度分布を有するSiドープGaAs単結晶を、提供することを目的とする。 The present invention has been made under the above-mentioned background, and an object thereof is to provide a Si-doped GaAs single crystal having a good carrier concentration distribution.

上記課題を解決するための手段として、第1の発明は、液体封止剤を用いた縦型ボート法によって作製されたSiドープGaAs単結晶であって、該単結晶中の位置を結晶育成過程における結晶の固化率gで表して(1−g)の値を横軸にとり、各固化率gで特定される位置における該単結晶中のキャリア濃度の値を縦軸にとった、横軸と縦軸とが同スケールを有し、横軸に(1−g)の0.1〜1.0の範囲をとり、縦軸にキャリア濃度の5×10 17 〜1×10 19 cm −3 の範囲をとった両対数グラフ上に、該単結晶中の固化率gが0.1〜0.8の範囲で特定される位置における各キャリア濃度の値をとり、当該値を結んだ線を勾配の異なる2つの直線が接続されたものとみなしたときに、
該2つの直線は、固化率gが0.1〜0.8の範囲において、GaAs中のSiの偏析係数と対応関係にある勾配が負の値を持ち、かつ、固化率の小さい側の直線の勾配の絶対値は0.6より大きく、固化率の大きい側の直線の勾配の絶対値は0.6以下であることを特徴とするSiドープGaAs単結晶。但し、ここにおける勾配とは、前記両対数グラフにおける横軸をx軸、縦軸をy軸とする直交座標グラフに置き換えたとき、前記直線をy=ax+bで現した場合のaの値とする。
As means for solving the above-mentioned problem, the first invention is a Si-doped GaAs single crystal produced by a vertical boat method using a liquid sealant , wherein the position in the single crystal is a crystal growth process. The horizontal axis represents the value of (1-g) on the horizontal axis, and the value of the carrier concentration in the single crystal at the position specified by each solidification rate g on the vertical axis. The vertical axis has the same scale, the horizontal axis has a range of (1-g) of 0.1 to 1.0, and the vertical axis has a carrier concentration of 5 × 10 17 to 1 × 10 19 cm −3 . On the logarithmic graph taking a range, take the value of each carrier concentration at a position where the solidification rate g in the single crystal is specified in the range of 0.1 to 0.8, and then slope the line connecting the values When assuming that two straight lines with different
The two straight lines have a negative gradient with respect to the segregation coefficient of Si in GaAs when the solidification rate g is in the range of 0.1 to 0.8, and the straight line on the smaller solidification rate side. An Si-doped GaAs single crystal characterized in that the absolute value of the slope of is greater than 0.6, and the absolute value of the slope of the straight line on the higher solidification rate side is 0.6 or less. However, the gradient here is the value of a when the straight line is expressed as y = ax + b when the horizontal axis in the logarithmic graph is replaced with an orthogonal coordinate graph in which the horizontal axis is the x axis and the vertical axis is the y axis. .

本発明にかかるSiドープGaAs単結晶は、SiドープGaAs単結晶液体封止剤を用いた縦型ボート法によって作製されたSiドープGaAs単結晶であって、該単結晶中の位置を結晶育成過程における結晶の固化率gで表して(1−g)の対数値を横軸にとり、各固化率で特定される位置における単結晶中のキャリア濃度の対数値を縦軸にとったグラフに表される曲線が、固化率gが0.1〜0.8の範囲において、勾配が負の値を持ち、かつその勾配の絶対値が0.6より大きい1又は2以上の直線又は直線と見做し得る曲線と勾配の絶対値が0.6以下の1又は2以上の直線又は直線と見做し得る曲線とが接続されたものであることを特徴とするものである。また、本発明にかかるSiドープGaAs単結晶の製造方法は、結晶育成過程において、液体封止剤層とGaAs原料融液層との間でSiの移動を伴う反応が行われ、この反応は、液体封止剤層中に含まれるSiの濃度が該液体封止剤層とGaAs原料融液層との界面近傍の下部で高く、この界面から離れて上部にいくにしたがって急激に低くなる状態で平衡になる性質を有する現象を利用し、結晶育成過程において、液体封止剤層のSi濃度分布を強制的に変化させる操作を行うことにより液体封止剤中に取り込むSiの量を制御し、これによって、GaAs原料融液層中のSi濃度を制御して良好なキャリア濃度分布を有するSiドープGaAs単結晶を得るものである。これにより、良好なキャリア濃度分布を有するSiドープGaAs単結晶を得ているA Si-doped GaAs single crystal according to the present invention is a Si-doped GaAs single crystal produced by a vertical boat method using a Si-doped GaAs single crystal liquid sealant, and the position in the single crystal is a crystal growth process. The logarithmic value of (1-g) is represented on the horizontal axis, and the logarithm of the carrier concentration in the single crystal at the position specified by each solidification rate is represented on the vertical axis. The curve is regarded as one or more straight lines or straight lines having a negative slope and an absolute value of the slope greater than 0.6 in the range of the solidification rate g of 0.1 to 0.8. And a curve that can be regarded as one or two or more straight lines or straight lines having an absolute value of the slope of 0.6 or less. Further, in the method for producing a Si-doped GaAs single crystal according to the present invention, in the crystal growth process, a reaction involving the movement of Si is performed between the liquid sealant layer and the GaAs raw material melt layer. In a state where the concentration of Si contained in the liquid sealant layer is high in the lower part near the interface between the liquid sealant layer and the GaAs raw material melt layer, and rapidly decreases as the distance from the interface increases to the upper part. Controlling the amount of Si taken into the liquid sealant by performing an operation of forcibly changing the Si concentration distribution of the liquid sealant layer in the crystal growth process, utilizing the phenomenon of having an equilibrium property. Thus, a Si-doped GaAs single crystal having a good carrier concentration distribution is obtained by controlling the Si concentration in the GaAs raw material melt layer. As a result, a Si-doped GaAs single crystal having a good carrier concentration distribution is obtained .

(実施の形態1)
図1は本発明の実施の形態1にかかるSiドープGaAs単結晶のキャリア濃度分布を示す両対数グラフであり、図2ないし図4は本発明にかかるSiドープGaAs単結晶の製造方法に用いる単結晶製造装置の説明図である。以下、これらの図面を参照にしながら本発明の実施の形態1にかかるSiドープGaAs単結晶及びその製造方法を説明する。
(Embodiment 1)
FIG. 1 is a log-log graph showing the carrier concentration distribution of a Si-doped GaAs single crystal according to the first embodiment of the present invention. FIGS. 2 to 4 are single logarithmic graphs used in the method for producing a Si-doped GaAs single crystal according to the present invention. It is explanatory drawing of a crystal manufacturing apparatus. Hereinafter, a Si-doped GaAs single crystal and a manufacturing method thereof according to Embodiment 1 of the present invention will be described with reference to these drawings.

この実施の形態にかかるSiドープGaAs単結晶は、縦型ボート法の中の縦型温度傾斜法によって製造したものである。図2は縦型温度傾斜法を実施する単結晶製造装置の概
略構成を示す断面図である。図2において、符号4はるつぼであり、該るつぼ4内に原料が収納されて結晶育成が行われるものである。このるつぼ4は、略円筒形状で、上側が開口され、下側が次第に径が小さくなるように断面テーパ状に形成されて閉じられたもので、最下端の小径部に種結晶5が収納されるようになっている。
The Si-doped GaAs single crystal according to this embodiment is manufactured by the vertical temperature gradient method in the vertical boat method. FIG. 2 is a cross-sectional view showing a schematic configuration of a single crystal manufacturing apparatus that performs the vertical temperature gradient method. In FIG. 2, reference numeral 4 denotes a crucible, and the raw material is accommodated in the crucible 4 and crystal growth is performed. The crucible 4 is substantially cylindrical and has an upper side opened and a lower side formed with a tapered cross section so that the diameter gradually decreases. The seed crystal 5 is accommodated in a small diameter portion at the lowermost end. It is like that.

るつぼ4は底を有する円筒状のるつぼ収納容器3内に収納され、このるつぼ収納容器3は下部ロッド1に支持されている。この下部ロッド1は図示しない駆動機構によって上下及び回転の動作ができるようになっており、るつぼ収納容器3と該るつぼ収納容器3に収納されたるつぼ4を上下及び回転駆動できるようになっている。   The crucible 4 is accommodated in a cylindrical crucible storage container 3 having a bottom, and the crucible storage container 3 is supported by the lower rod 1. The lower rod 1 can be moved up and down and rotated by a drive mechanism (not shown) so that the crucible storage container 3 and the crucible 4 stored in the crucible storage container 3 can be driven up and down and rotated. .

るつぼ収納容器3は、円筒状の加熱ヒーター17内に設置されている。この加熱ヒーター17は、それぞれ独立に温度の設定ができる複数のヒーターによって構成されており、るつぼ収納容器3に所望の温度勾配・温度分布を形成できるようになっている。加熱ヒーター17の外側には、円筒状の断熱材16が配置され、これらは気密容器11に収納されている。   The crucible storage container 3 is installed in a cylindrical heater 17. The heater 17 is composed of a plurality of heaters that can set the temperature independently, and can form a desired temperature gradient and temperature distribution in the crucible storage container 3. A cylindrical heat insulating material 16 is disposed outside the heater 17, and these are housed in an airtight container 11.

気密容器11の下部には下部ロッド1を貫通させる貫通孔が形成され、この貫通孔にシールリング11aが嵌め込まれており、下部ロッド1が気密容器11の気密を維持しつつ上下及び回転運動ができるようになっている。また、上部には上部ロッド12を貫通させる貫通孔が形成され、この貫通孔にシールリング11bが嵌め込まれており、上部ロッド12が気密容器11の気密を維持しつつ上下及び回転運動ができるようになっている。   A through hole that allows the lower rod 1 to pass therethrough is formed in the lower portion of the hermetic container 11, and a seal ring 11 a is fitted into the through hole, and the lower rod 1 can move up and down and rotate while maintaining the hermetic container 11 hermetic. It can be done. Further, a through hole is formed through the upper rod 12 in the upper portion, and a seal ring 11b is fitted into the through hole so that the upper rod 12 can move up and down and rotate while maintaining the hermetic container 11 airtight. It has become.

上部ロッド12は、図示しない駆動機構によって上下及び回転の動作ができるようになっており、その先端部には、撹拌板10が取り付けられている。撹拌板10は、略四角形状の1枚の板体が上部ロッド12の先端部の取り付け部に略垂直に取り付けられているものである。撹拌板10の板体は、るつぼ4の内径の1/2以上の横幅と後述する液体封止剤層の厚さの1/2以上の縦幅を有する。また、この板体2枚以上設けてもよい。さらには、撹拌板10は融液を撹拌できるものであれば原則としてどの様な形状のものであってよい。なお、るつぼ4や撹拌板10は、必要な耐熱性を有し、原料融液と反応しにくい材料、例えば、カーボン(C)やpBN等が用いられることは勿論である。   The upper rod 12 can be moved up and down and rotated by a drive mechanism (not shown), and a stirring plate 10 is attached to the tip of the upper rod 12. The stirring plate 10 is a substantially rectangular plate body attached to a mounting portion at the tip of the upper rod 12 substantially vertically. The plate body of the stirring plate 10 has a horizontal width that is 1/2 or more of the inner diameter of the crucible 4 and a vertical width that is 1/2 or more of the thickness of the liquid sealant layer described later. Two or more plates may be provided. Furthermore, the stirring plate 10 may be of any shape in principle as long as it can stir the melt. Of course, the crucible 4 and the stirring plate 10 are made of a material having necessary heat resistance and hardly reacting with the raw material melt, such as carbon (C) or pBN.

上述の単結晶製造装置によって、以下のようにしてSiドープGaAs単結晶を製造する。まず、図4に示すように、るつぼ4に、種結晶5、GaAs原料13、ドーパントしてのSi原料14及び液体封止剤原料としてのB23原料を充填する。 The Si-doped GaAs single crystal is manufactured by the above-described single crystal manufacturing apparatus as follows. First, as shown in FIG. 4, the crucible 4 is filled with a seed crystal 5, a GaAs raw material 13, a Si raw material 14 as a dopant, and a B 2 O 3 raw material as a liquid sealant raw material.

ここで、るつぼ4に充填する原料の量は以下の通りである。
*GaAs原料13…4000g
*ドーパントしてのSi原料14…GaAs原料に対して0.02〜0.03重量%
*液体封止剤原料としてのB23原料(Si濃度換算で3重量%になるようにSi酸化物を添加したB23 )… 240g
Here, the amount of the raw material filled in the crucible 4 is as follows.
* GaAs raw material 13 ... 4000g
* Si raw material 14 as dopant: 0.02 to 0.03% by weight based on GaAs raw material
* As a liquid sealant material B 2 O 3 raw material (B 2 O 3 was added Si oxide to be 3% by weight Si equivalent concentration) ... 240 g

次に、これら原料を充填したるつぼ4を装置内にセットし、縦型温度傾斜法の手法にしたがって原料を溶解し、固化を開始する。固化は加熱ヒーター17の温度を下げてるつぼ4の下部の種結晶5に接する部分から行われ、次第に上方に進行していく。この固化は、種結晶5から結晶が成長していく過程でもある。GaAs原料全体の重量に対して固化している部分の重量の比率を固化率gという。固化率gは固化が進行して結晶が成長していくにしたがって0から1まで増大していく。したがって、固化率gがある特定の値であるということは、固化している部分と融液の部分とが接する界面がgの値に1対1に対応した特定の位置にあることを意味する。これによって特定される位置は、全部が固化されて結晶が完成された後にも当然同じである。したがって、完成された単結晶の結晶成長方向
における位置を固化率gで特定することができる。
Next, the crucible 4 filled with these raw materials is set in the apparatus, and the raw materials are dissolved in accordance with the vertical temperature gradient method, and solidification is started. Solidification is performed from a portion in contact with the seed crystal 5 at the lower part of the crucible 4 where the temperature of the heater 17 is lowered, and gradually progresses upward. This solidification is also a process in which crystals grow from the seed crystal 5. The ratio of the weight of the solidified part to the weight of the entire GaAs raw material is called solidification rate g. The solidification rate g increases from 0 to 1 as the solidification progresses and the crystal grows. Therefore, the solidification rate g being a specific value means that the interface between the solidified portion and the melt portion is in a specific position corresponding to the value of g on a one-to-one basis. . The position specified by this is naturally the same even after the whole is solidified and the crystal is completed. Therefore, the position of the completed single crystal in the crystal growth direction can be specified by the solidification rate g.

図2においては、るつぼ4内の符号6で示した部分がGaAsが固化した部分であり、符号7の部分が融液の部分である。固化部6と融液部7との界面の位置が、このときの固化率gで表される位置である。なお、この融液7の上面には、液体封止剤としての溶解したB23層8が形成されている。この実施の形態では、結晶が成長していく過程であって、固化率gが0.4のときに、図3に示されるように、上部ロッド12を下方に移動し、撹拌板10をB23層8に浸漬し、上部ロッド12を回転駆動して撹拌板8を回転してB23層8を撹拌する。この撹拌は、撹拌板8の回転数を1rpmにして20時間行う。 In FIG. 2, the portion indicated by reference numeral 6 in the crucible 4 is a portion where GaAs is solidified, and the portion indicated by reference numeral 7 is a melt portion. The position of the interface between the solidified part 6 and the melt part 7 is a position represented by the solidification rate g at this time. A melted B 2 O 3 layer 8 as a liquid sealant is formed on the upper surface of the melt 7. In this embodiment, in the process of crystal growth, when the solidification rate g is 0.4, the upper rod 12 is moved downward as shown in FIG. It is immersed in the 2 O 3 layer 8, the upper rod 12 is driven to rotate and the stirring plate 8 is rotated to stir the B 2 O 3 layer 8. This stirring is performed for 20 hours with the rotation speed of the stirring plate 8 set to 1 rpm.

こうして得られたSiドープGaAs単結晶の各位置におけるキャリア濃度分布をVander Pauw法により測定したところ、図1の両対数グラフに示したような結果が得られた。図1のグラフは、横軸が単結晶中の位置を結晶育成過程における結晶の固化率gで表して(1−g)の対数値をとったものであり、縦軸が各固化率で特定される位置における単結晶中のキャリア濃度の対数値をとったものである。図1のグラフに示されるように、キャリア濃度分布を示す曲線は、固化率gが0.4において、共に負の勾配をもつ2つの直線が接続されたものになっており、滑らかな増加傾向を示している。しかも、固化率gが0.1〜0.4での直線の勾配は約−0.85であり、固化率gが0.4〜0.8での直線の勾配は約−0.3であった。この結果は従来では得られなかったような十分に良好なキャリア濃度分布を有するということができる。なお、ここにおける勾配とは、前記グラフにおける横軸をx軸、縦軸をy軸とする直交座標において、前記直線をy=ax+bで現した場合のaの値である。また、この勾配は、GaAs中のSiの偏析係数と一定の対応関係にある。 When the carrier concentration distribution at each position of the Si-doped GaAs single crystal thus obtained was measured by the Vander Pauw method, the results shown in the log-log graph of FIG. 1 were obtained. In the graph of FIG. 1, the horizontal axis represents the position of the single crystal in terms of the solidification rate g of the crystal during the crystal growth process, and the logarithmic value of (1-g) is taken, and the vertical axis is specified by each solidification rate. This is a logarithmic value of the carrier concentration in the single crystal at the position to be measured. As shown in the graph of FIG. 1, the curve indicating the carrier concentration distribution is such that two straight lines having a negative gradient are connected at a solidification rate g of 0.4, and a smooth increasing tendency is obtained. Is shown. Moreover, the slope of the straight line when the solidification rate g is 0.1 to 0.4 is about -0.85, and the slope of the straight line when the solidification rate g is 0.4 to 0.8 is about -0.3. there were. This result can be said to have a sufficiently good carrier concentration distribution that has not been obtained in the past. Here, the gradient is the value of a when the straight line is expressed as y = ax + b in the orthogonal coordinates in which the horizontal axis in the graph is the x-axis and the vertical axis is the y-axis. This gradient has a certain correspondence with the segregation coefficient of Si in GaAs.

この様な良好なキャリア濃度分布を得られたのは、本発明が従来は認識されていなかった新しい事実の発見に基づいている。以下、この点を説明する。一般に、キャリア濃度分布はドーパントたるSi濃度分布に対応する。また、GaAsに対しては不純物でもあるSi濃度は、固化率gが増すごとに増大していき、一様にはならない。そこで、従来から、液体封止剤がSiを取り込むことを利用してSi濃度分布を制御する試みが種々なされていた。すなわち、原料融液と接する液体封止剤たるB23融液層と、Siを含むGaAs融液層との間では、次の反応が平衡状態になるまで行われる。
3Si(GaAs Melt中)+2B23=3SiO2(B23へ)+4B(GaAs Meltへ)
Obtaining such a good carrier concentration distribution is based on the discovery of a new fact that the present invention has not previously recognized. Hereinafter, this point will be described. In general, the carrier concentration distribution corresponds to the Si concentration distribution as a dopant. Further, for GaAs, the Si concentration, which is also an impurity, increases as the solidification rate g increases and does not become uniform. Accordingly, various attempts have been made to control the Si concentration distribution by utilizing the fact that the liquid sealant takes in Si. That is, the following reaction is performed between the B 2 O 3 melt layer, which is a liquid sealant in contact with the raw material melt, and the GaAs melt layer containing Si until the next reaction is in an equilibrium state.
3Si (in GaAs Melt) + 2B 2 O 3 = 3SiO 2 (to B 2 O 3 ) + 4B (to GaAs Melt)

そこで、B23層を2層にして、下層(GaAs層側)のB23層には予め適当な量のSiO2を加え、上層にはSiO2を加えないでおく。固化率gが小さい間(Si濃度も小さい)はこの状態の下層で上記平衡状態になるようにしてGaAs層から取り込むSiを少なくしておく。固化率gが所定の値になったとき(GaAs層のSi濃度も大きくなる)に上層と下層とを混合して下層のSiO2濃度を小さくしてGaAs層からB23層に
取り込むSiを多くする。これによって、Si濃度分布を一様にしようとするものである(詳しくは、特願平9−96799号明細書参照)。
Therefore, by the B 2 O 3 layer into two layers, the lower layer of SiO 2 in advance appropriate amounts in addition to the B 2 O 3 layer (GaAs layer side), left without added SiO 2 in the upper layer. While the solidification rate g is small (the Si concentration is also small), Si taken in from the GaAs layer is decreased so that the lower layer in this state is in the equilibrium state. When the solidification rate g reaches a predetermined value (the Si concentration of the GaAs layer also increases), the upper layer and the lower layer are mixed to reduce the lower SiO 2 concentration, and the Si incorporated into the B 2 O 3 layer from the GaAs layer To increase. This is intended to make the Si concentration distribution uniform (see Japanese Patent Application No. 9-96799 for details).

しかし、上記方法で、Si濃度分布をある程度一様にできることがわかったが、2層のB23に加えるSiO2の量を種々変えても、理論的に想定される一様性を得ることはで
きなかった。特に、試行錯誤的結果に基づいて、より一様性を向上させる筈である量を添加した場合、逆に、Si濃度分布が図6に示されるような、不連続的分布を示す場合のあることがわかった。
However, although it has been found that the Si concentration distribution can be made uniform to some extent by the above method, even if the amount of SiO 2 added to the two layers of B 2 O 3 is variously changed, the theoretically assumed uniformity can be obtained. I couldn't. In particular, when an amount that should improve the uniformity is added based on trial and error results, the Si concentration distribution may show a discontinuous distribution as shown in FIG. I understood it.

本発明は、この原因の究明の過程で発見された新たな事実に基づくものである。すなわち、従来は、融液中のSi濃度は大略一様であるという常識的知識を前提にしていた。本発明者等が上記原因究明のために、液体封止剤であるB23層中のSi濃度を調べたとこ
ろ、B23層においては、GaAs融液層との界面近傍の下部でSi濃度が高く、この界面から離れて上部にいくにしたがってSi濃度が急激に低くなっていることが判明した。
The present invention is based on new facts discovered in the process of investigating this cause. That is, conventionally, it has been premised on common sense knowledge that the Si concentration in the melt is substantially uniform. In order to investigate the cause, the present inventors examined the Si concentration in the B 2 O 3 layer, which is a liquid sealant, and found that the B 2 O 3 layer had a lower portion near the interface with the GaAs melt layer. It was found that the Si concentration was high, and the Si concentration decreased rapidly as it moved away from the interface and moved upward.

この事実が判明したことによって、従来の液体封止剤を2層にした方法が必ずしも理論的に想定した程の効果が得られない理由が解明され、同時に、本発明をなすことが可能になったものである。   As a result of this fact, the reason why the conventional method of forming a liquid sealant in two layers does not necessarily achieve the effect as theoretically assumed, and at the same time, the present invention can be made. It is a thing.

(実施の形態2)
この実施の形態は、撹拌の時期を固化率gが約0.55の時点から行うようにした点を除くほかは実施例1と同じであるのでその詳細説明は省略する。
(Embodiment 2)
Since this embodiment is the same as Example 1 except that the timing of stirring is performed from the time point when the solidification rate g is about 0.55, detailed description thereof is omitted.

図5は、得られたSiドープGaAs単結晶の各位置におけるキャリア濃度分布を示す両対数グラフである。図5のグラフの横軸、縦軸は実施の形態1の場合と同じである。図5のグラフに示されるように、キャリア濃度分布を示す曲線は、固化率gが0.1〜0.55の範囲の第1の直線と、固化率gが0.55〜0.8の範囲の第2の直線との共に負の勾配をもつ2つの直線が接続されたものになっており、滑らかな増加傾向を示している。しかも、固化率gが0.1〜0.55での直線の勾配は約−0.85であり、固化率gが0.55〜0.8での直線の勾配は約−0.3であった。この結果は従来では得られなかったような十分に良好なキャリア濃度分布を有するということができる。 FIG. 5 is a log-log graph showing the carrier concentration distribution at each position of the obtained Si-doped GaAs single crystal. The horizontal axis and vertical axis of the graph in FIG. 5 are the same as those in the first embodiment. As shown in the graph of FIG. 5, the curve indicating the carrier concentration distribution includes a first straight line having a solidification rate g of 0.1 to 0.55 and a solidification rate g of 0.55 to 0.8. Two straight lines having a negative gradient together with the second straight line in the range are connected to each other, indicating a smooth increasing tendency. Moreover, the slope of the straight line when the solidification rate g is 0.1 to 0.55 is about -0.85, and the slope of the straight line when the solidification rate g is 0.55 to 0.8 is about -0.3. there were. This result can be said to have a sufficiently good carrier concentration distribution that has not been obtained in the past.

(比較例)
この比較例は、実施の形態1におけるB23層8の上に、Si酸化物を添加しないB23層(50g)が配置されるようにして、液体封止剤層を2層にしたほかは、撹拌の条件を含めて実施の形態1と同じ条件で結晶育成を行ったものである。 得られたSiドープGaAs単結晶の各位置におけるキャリア濃度分布は図6に示した両対数グラフの通りであった。図6に示されるように、キャリア濃度と固化率との関係を示す曲線が不連続になっており、キャリア濃度分布が結晶成長方向で不連続的に変化している。この様な分布は結晶として極めて好ましくないものである。
(Comparative example)
In this comparative example, a B 2 O 3 layer (50 g) to which no Si oxide is added is arranged on the B 2 O 3 layer 8 in the first embodiment, so that two liquid sealant layers are provided. Other than that, the crystal growth was performed under the same conditions as in the first embodiment, including the stirring conditions. The carrier concentration distribution at each position of the obtained Si-doped GaAs single crystal was as shown in the log-log graph shown in FIG. As shown in FIG. 6, the curve indicating the relationship between the carrier concentration and the solidification rate is discontinuous, and the carrier concentration distribution changes discontinuously in the crystal growth direction. Such a distribution is extremely undesirable as a crystal.

以上の説明した各実施例では、撹拌の時期や条件が特定の場合を示したが、本発明は、これに限られるものでなく、結晶育成過程において、液体封止剤層とGaAs原料融液層との間でSiの移動を伴う反応が行われ、この反応は、液体封止剤層中に含まれるSiの濃度が該液体封止剤層とGaAs原料融液層との界面近傍の下部で高く、この界面から離れて上部にいくにしたがって急激に低くなる状態で平衡になる性質を有する現象を利用し、結晶育成過程において、液体封止剤層のSi濃度分布を強制的に変化させる操作を行うことにより液体封止剤中に取り込むSiの量を制御し、これによって、GaAs原料融液層中のSi濃度を制御して良好なキャリア濃度分布を有するSiドープGaAs単結晶を得る全ての場合を含むものである。   In each of the embodiments described above, the case where the timing and conditions of stirring are specific is shown. However, the present invention is not limited to this, and in the crystal growth process, the liquid sealant layer and the GaAs raw material melt A reaction involving the movement of Si is carried out between the layer and the reaction, and the concentration of Si contained in the liquid sealant layer is lower in the vicinity of the interface between the liquid sealant layer and the GaAs raw material melt layer. In the crystal growth process, the Si concentration distribution in the liquid sealant layer is forcibly changed by utilizing the phenomenon of having an equilibrium property in a state of being high and low and abruptly lowering as it goes away from this interface and moves upward. The amount of Si taken into the liquid sealant is controlled by performing an operation, thereby controlling the Si concentration in the GaAs raw material melt layer to obtain a Si-doped GaAs single crystal having a good carrier concentration distribution. Including the case of .

すなわち、例えば、撹拌の時期は上記実施例に示された時期以外でもGaAsのキャリア濃度分布を所定の範囲にするような時期であれば他の時期でもよい。また、撹拌の条件も、上記実施例に示された条件以外でもGaAsのキャリア濃度分布を所定の範囲にするような条件であれば他の条件でもよい。したがって、場合によっては、上記条件を満たすような撹拌の条件さえを選定できれば、撹拌を連続的に行って、常時、液体封止剤のSi濃度分布を変化させてもよい。   That is, for example, the timing of stirring may be other than the timing shown in the above embodiment as long as the carrier concentration distribution of GaAs is within a predetermined range. The stirring conditions may be other than the conditions shown in the above embodiment as long as the carrier concentration distribution of GaAs is within a predetermined range. Therefore, in some cases, as long as the stirring conditions satisfying the above conditions can be selected, stirring may be continuously performed to constantly change the Si concentration distribution of the liquid sealant.

また、撹拌は、撹拌板10を液体封止剤中に浸漬して固定させておき、下部ロッド1を回転させることによって行ってもよい。勿論、撹拌板10と下部ロッド1との双方を回転させるようにしてもよい。さらには、液体封止剤は撹拌せず、撹拌板10をGaAs融液中に浸漬させてGaAsを撹拌することによって液体封止剤層のSi濃度分布を強制的に
変化させるようにしてもよい。
Further, the stirring may be performed by immersing and stirring the stirring plate 10 in the liquid sealant and rotating the lower rod 1. Of course, both the stirring plate 10 and the lower rod 1 may be rotated. Further, the Si concentration distribution of the liquid sealing agent layer may be forcibly changed by stirring the GaAs by immersing the stirring plate 10 in the GaAs melt without stirring the liquid sealing agent. .

また、本発明は、液体封止剤を用いた縦型ボート法によって作製されたSiドープGaAs単結晶であって、該単結晶中の位置を結晶育成過程における結晶の固化率gで表して(1−g)の対数値を横軸にとり、各固化率で特定される位置における単結晶中のキャリア濃度の対数値を縦軸にとったグラフに表される曲線が、固化率gが0.1〜0.8の範囲において、勾配が負の値を持ち、かつその勾配の絶対値が0.6より大きい1又は2以上の直線又は直線と見做し得る曲線と勾配の絶対値が0.6以下の1又は2以上の直線又は直線と見做し得る曲線とが接続されたものであることを特徴とするSiドープGaAs単結晶を全て含むものである。   The present invention also relates to a Si-doped GaAs single crystal produced by a vertical boat method using a liquid sealant, wherein the position in the single crystal is represented by the crystal solidification rate g in the crystal growth process ( A curve represented by a graph in which the logarithmic value of 1-g) is taken on the horizontal axis and the logarithmic value of the carrier concentration in the single crystal at the position specified by each solidification rate is taken on the vertical axis is a solidification rate g of 0. In the range of 1 to 0.8, the gradient has a negative value, and the absolute value of the gradient is 0 or more, and the absolute value of the gradient is 0. It includes all Si-doped GaAs single crystals characterized in that one or two or more straight lines or straight lines of .6 or less are connected to an assumed curve.

また、実施例においては、縦型温度傾斜法による場合を示したが、これは縦型ブリッジマン法であってもよい。   Moreover, although the case where the vertical temperature gradient method is used is shown in the embodiment, this may be a vertical Bridgman method.

本発明の実施の形態1にかかるSiドープGaAs単結晶のキャリア濃度分布を示す両対数グラフである。It is a log-log graph which shows the carrier concentration distribution of the Si dope GaAs single crystal concerning Embodiment 1 of this invention. 本発明にかかるSiドープGaAs単結晶の製造方法に用いる縦型ボート法を実施する単結晶製造装置の概略構成を示す断面図である。It is sectional drawing which shows schematic structure of the single-crystal manufacturing apparatus which enforces the vertical boat method used for the manufacturing method of the Si dope GaAs single crystal concerning this invention. 本発明にかかるSiドープGaAs単結晶の製造方法に用いる単結晶製造装置の説明図である。It is explanatory drawing of the single crystal manufacturing apparatus used for the manufacturing method of the Si dope GaAs single crystal concerning this invention. 本発明にかかるSiドープGaAs単結晶の製造方法に用いる単結晶製造装置の説明図である。It is explanatory drawing of the single crystal manufacturing apparatus used for the manufacturing method of the Si dope GaAs single crystal concerning this invention. 本発明の実施の形態2にかかるSiドープGaAs単結晶のキャリア濃度分布を示す両対数グラフである。It is a log-log graph which shows the carrier concentration distribution of the Si dope GaAs single crystal concerning Embodiment 2 of this invention. 従来例にかかるSiドープGaAs単結晶のキャリア濃度分布を示す両対数グラフである。It is a log-log graph which shows carrier concentration distribution of the Si dope GaAs single crystal concerning a prior art example.

符号の説明Explanation of symbols

1…下部ロッド、3…るつぼ収納容器、4…るつぼ、5…種結晶、6…固化部、7…融液部、8…液体封止剤たるB2 3層、10…撹拌板、11…気密容器、12…上部ロッド
、11a、11b…シールリング、16…断熱材、17…加熱ヒーター。
1 ... lower rod 3 ... crucible container, 4 ... crucible, 5 ... seed crystal, 6 ... solidified portion, 7 ... molten portion, 8 ... liquid sealant serving B 2 O 3 layer, 10 ... stir plate, 11 DESCRIPTION OF SYMBOLS ... Airtight container, 12 ... Upper rod, 11a, 11b ... Seal ring, 16 ... Heat insulating material, 17 ... Heater.

Claims (1)

液体封止剤を用いた縦型ボート法によって作製されたSiドープGaAs単結晶であって、
該単結晶中の位置を結晶育成過程における結晶の固化率gで表して(1−g)の値を横軸にとり、各固化率gで特定される位置における該単結晶中のキャリア濃度の値を縦軸にとった、横軸と縦軸とが同スケールを有し、横軸に(1−g)の0.1〜1.0の範囲をとり、縦軸にキャリア濃度の5×1017〜1×1019cm−3の範囲をとった両対数グラフ上に、該単結晶中の固化率gが0.1〜0.8の範囲で特定される位置における各キャリア濃度の値をとり、当該値を結んだ線を勾配の異なる2つの直線が接続されたものとみなしたときに、
2つの直線は、固化率gが0.1〜0.8の範囲において、GaAs中のSiの偏析係数と対応関係にある勾配が負の値を持ち、かつ、固化率の小さい側の直線の勾配の絶対値は0.6より大きく、固化率の大きい側の直線の勾配の絶対値は0.6以下であることを特徴とするSiドープGaAs単結晶。
但し、ここにおける勾配とは、前記両対数グラフにおける横軸をx軸、縦軸をy軸とする直交座標グラフに置き換えたとき、前記直線をy=ax+bで現した場合のaの値とする。
A Si-doped GaAs single crystal produced by a vertical boat method using a liquid sealant,
The position in the single crystal is represented by the solidification rate g of the crystal in the crystal growth process, the value of (1-g) is taken on the horizontal axis, and the value of the carrier concentration in the single crystal at the position specified by each solidification rate g The horizontal axis and the vertical axis have the same scale, the horizontal axis is in the range of (1-g) 0.1 to 1.0, and the vertical axis is 5 × 10 5 of the carrier concentration. On the log-log graph taking the range of 17 to 1 × 10 19 cm −3 , the value of each carrier concentration at the position where the solidification rate g in the single crystal is specified in the range of 0.1 to 0.8 is shown. When the line connecting the values is considered as two straight lines with different slopes connected ,
The two straight lines have a negative gradient with respect to the segregation coefficient of Si in GaAs when the solidification rate g is in the range of 0.1 to 0.8, and the straight line on the smaller solidification rate side. An Si-doped GaAs single crystal characterized in that the absolute value of the slope of is greater than 0.6, and the absolute value of the slope of the straight line on the higher solidification rate side is 0.6 or less .
However, the gradient here is the value of a when the straight line is expressed as y = ax + b when the horizontal axis in the logarithmic graph is replaced with an orthogonal coordinate graph in which the horizontal axis is the x axis and the vertical axis is the y axis. .
JP2008090528A 2008-03-31 2008-03-31 Si-doped GaAs single crystal Expired - Lifetime JP5050184B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2008090528A JP5050184B2 (en) 2008-03-31 2008-03-31 Si-doped GaAs single crystal

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2008090528A JP5050184B2 (en) 2008-03-31 2008-03-31 Si-doped GaAs single crystal

Related Parent Applications (1)

Application Number Title Priority Date Filing Date
JP27984498A Division JP4168115B2 (en) 1998-10-01 1998-10-01 Method for producing Si-doped GaAs single crystal

Publications (2)

Publication Number Publication Date
JP2008230963A JP2008230963A (en) 2008-10-02
JP5050184B2 true JP5050184B2 (en) 2012-10-17

Family

ID=39904207

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2008090528A Expired - Lifetime JP5050184B2 (en) 2008-03-31 2008-03-31 Si-doped GaAs single crystal

Country Status (1)

Country Link
JP (1) JP5050184B2 (en)

Family Cites Families (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS6385100A (en) * 1986-09-30 1988-04-15 Toshiba Corp Production of gallium arsenide single crystal containing added silicon
JP2887603B2 (en) * 1989-07-26 1999-04-26 富士通電装株式会社 Figure registration control method
JP2701560B2 (en) * 1991-02-13 1998-01-21 日立電線株式会社 GaAs single crystal
JPH10218699A (en) * 1997-02-03 1998-08-18 Japan Energy Corp Growth of compound semiconductor single crystal
JP3023077B2 (en) * 1997-03-31 2000-03-21 同和鉱業株式会社 Gallium arsenide single crystal and method for producing the same

Also Published As

Publication number Publication date
JP2008230963A (en) 2008-10-02

Similar Documents

Publication Publication Date Title
JP5216123B2 (en) Si-doped GaAs single crystal ingot, method for producing the same, and Si-doped GaAs single crystal wafer produced from the Si-doped GaAs single crystal ingot
JPWO2011122570A1 (en) Manufacturing method of semiconductor single crystal
TWI582277B (en) GaAs single crystal and GaAs single crystal wafer
JP3924604B2 (en) Gallium arsenide single crystal
JP4586154B2 (en) Gallium arsenide single crystal manufacturing equipment
JP5399212B2 (en) Method for producing silicon single crystal
JP2009149452A (en) Method for growing semiconductor crystal
JP4168115B2 (en) Method for producing Si-doped GaAs single crystal
JP5050184B2 (en) Si-doped GaAs single crystal
JP2004217508A (en) Si-DOPED GaAs SINGLE CRYSTAL INGOT, PRODUCTION METHOD THEREFOR, AND APPARATUS FOR PRODUCING COMPOUND SEMICONDUCTOR SINGLE CRYSTAL INGOT
JP2007210882A (en) Si-DOPED GaAs SINGLE CRYSTAL AND ITS PRODUCING METHOD
JP3818023B2 (en) Method for producing GaAs single crystal
JPH06128096A (en) Production of compound semiconductor polycrystal
CN111379014A (en) Crystal growth fluxing agent and crystal growth method
JP5429022B2 (en) GaAs crystal and method for producing GaAs crystal
JP4691909B2 (en) Manufacturing method of semiconductor crystal
JP5136253B2 (en) Method for growing silicon single crystal
US11866848B1 (en) Method and system for liquid encapsulated growth of cadmium zinc telluride crystals
JPH06345581A (en) Production of multielement compound mixed single crystal
JP5196438B2 (en) Raw material melt supply apparatus, polycrystal or single crystal production apparatus and production method
KR20230124725A (en) Use of Buffer Members During Growth of Monocrystalline Silicon Ingots
JPS62275088A (en) Crystal pulling up device
US20170016142A1 (en) Methods for reducing the erosion rate of a crucible during crystal pulling
JP2014094853A (en) Method for manufacturing semiconductor single crystal of iii-v group compound, and semiconductor single crystal substrate of iii-v group compound
JP2003176198A (en) Method of manufacturing single crystal and single crystal ingot of compound semiconductor

Legal Events

Date Code Title Description
A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20100512

A02 Decision of refusal

Free format text: JAPANESE INTERMEDIATE CODE: A02

Effective date: 20101130

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20110225

A911 Transfer to examiner for re-examination before appeal (zenchi)

Free format text: JAPANESE INTERMEDIATE CODE: A911

Effective date: 20110413

A912 Re-examination (zenchi) completed and case transferred to appeal board

Free format text: JAPANESE INTERMEDIATE CODE: A912

Effective date: 20110617

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20120514

A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

A711 Notification of change in applicant

Free format text: JAPANESE INTERMEDIATE CODE: A711

Effective date: 20120622

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20120622

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A821

Effective date: 20120622

R150 Certificate of patent or registration of utility model

Free format text: JAPANESE INTERMEDIATE CODE: R150

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20150803

Year of fee payment: 3

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

EXPY Cancellation because of completion of term