JPS62230694A - Production of gaas single crystal - Google Patents

Production of gaas single crystal

Info

Publication number
JPS62230694A
JPS62230694A JP7283086A JP7283086A JPS62230694A JP S62230694 A JPS62230694 A JP S62230694A JP 7283086 A JP7283086 A JP 7283086A JP 7283086 A JP7283086 A JP 7283086A JP S62230694 A JPS62230694 A JP S62230694A
Authority
JP
Japan
Prior art keywords
crucible
pressure
single crystal
carbon concentration
raw material
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP7283086A
Other languages
Japanese (ja)
Inventor
Shoichi Washitsuka
鷲塚 章一
Satao Yashiro
八代 佐多夫
Joshi Nishio
譲司 西尾
Masayuki Watanabe
正幸 渡辺
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Toshiba Corp
Original Assignee
Toshiba Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Toshiba Corp filed Critical Toshiba Corp
Priority to JP7283086A priority Critical patent/JPS62230694A/en
Publication of JPS62230694A publication Critical patent/JPS62230694A/en
Pending legal-status Critical Current

Links

Abstract

PURPOSE:To obtain a GaAs single crystal, suitable as substrates for ultrahigh-speed and ultrahigh-density IC and having a low carbon concentration and high uniformity in the growth direction in high yield with high reproducibility, by repeatedly bubbling a raw material melt by a specific method and pulling up a crystal from the raw material melt by a liquid- encapsulated high-pressure pulling up process. CONSTITUTION:A crucible 12 is placed in a crucible receiver 16 in a high-pressure vessel 11 and a heater 13 for heating the crucible 12 is installed in a furnace member consisting of an AlN crucible wall 19, AlN heat shield 20 and AlN top plate. Raw materials Ga and As and encapsulating agent of B2O3 with <=200ppm moisture content are put in the crucible 12 and Ar gas is introduced from a gas cylinder 24 and pressure. The raw materials are then heated with the heater 13 to give a raw material melt 19 and encapsulating agent layer 15. A valve 23 is then opened to reduce the pressure in the vessel 11 below the pulling up pressure to carry out bubbling and the interior of the vessel 11 is repressured. The above- mentioned operation is repeated several times and the crucible 12 is rotated periodically in the forward and reverse directions through a motor 17 and controller 18 at the same time of the number of revolutions is increased and decreased to stir the melt 14 and the sealing agent 15. A seed crystal 25 is pulled from the melt 15 to grow the titled single crystal.

Description

【発明の詳細な説明】 [発明の目的] (産業上の利用分野) 本発明は、液体封止高圧引上げ法(LEC法)によりG
aAs単結晶を製造する方法に係わり、特に低炭素濃度
で且つ炭素濃度の均一性の高い単結晶を高歩留りで得る
GaAs単結晶の製造方法に関する。
[Detailed Description of the Invention] [Object of the Invention] (Industrial Application Field) The present invention provides G
The present invention relates to a method of manufacturing an aAs single crystal, and more particularly to a method of manufacturing a GaAs single crystal that produces a single crystal with a low carbon concentration and high uniformity of carbon concentration at a high yield.

(従来の技術) GaAs単結晶はSlに比べて室温での電子移動度が数
倍も大きいため、近年超高速IC用基板として盛んに使
用されてきている。IC用基板としては半絶縁性で電気
的特性の均一なものが要求されるが、中でもPBNルツ
ボを用いた直接合成アンドープ半絶縁性GaAs単結晶
が高純度で高移動度を示すことから盛んに開発されてい
る。
(Prior Art) GaAs single crystals have electron mobility several times higher than that of Sl at room temperature, and therefore have recently been widely used as substrates for ultrahigh-speed ICs. IC substrates are required to be semi-insulating and have uniform electrical properties, and undoped semi-insulating GaAs single crystals directly synthesized using PBN crucibles are gaining popularity due to their high purity and high mobility. being developed.

この直接合成アンドープ結晶が半絶縁性を示すのは、残
留シャロードナー(主にシリコン)を残留シャローアク
セプタ(主に炭素)が補償し、さらに過剰なシャローア
クセプタをディープドナー(E L 2)が補償するた
めと考えられており、炭素は結晶の電気特性を支配する
重要な不純物である。炭素濃度の高い結晶程A s−g
rownの比抵抗は高くなるが、熱処理後の表面抵抗は
低くなり、甚だしい場合にはP型で106[ΩcI!]
以下に低抵抗化し、所謂熱変成が生じる。また、MES
FETのしきい値電圧が炭素濃度によって変化する等の
現象が知られている( A ppl、 P hys、 
L ett、 ; 45(1984) 459参照)。
This directly synthesized undoped crystal exhibits semi-insulating properties because residual shallow donors (mainly silicon) are compensated by residual shallow acceptors (mainly carbon), and excess shallow acceptors are further compensated by deep donors (E L 2). Carbon is an important impurity that controls the electrical properties of crystals. Crystallization with high carbon concentration A s-g
Although the resistivity of row becomes high, the surface resistance after heat treatment becomes low, and in extreme cases, it becomes 106[ΩcI!] for P type. ]
Thereafter, the resistance decreases and so-called thermal transformation occurs. Also, MES
It is known that the threshold voltage of an FET changes depending on the carbon concentration (A ppl, P hys,
45 (1984) 459).

従って、超高速・超高密度ICを歩留り良く作成するた
めには炭素濃度がある所定値に制御され、且つウェハ間
及びロット間でバラツキのないことが必要不可欠である
。しかしながら、GaAs中の炭素の偏析係数は1より
大きいことが知られており、実効偏析係数Kef’f’
は1.44と言われている( J 、  Cryst、
 G rowth ; 71 (1985) 240参
照)。
Therefore, in order to produce ultra-high-speed, ultra-high-density ICs with good yield, it is essential that the carbon concentration be controlled to a certain predetermined value and that there be no variation between wafers or between lots. However, it is known that the segregation coefficient of carbon in GaAs is larger than 1, and the effective segregation coefficient Kef'f'
is said to be 1.44 (J, Cryst,
71 (1985) 240).

即ち、一般に結晶中の炭素濃度は次式により規定される
That is, the carbon concentration in the crystal is generally defined by the following formula.

NC−No  −Kef’f’  (1−g) ””r
f″″lここで、Noは融液中の初期炭素濃度、gは固
化率である。−例として、Keff’−1,44とした
時の上式の計算結果を第3図に示す。これから、通常ウ
ェハとして使用されるg−0,1〜0.8の間では炭素
濃度(N c / N o )は1.4〜0.7となり
、約2倍の差異が必然的に生じることになる。これでは
、1本の結晶から所定の炭素濃度となるウェハが取得で
きる割合いが限定されるだけでなく、ウェハを炭素濃度
別に選別しなければならない等、ウェハ製造工程が複雑
になる欠点があった。このため、従来のLEC法による
GaAs単結晶では、超高速・超高密度IC用基板とし
て十分な均一性を有しておらず、炭素濃度が制御され、
且つウェハ間及びロット間で均一な基板を大量にしかも
安価に提供することは討難であった。
NC-No -Kef'f' (1-g) ""r
f″″l Here, No is the initial carbon concentration in the melt, and g is the solidification rate. - As an example, the calculation result of the above formula when Keff'-1,44 is shown in FIG. From this, the carbon concentration (Nc/No) will be 1.4 to 0.7 between g-0.1 and 0.8, which is normally used as a wafer, and a difference of about twice will inevitably occur. become. This not only limits the rate at which wafers with a predetermined carbon concentration can be obtained from a single crystal, but also has the drawback of complicating the wafer manufacturing process, such as having to sort wafers by carbon concentration. Ta. For this reason, the GaAs single crystal produced by the conventional LEC method does not have sufficient uniformity as a substrate for ultra-high-speed, ultra-high-density ICs, and the carbon concentration cannot be controlled.
In addition, it has been difficult to provide uniform substrates from wafer to wafer and from lot to lot in large quantities and at low cost.

ところで、結晶中の炭素濃度は封止剤となるB2O3中
の水分量によって影響を受け、この水分量が多い程炭素
濃度が低下することが知られている( A ppl p
hys、 L ett、 ; 44 (1984) 7
4参照)。
By the way, it is known that the carbon concentration in the crystal is affected by the amount of water in B2O3, which is the sealant, and that the higher the amount of water, the lower the carbon concentration (A ppl p
Hys, Lett; 44 (1984) 7
(see 4).

これは、水の分解により解離した酸素が、融液中の炭素
と結合して一酸化炭素となり、気相中へ排出されるため
と考えられている。しかし、水分量が多い程B2O3が
濁り易く、双晶や多結晶の発生頻度が高くなり、単結晶
化率が低下する。さらに、炭素濃度が低下しても炭素濃
度は依然として偏析現象に支配されるため、成長方向の
濃度差が生じる等の問題があり、B2O3中の水分量の
調節により、IC用基板として必要な低炭素濃度で且つ
成長方向の炭素濃度の均一な結晶を歩留り良く製造する
ことは不可能である。
This is thought to be because oxygen dissociated by water decomposition combines with carbon in the melt to form carbon monoxide, which is discharged into the gas phase. However, the higher the water content, the more likely B2O3 becomes cloudy, the more frequently twins and polycrystals occur, and the single crystallization rate decreases. Furthermore, even if the carbon concentration decreases, the carbon concentration is still controlled by the segregation phenomenon, resulting in problems such as concentration differences in the growth direction. It is impossible to produce crystals with a uniform carbon concentration and a uniform carbon concentration in the growth direction with a high yield.

また、高圧下の原料融液を引上げ圧力よりも低い圧力下
に置いて融液より気泡を発生させたのち、引上げを行う
方法がある(特開昭58−187500号及び特開昭5
9−83999号参照)。この方法は、バブリングと呼
ばれるが、融液中の不純物がより積極的に除去され融液
の純度が向上することが知られている。これにより、主
にStが減少しHB法多結晶を原料に用いた場合でも、
クロム等の不純物をドープすることなく半絶縁性GaA
s単結晶が得られる利点がある。これは、SiがB2O
3を還元してSiOとなり、気相中へ排出されるためと
考えられている。さらに、B2O3中の水分と炭素との
反応も促進されると考えられる。しかし、結晶中の炭素
濃度は原料の残留炭素だけでなく、炉部材からの混入炭
素にも影響されるため、特に水分含有量の少ないB2O
3を用いた場合には、顕著な炭素濃度低下は見られなか
った。
There is also a method in which the raw material melt under high pressure is placed under a pressure lower than the pulling pressure to generate bubbles from the melt and then pulled (JP-A-58-187500 and JP-A-5
9-83999). This method is called bubbling, and it is known that impurities in the melt are more actively removed and the purity of the melt is improved. As a result, St mainly decreases, even when using HB method polycrystal as the raw material.
Semi-insulating GaA without doping with impurities such as chromium
There is an advantage that s single crystal can be obtained. This means that Si is B2O
It is thought that this is because 3 is reduced to become SiO, which is discharged into the gas phase. Furthermore, it is thought that the reaction between the moisture in B2O3 and carbon is also promoted. However, since the carbon concentration in the crystal is affected not only by the residual carbon in the raw materials but also by the carbon mixed in from the furnace components, B2O, which has a low moisture content,
When No. 3 was used, no significant decrease in carbon concentration was observed.

なお、炉部材からの炭素の混入を防止する手法としては
、炭素部材を焼結型窒化アルミニウム炉部材に置換える
方法がある(特開昭80−228492号参照)。しか
し、この方法では、炭素濃度は低下しても依然として成
長方向の濃度差があり、IC用基板として必要な低炭素
濃度で且つ成長方向の炭素濃度の均一な結晶を歩留り良
く製造することはできなかった。
In addition, as a method for preventing the contamination of carbon from furnace members, there is a method of replacing the carbon members with sintered aluminum nitride furnace members (see Japanese Patent Laid-Open No. 80-228492). However, with this method, even if the carbon concentration is reduced, there is still a concentration difference in the growth direction, and it is not possible to produce crystals with a high yield with a low carbon concentration and a uniform carbon concentration in the growth direction, which is necessary for IC substrates. There wasn't.

(発明が解決しようとする問題点) このように従来方法では、超高速・超高密度IC用基板
として必要な低炭素濃度で、且つ成長方向の炭素濃度の
均一なGaAs単結晶を歩留り良く製造することは困難
であった。
(Problems to be Solved by the Invention) As described above, with the conventional method, GaAs single crystals with low carbon concentration and uniform carbon concentration in the growth direction, which are necessary for ultra-high-speed, ultra-high-density IC substrates, can be produced with good yield. It was difficult to do so.

本発明は上記事情を考慮してなされたもので、その目的
とするところは、低炭素濃度で且つ成長方向の炭素濃度
の均一性の高いGaAs単結晶を再現性良く高歩留りで
得ることのできるGaAs単結晶の製造方法を提供する
ことにある。
The present invention has been made in consideration of the above circumstances, and its purpose is to obtain a GaAs single crystal with low carbon concentration and high uniformity of carbon concentration in the growth direction with good reproducibility and high yield. An object of the present invention is to provide a method for manufacturing a GaAs single crystal.

[発明の構成] (問題点を解決するための手段) 本発明の骨子は、炉部材として窒化アルミニウムを用い
ると共に、原料融液に対して複数回のバブリングを行う
ことにある。
[Structure of the Invention] (Means for Solving the Problems) The gist of the present invention is to use aluminum nitride as a furnace member and to bubble the raw material melt multiple times.

本発明者等は、AI!N炉部材を使用した引上げ装置を
用いて、封止剤としてのB2O3中の水分量及びバブリ
ング条件と結晶の炭素濃度及び成長方向の炭素濃度の均
一性とについて種々調べた結果、低炭素濃度で且つ成長
方向の炭素濃度の均一な結晶が得られる条件を新たに見
出した。即ち、水分含有量の少ないB203を用いてバ
ブリングを数回繰返したのち結晶成長を行うと、第4図
に示すように成長方向の炭素濃度差が減少する傾向が見
られた。ここで、図中Aはバブリングなしの従来方法で
あり、炭素濃度が高く且つ成長方向の濃度差が大きい。
The inventors of the present invention believe that AI! Using a pulling device using N furnace parts, we conducted various investigations on the water content and bubbling conditions in B2O3 as a sealant, the carbon concentration of crystals, and the uniformity of carbon concentration in the growth direction. In addition, we have newly discovered conditions under which crystals with uniform carbon concentration in the growth direction can be obtained. That is, when crystal growth was performed after repeating bubbling several times using B203 with a low water content, there was a tendency for the difference in carbon concentration in the growth direction to decrease as shown in FIG. Here, A in the figure is a conventional method without bubbling, and the carbon concentration is high and the concentration difference in the growth direction is large.

Bはバブリング1回の例であり、Aよりは炭素濃度及び
成長方向の濃度差共に小さくなっているが、IC用基板
として十分とは言えない。Cはバブリング2回の例であ
り、炭素濃度が1.OX 1016[cII−3]以下
となり、且つ成長方向の濃度差も極めて小さくなってお
り、IC用基板として十分な特性を得ている。Dはバブ
リング3回以上の例であり、Cと略同様の特性である。
B is an example of one bubbling, and although both the carbon concentration and the concentration difference in the growth direction are smaller than A, it cannot be said to be sufficient as an IC substrate. C is an example of bubbling twice, and the carbon concentration is 1. OX 1016 [cII-3] or less, and the concentration difference in the growth direction is also extremely small, providing sufficient characteristics as an IC substrate. D is an example of bubbling three or more times, and has substantially the same characteristics as C.

また、バブリングと同時にルツボ回転数及び回転方向を
周期的に増減及び反転して融液とB2O3とを撹拌する
と第4図中E(バブリング2回)、F(バブリング3回
以上)に示すようにさらに炭素濃度差が減少し、明らか
に均一性が向上し且つ低炭素濃度の結晶が得られること
が判明した。
In addition, when the melt and B2O3 are stirred by periodically increasing/decreasing and reversing the crucible rotation speed and rotation direction at the same time as bubbling, as shown in E (bubbling 2 times) and F (bubbling 3 or more times) in Figure 4, Furthermore, it was found that the difference in carbon concentration was reduced, and crystals with clearly improved uniformity and low carbon concentration were obtained.

本発明はこのような点に着目し、原料融液及びこの表面
を覆う封止剤が充填されるルツボと、このルツボの周囲
に配置され該ルツボを加熱する発熱体と、この発熱体の
周囲に配置された熱遮蔽体と、これらルツボ、発熱体及
び熱遮蔽体を収容した高圧容器とを具備してなる引上げ
装置を用い、上記ルツボ内の原料融液からLEC法によ
りGaAs単結晶を引上げ製造するGaAs単結晶の製
造方法において、前記熱遮蔽体の材料として窒化アルミ
ニウムを用い、高圧下で溶融している原料融液に対して
前記容器内の圧力を引上げ圧力よりも低い圧力に降下す
るバブリングを少なくとも2回行ったのち、前記容器内
の圧力を引上げ圧力に設定してGaAs単結晶引上げを
行うようにした方法である。
The present invention focuses on such points, and includes a crucible filled with a raw material melt and a sealant that covers the surface thereof, a heating element arranged around the crucible to heat the crucible, and a heating element arranged around the crucible to heat the crucible. A GaAs single crystal is pulled from the raw material melt in the crucible by the LEC method using a pulling device comprising a heat shield placed in the crucible, and a high-pressure container housing the crucible, the heating element, and the heat shield. In the method for producing a GaAs single crystal, aluminum nitride is used as the material of the heat shield, and the pressure in the container is lowered to a pressure lower than the pulling pressure with respect to the raw material melt melted under high pressure. In this method, after bubbling is performed at least twice, the pressure inside the container is set to a pulling pressure to pull the GaAs single crystal.

(作用) 上記の方法であれば、炉部材としてA、i7Nを用いる
ことにより、炉部材からの炭素の混入を防止することが
できると共に、原料融液に対し2回以上のバブリングを
行うことにより、炭素濃度及び成長方向の炭素濃度差を
IC用基板として許容できる値に十分小さくすることが
できる。このため、A s−grown及び熱処理後の
比抵抗、FETのしきい値電圧のウェハ間、ロット間の
再現性が良くなり、素子特性の再現性及び素子製造歩留
りを向上させることが可能となる。
(Function) According to the above method, by using A or i7N as the furnace member, it is possible to prevent the incorporation of carbon from the furnace member, and by bubbling the raw material melt two or more times. , the carbon concentration and the difference in carbon concentration in the growth direction can be made sufficiently small to values that can be used as an IC substrate. Therefore, the reproducibility of the specific resistance after A s-grown and heat treatment, and the FET threshold voltage between wafers and between lots is improved, making it possible to improve the reproducibility of device characteristics and the device manufacturing yield. .

(実施例) 以下、本発明の詳細を図示の実施例によって説明する。(Example) Hereinafter, details of the present invention will be explained with reference to illustrated embodiments.

第1図は本発明の一実施例方法に使用した単結晶製造装
置を示す概略構成図である。図中11は高圧容器、12
はルツボ、13はヒータ、14は原料融液、15は封止
剤としてのB2O3,16はルツボ受け、17はルツボ
回転モータ、18はルツボ回転コントローラ、19はA
ノNルツボウオール、20はAノNヒートシールド、2
1はA、l’Nトッププレート、22はガス導入バルブ
、23はガス導出バルブ、24はガスボンベ、25は種
結晶である。
FIG. 1 is a schematic diagram showing a single crystal manufacturing apparatus used in a method according to an embodiment of the present invention. In the figure, 11 is a high pressure vessel, 12
13 is a heater, 14 is a raw material melt, 15 is B2O3 as a sealant, 16 is a crucible holder, 17 is a crucible rotation motor, 18 is a crucible rotation controller, 19 is A
NoN Crucible All, 20 is ANoN Heat Shield, 2
1 is an A, l'N top plate, 22 is a gas inlet valve, 23 is a gas outlet valve, 24 is a gas cylinder, and 25 is a seed crystal.

引上げ装置本体及びA、ll’N炉部材19.20゜2
1の構成自体は公知のものである。高圧容器11内に収
容されたルツボ12に原料及び封止剤を入れて加圧した
のち、ヒータ13により加熱して原料融液14とB2O
3封止剤層15を得る。
Pulling device main body and A, ll'N furnace parts 19.20°2
The configuration of 1 itself is well known. After putting the raw material and sealant into a crucible 12 housed in a high-pressure container 11 and applying pressure, the raw material melt 14 and B2O are heated by a heater 13.
3 sealant layer 15 is obtained.

ここで、B2O3は水分含有量の少ないもの(ドライB
203)を用いる。次いで、低炭素濃度で成長方向の濃
度の均一な単結晶を製造するため、以下の操作を行う。
Here, B2O3 is one with low water content (dry B
203) is used. Next, in order to produce a single crystal with a low carbon concentration and a uniform concentration in the growth direction, the following operation is performed.

ガス導出バルブ23を開けて高圧容器10内の圧力を引
上げ圧力よりも低くしたのち、ガス導出バルブ23を閉
じしばらく放置して、所謂バブリングを行う。その後、
ガス導入バルブ22を開けて再び引上げ圧力以上に加圧
し、バブリングを数回繰返す。これと同時に、ルツボ1
6をルツボ回転モータ17により周期的に正・逆回転さ
せて融液14とB20315とを撹拌する。回転の制御
はルツボ回転コントローラ18により行う。しかるのち
、種結晶25を融液14中に接触させて引上げ、単結晶
を成長させる。
After opening the gas outlet valve 23 to make the pressure in the high pressure vessel 10 lower than the pulling pressure, the gas outlet valve 23 is closed and left for a while to perform so-called bubbling. after that,
The gas introduction valve 22 is opened, the pressure is again increased to a level higher than the pulling pressure, and bubbling is repeated several times. At the same time, crucible 1
6 is periodically rotated forward and backward by a crucible rotation motor 17 to stir the melt 14 and B20315. The rotation is controlled by a crucible rotation controller 18. Thereafter, the seed crystal 25 is brought into contact with the melt 14 and pulled up to grow a single crystal.

次に、上記装置を用いたGaAs単結晶の製造方法につ
いて、より具体的に説明する。
Next, a method for producing a GaAs single crystal using the above-mentioned apparatus will be described in more detail.

内径150 [8FのPBN製ルツルツボ12aとAs
を合計〜3[KSF]と封止剤であるB203(水分含
有量〜10100ppを〜[100[g]入れて高圧容
器11に収容し、直接合成法によりGaAs融液14を
得た。次いで、ガス導出バルブ23を開けて高圧容器1
1内の圧力を〜3[atm]まで低下し、〜30分間放
置した。再び容器11内を〜50 [atm ]まで加
圧したのち、バブリングを5回繰返した。同時に、ルツ
ボ12を第2図に示す如く 0〜20 [rp11]ま
で周期1分で正・逆回転させた。その後、温度の安定を
待って種付けを行い、直径〜gofml、重さ〜2.5
  [Kg]の<100>GaAs単結晶を得た。
Inner diameter 150 [8F PBN crucible 12a and As
A total of ~3 [KSF] and B203 as a sealant (water content ~10,100 pp) and ~ [100 [g] were placed in a high-pressure container 11, and a GaAs melt 14 was obtained by a direct synthesis method.Next, Open the gas outlet valve 23 and remove the high pressure container 1.
The pressure inside 1 was lowered to ~3 [atm] and left for ~30 minutes. After pressurizing the inside of the container 11 again to ~50 [atm], bubbling was repeated five times. At the same time, the crucible 12 was rotated forward and backward at a cycle of 1 minute from 0 to 20 [rp11] as shown in FIG. After that, wait for the temperature to stabilize and sow the seeds.The diameter ~ gofml, the weight ~2.5
[Kg] <100>GaAs single crystal was obtained.

得られた単結晶をウェハに切断し、先端、中央及び終端
の3点でそれぞれ炭素濃度を測定したところ、前記第4
図中Fに示したように2.9〜2.4×1015[Ol
”3]と先端から終端まで略均−であり、且つ炭素濃度
も低い結晶であった。各ウェハの比抵抗は先端から終端
まで3〜2X10’[Ωc−I!]であり、熱処理(8
50℃、15分、As雰囲気)後の比抵抗も〜2X10
7[011以上で熱変成がなく、均一であった。
The obtained single crystal was cut into wafers, and the carbon concentration was measured at three points, the tip, the center, and the end.
As shown in F in the figure, 2.9 to 2.4×1015[Ol
"3], which was approximately uniform from the tip to the end, and the carbon concentration was also low. The specific resistance of each wafer was 3 to 2 x 10' [Ωc-I!] from the tip to the end, and after heat treatment (8
The specific resistance after (50℃, 15 minutes, As atmosphere) is also ~2X10
7 [011 or more, there was no thermal alteration and it was uniform.

上記ウェハにシリコンを150 [K e V]で2.
5X 1012[α−2]イオン注入し、D−ME S
 F ETを作成してそのしきい値電圧を測定した。ウ
ェハ径方向に並んだ300個のFETの平均しきい値電
圧は、前記先端、中央及び終端に相当する位置で、’c
tL4:irL −3,51[V] 、  −3,51
[V] 、  −3,56[V]であり、その差は50
[mV1以内であった。
2. Apply silicon to the above wafer at 150 [K e V].
5X 1012[α-2] ion implantation, D-MES
An FET was created and its threshold voltage was measured. The average threshold voltage of 300 FETs arranged in the radial direction of the wafer is 'c' at the positions corresponding to the tip, center and end.
tL4:irL -3,51[V], -3,51
[V], -3,56[V], and the difference is 50
[It was within mV1.]

同様にして、結晶を10本連続して製造したところ、い
ずれも多結晶や双晶の発生は見られず、炭素濃度及び電
気特性も上記と同様の値が得られ、ロット間の再現性も
十分あることが判った。
In the same way, when 10 crystals were produced in succession, no polycrystals or twins were observed, and the same carbon concentration and electrical properties as above were obtained, with good reproducibility between lots. It turned out that there was enough.

また、B2O3の水分含有量を〜200ppmまで、バ
ブリング回数を2〜4回まで変えて単結晶を作成したと
ころ、いずれも成長方向の炭素濃度の均一なものが得ら
れた。これにより、目的に応じて条件を種々選択して単
・結晶製造を行うことができる。
Furthermore, when single crystals were created by varying the water content of B2O3 to ~200 ppm and the number of bubbling cycles from 2 to 4 times, a uniform carbon concentration in the growth direction was obtained in all cases. Thereby, single crystal production can be performed by selecting various conditions depending on the purpose.

このように本実施例方法によれば、低炭素濃度で成長方
向の均一性の高い単結晶が再現性良く得られるめ、ウェ
ハ間、ロット間におけるMESFETのしきい値電圧の
制御性が向上する。
As described above, according to the method of this embodiment, a single crystal with a low carbon concentration and high uniformity in the growth direction can be obtained with good reproducibility, thereby improving the controllability of the threshold voltage of MESFET from wafer to wafer and from lot to lot. .

従って、超高速IC用基板として使用することにより、
素子製造歩留りが大幅に向上する等の効果がある。また
、水分含有量の少ないB2O3を用いているので、多結
晶や双晶の発生が殆ど見られず、再現性良く、高歩留り
でGaAs単結晶が得られ、製造コストの低減をはかり
得る。さらに、従来の引上げ装置を大幅に改造すること
なく、簡易に実施できる等の利点もある。
Therefore, by using it as a substrate for ultra-high-speed IC,
There are effects such as a significant improvement in device manufacturing yield. Furthermore, since B2O3 with a low water content is used, polycrystals and twin crystals are hardly observed, GaAs single crystals can be obtained with good reproducibility and high yield, and manufacturing costs can be reduced. Furthermore, it has the advantage that it can be easily implemented without significantly modifying the conventional lifting device.

なお、本発明は上述した実施例方法に限定されるもので
はなく、その要旨を逸脱しない範囲で、種々変形して実
施することができる。例えば、前記バブリングの回数は
2回以上の範囲で適宜変更可能である。さらに、B20
3の水分含有量は200 [ppm ]の範囲で、適宜
窓めればよい。また、バブリング時におけるルツボの回
転数の増減或いは回転方向の反転は必ずしも必要なく、
製造すべきGaAs単結晶に要求される炭素濃度及び成
長方向の濃度差等の条件によっては省略することも可能
である。
It should be noted that the present invention is not limited to the method of the embodiment described above, and can be implemented with various modifications without departing from the gist thereof. For example, the number of times of bubbling can be changed as appropriate within the range of two or more times. Furthermore, B20
The water content of No. 3 may be within the range of 200 [ppm] and may be adjusted as appropriate. In addition, it is not necessarily necessary to increase or decrease the rotational speed of the crucible or reverse the rotational direction during bubbling.
It may be omitted depending on conditions such as the carbon concentration required for the GaAs single crystal to be manufactured and the concentration difference in the growth direction.

[発明の効果コ 以上詳述したように本発明によれば、炉部材としてA)
Nを用い、原料融液に対し少なくとも2回のバブリング
を行うことにより、低炭素濃度で且つ成長方向の炭素濃
度の均一性の高いGaAs単結晶を再現性良く高歩留り
で製造することができる。従って、超高速IC用基板と
して優れたGaAs基板を提供することができ、半導体
製造分野における有用性は絶大である。
[Effects of the Invention] As detailed above, according to the present invention, as a furnace member A)
By bubbling the raw material melt at least twice using N, it is possible to produce a GaAs single crystal with low carbon concentration and high uniformity of carbon concentration in the growth direction with good reproducibility and high yield. Therefore, it is possible to provide an excellent GaAs substrate as a substrate for ultra-high-speed ICs, and its usefulness in the field of semiconductor manufacturing is tremendous.

【図面の簡単な説明】[Brief explanation of drawings]

第1図は本発明の一実施例方法に使用した単結晶製造装
置を示す概略構成図、第2図はルツボの回転方向及び回
転速度の変化を示す模式図、第3図及び第4図はそれぞ
れ本発明の詳細な説明するためのもので第3図は従来方
法による固化率に対する炭素濃度の変化を示す特性図、
第4図は結晶の成長方向位置に対する炭素濃度の変化を
示す特性図である。 11・・・高圧容器、12・・・ルツボ、13・・・ヒ
ータ、14・・・融液、15・・・B2O3,16・・
・ルツボ受け、17・・・ルツボ回転モータ、18・・
・ルツボ回転コントローラ、19・・・Aj7Nルツボ
ウオール、20・・・Aiヒートシールド、21・・・
A、17N)ツブプレート、22・・・ガス導入バルブ
、23・・・ガス導出バルブ、24・・・ガスボンベ。 出願人代理人 弁理士 鈴江武彦 層表1成(x 10’輻3)− JJJ虐(No/No)−
Figure 1 is a schematic configuration diagram showing a single crystal manufacturing apparatus used in an embodiment method of the present invention, Figure 2 is a schematic diagram showing changes in the rotation direction and rotation speed of the crucible, and Figures 3 and 4 are Each figure is for explaining the present invention in detail, and FIG. 3 is a characteristic diagram showing changes in carbon concentration with respect to solidification rate according to the conventional method.
FIG. 4 is a characteristic diagram showing the change in carbon concentration with respect to the position in the crystal growth direction. 11... High pressure container, 12... Crucible, 13... Heater, 14... Melt, 15... B2O3, 16...
・Crucible holder, 17... Crucible rotation motor, 18...
・Crucible rotation controller, 19...Aj7N crucible oar, 20...Ai heat shield, 21...
A, 17N) Tube plate, 22... Gas introduction valve, 23... Gas outlet valve, 24... Gas cylinder. Applicant's agent Patent attorney Takehiko Suzue Level 1 (x 10' 3) - JJJ (No/No) -

Claims (3)

【特許請求の範囲】[Claims] (1)原料融液及びこの表面を覆う封止剤が充填される
ルツボと、このルツボの周囲に配置され該ルツボを加熱
する発熱体と、この発熱体の周囲に配置された熱遮蔽体
と、これらルツボ、発熱体及び熱遮蔽体を収容した高圧
容器とを具備してなる引上げ装置を用い、上記ルツボ内
の原料融液からLEC法によりGaAs単結晶を引上げ
製造するGaAs単結晶の製造方法において、前記熱遮
蔽体の材料として窒化アルミニウムを用い、高圧下で溶
融している原料融液に対して前記容器内の圧力を引上げ
圧力よりも低い圧力に降下するバブリングを少なくとも
2回行ったのち、前記容器内の圧力を引上げ圧力に設定
してGaAs単結晶引上げを行うことを特徴とするGa
As単結晶の製造方法。
(1) A crucible filled with a raw material melt and a sealant that covers the surface of the crucible, a heating element placed around the crucible to heat the crucible, and a heat shield placed around the heating element. , a method for producing a GaAs single crystal by pulling and producing a GaAs single crystal from the raw material melt in the crucible by the LEC method using a pulling device comprising a crucible, a heating element, and a high-pressure container containing a heat shield. , using aluminum nitride as the material of the heat shield, and bubbling the raw material melt melted under high pressure at least twice to lower the pressure in the container to a pressure lower than the pulling pressure. , wherein the GaAs single crystal is pulled by setting the pressure in the container to a pulling pressure.
A method for producing an As single crystal.
(2)前記バブリング時に、前記ルツボの回転数を周期
的に増減するか、或いは前記ルツボの回転方向を反転さ
せることを特徴とする特許請求の範囲第1項記載のGa
As単結晶の製造方法。
(2) During the bubbling, the number of rotations of the crucible is periodically increased or decreased, or the direction of rotation of the crucible is reversed.
A method for producing an As single crystal.
(3)前記封止剤として、水分含有量が200[ppm
]以下のB_2O_3を用いたことを特徴とする特許請
求の範囲第1項記載のGaAs単結晶の製造方法。
(3) The sealant has a water content of 200 [ppm].
] The method for producing a GaAs single crystal according to claim 1, characterized in that the following B_2O_3 is used.
JP7283086A 1986-03-31 1986-03-31 Production of gaas single crystal Pending JPS62230694A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP7283086A JPS62230694A (en) 1986-03-31 1986-03-31 Production of gaas single crystal

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP7283086A JPS62230694A (en) 1986-03-31 1986-03-31 Production of gaas single crystal

Publications (1)

Publication Number Publication Date
JPS62230694A true JPS62230694A (en) 1987-10-09

Family

ID=13500723

Family Applications (1)

Application Number Title Priority Date Filing Date
JP7283086A Pending JPS62230694A (en) 1986-03-31 1986-03-31 Production of gaas single crystal

Country Status (1)

Country Link
JP (1) JPS62230694A (en)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH01192793A (en) * 1988-01-27 1989-08-02 Furukawa Electric Co Ltd:The Production of gaas single crystal by liquid-sealing and pulling up method
JPH01313398A (en) * 1988-06-14 1989-12-18 Furukawa Electric Co Ltd:The Production of gaas compound semiconductor single crystal
JP2008056562A (en) * 2007-09-14 2008-03-13 Dowa Holdings Co Ltd GaAs SINGLE CRYSTAL, AND METHOD AND APPARATUS FOR PRODUCING THE SAME

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH01192793A (en) * 1988-01-27 1989-08-02 Furukawa Electric Co Ltd:The Production of gaas single crystal by liquid-sealing and pulling up method
JPH01313398A (en) * 1988-06-14 1989-12-18 Furukawa Electric Co Ltd:The Production of gaas compound semiconductor single crystal
JP2008056562A (en) * 2007-09-14 2008-03-13 Dowa Holdings Co Ltd GaAs SINGLE CRYSTAL, AND METHOD AND APPARATUS FOR PRODUCING THE SAME

Similar Documents

Publication Publication Date Title
JPH05208900A (en) Apparatus for growing silicon carbide single crystal
US5041186A (en) Method for manufacturing compound semiconductor single crystals using a hydrogen monitor gas
JP4120016B2 (en) Method for producing semi-insulating GaAs single crystal
JPS62230694A (en) Production of gaas single crystal
JPH0557240B2 (en)
JPH06298600A (en) Method of growing sic single crystal
JPS58161999A (en) Production of gallium arsenide single crystal having semi-insulation characteristic
JP2531875B2 (en) Method for producing compound semiconductor single crystal
JPH06128096A (en) Production of compound semiconductor polycrystal
JPH07165488A (en) Apparatus for producing single crystal and method therefor
JP3551607B2 (en) Method for producing GaAs single crystal
JPH07206584A (en) Production of compound semiconductor single crystal
JPH03252385A (en) Production of single crystal having high dissociation pressure
JPH06172098A (en) Production of gaas single crystal
JPH09188599A (en) Production of gallium, arsenide single crystal
JPS62288186A (en) Production of compound semiconductor single crystal containing high vapor pressure component
JPH07126094A (en) Silicon single crystal producing device
JPH02196082A (en) Production of silicon single crystal
JPS6389497A (en) Production of silicon-added gallium arsenic single crystal
JPH0717793A (en) Production of compound semiconductor single crystal
JPH1129399A (en) Production of gallium arsenide single crystal and apparatus therefor
JPH0891990A (en) Production of semi-insulating gallium-arsenic single crystal
JPS6046997A (en) Growth of gallium arsenide crystal having high resistance
JPS60127295A (en) Production of single crystal of gaas and device therefor
JPH089517B2 (en) Single crystal manufacturing method