JPS60127295A - Production of single crystal of gaas and device therefor - Google Patents

Production of single crystal of gaas and device therefor

Info

Publication number
JPS60127295A
JPS60127295A JP58233575A JP23357583A JPS60127295A JP S60127295 A JPS60127295 A JP S60127295A JP 58233575 A JP58233575 A JP 58233575A JP 23357583 A JP23357583 A JP 23357583A JP S60127295 A JPS60127295 A JP S60127295A
Authority
JP
Japan
Prior art keywords
gas
crystal
gaas
single crystal
crucible
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP58233575A
Other languages
Japanese (ja)
Inventor
Masayuki Watanabe
正幸 渡辺
Shoichi Washitsuka
鷲塚 章一
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Toshiba Corp
Original Assignee
Toshiba Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Toshiba Corp filed Critical Toshiba Corp
Priority to JP58233575A priority Critical patent/JPS60127295A/en
Publication of JPS60127295A publication Critical patent/JPS60127295A/en
Pending legal-status Critical Current

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C30CRYSTAL GROWTH
    • C30BSINGLE-CRYSTAL GROWTH; UNIDIRECTIONAL SOLIDIFICATION OF EUTECTIC MATERIAL OR UNIDIRECTIONAL DEMIXING OF EUTECTOID MATERIAL; REFINING BY ZONE-MELTING OF MATERIAL; PRODUCTION OF A HOMOGENEOUS POLYCRYSTALLINE MATERIAL WITH DEFINED STRUCTURE; SINGLE CRYSTALS OR HOMOGENEOUS POLYCRYSTALLINE MATERIAL WITH DEFINED STRUCTURE; AFTER-TREATMENT OF SINGLE CRYSTALS OR A HOMOGENEOUS POLYCRYSTALLINE MATERIAL WITH DEFINED STRUCTURE; APPARATUS THEREFOR
    • C30B15/00Single-crystal growth by pulling from a melt, e.g. Czochralski method
    • CCHEMISTRY; METALLURGY
    • C30CRYSTAL GROWTH
    • C30BSINGLE-CRYSTAL GROWTH; UNIDIRECTIONAL SOLIDIFICATION OF EUTECTIC MATERIAL OR UNIDIRECTIONAL DEMIXING OF EUTECTOID MATERIAL; REFINING BY ZONE-MELTING OF MATERIAL; PRODUCTION OF A HOMOGENEOUS POLYCRYSTALLINE MATERIAL WITH DEFINED STRUCTURE; SINGLE CRYSTALS OR HOMOGENEOUS POLYCRYSTALLINE MATERIAL WITH DEFINED STRUCTURE; AFTER-TREATMENT OF SINGLE CRYSTALS OR A HOMOGENEOUS POLYCRYSTALLINE MATERIAL WITH DEFINED STRUCTURE; APPARATUS THEREFOR
    • C30B29/00Single crystals or homogeneous polycrystalline material with defined structure characterised by the material or by their shape
    • C30B29/10Inorganic compounds or compositions
    • C30B29/40AIIIBV compounds wherein A is B, Al, Ga, In or Tl and B is N, P, As, Sb or Bi
    • C30B29/42Gallium arsenide

Abstract

PURPOSE:A single crystal of GaAs is produced by the LEC method, as continuous gas flow is formed from the top to downward in the high-pressure vessel, to achieve great increase in yield of production of the thermally stable and semiconductive crystal. CONSTITUTION:The high-pressure vessel 1 is provided inside with heater 2 and with a carbon crucible 3 and pBN crucible 4 on the crucible-driving shaft 5 inside the heater. The melt of GaAs as a starting materials and encapsulating agent of B2O3 are put in the crucibles. In order to allow GaAs single crystal to grow up, the seed crystal 8 is accustomed to the melt 6 for a while, then pulled up, as the shaft 10 is rotated. During the process of crystal growth, an Ar gas pressurized to about 10 atom is continuously fed from the inlet 21 on the top and simultaneously the same volume of the gas is sucked out of the vessel from the outlet 22 on the bottom to form an almost steady downward gas flow.

Description

【発明の詳細な説明】 〔発明の属する技術分野〕 この発明は液体カプセル引上げ法によるG a A s
単結晶の製造方法および製造装置に関する。
[Detailed description of the invention] [Technical field to which the invention pertains] This invention relates to a method for pulling up liquid capsules.
The present invention relates to a single crystal manufacturing method and manufacturing apparatus.

〔従来技術と問題点〕[Prior art and problems]

G a A sは広い禁制帯幅をもつ直接遷移型の半導
体であり、Si よりも電子移動度が犬きくかつ半絶縁
性、高抵抗率の結晶が得られることから、高周波−高速
デバイス用基板として重要性を増している。G a A
 s単結晶の製造法は、水平ボード成長法(HB法)と
液体カプセル引上げ法(LEC法)とに大別される。こ
れまではHB法が主流で、深いアクセプタ不純物である
Cr をドープして8iのような浅いドナー不純物を補
償することで半絶縁性結晶を得ていたが、基板上に直接
にイオン注入を行って活性層を形成するといったデバイ
スプロセスにおいて、上記の添加Cr の再分布がおこ
るためデバイスの均一性、再現性、信頼性に太きな問題
があった。最近、LEC法において、ルツボ材を石英か
ら熱分解窒化ボロン(pBN)に替えるなどによって無
添加(アンドープ)の半絶縁性結晶が得られるようにな
ったため、半絶縁性基板製造法と1−てはLEC法に重
点が移ってきている。しかしながら、LEC法によるア
ンドープ半絶縁性結晶の製造技術は未だ十分に確立され
ておらず、半絶縁性結晶製造における再現性や安定性、
結晶特性の均一性や安定性において種々の問題がある。
GaAs is a direct transition type semiconductor with a wide forbidden band width, and because it has higher electron mobility than Si and can produce semi-insulating, high-resistivity crystals, it is used as a substrate for high-frequency and high-speed devices. is gaining importance as a G a A
Methods for producing s single crystals are broadly classified into horizontal board growth method (HB method) and liquid capsule pulling method (LEC method). Until now, the HB method has been the mainstream, and semi-insulating crystals have been obtained by doping Cr, which is a deep acceptor impurity, to compensate for shallow donor impurities such as 8i. In a device process in which an active layer is formed using Cr, the redistribution of the added Cr occurs, causing serious problems in device uniformity, reproducibility, and reliability. Recently, in the LEC method, it has become possible to obtain undoped semi-insulating crystals by changing the crucible material from quartz to pyrolytic boron nitride (pBN), so it has become a semi-insulating substrate manufacturing method. The emphasis has shifted to the LEC method. However, the manufacturing technology for undoped semi-insulating crystals using the LEC method has not yet been fully established, and the reproducibility and stability of semi-insulating crystal manufacturing are limited.
There are various problems with the uniformity and stability of crystal properties.

これは、LEC法によるアンドープ半絶縁性化のメカニ
ズムとしては、深いドナーレベルを形成するEL2と呼
ばれている固有欠陥がカーボン々どの浅いアクセプター
不純物の補償中心になる結果、フェルミレベルが禁制帯
の概ね中央に位置するようになると考えられているが、
とのEL2濃度が、出発原料融液の組成比や引上げ速度
といった結晶製造条件によって敏感に変化するほか、カ
ーボンなどの電気的に活性な不純物の混入が結晶製造雰
囲気の清浄度によって大きく異なってくるなどの補償効
果を不安定にする多くの要因があるためである。すなわ
ち、出発原料融液の組成比が化学量論組成比よりもGa
過剰になるに従ってEL2濃度は減少し、これに伴って
結晶の抵抗率は減少し。
The mechanism behind undoped semi-insulating properties using the LEC method is that the intrinsic defect called EL2, which forms a deep donor level, becomes the center of compensation for shallow acceptor impurities such as carbon, and as a result, the Fermi level falls below the forbidden band. It is thought that it will be located roughly in the center,
The EL2 concentration of the crystal changes sensitively depending on the crystal manufacturing conditions such as the composition ratio of the starting material melt and the pulling speed, and the contamination of electrically active impurities such as carbon varies greatly depending on the cleanliness of the crystal manufacturing atmosphere. This is because there are many factors that make the compensation effect unstable. That is, the composition ratio of the starting material melt is lower than the stoichiometric composition ratio.
As the EL2 concentration becomes excessive, the EL2 concentration decreases, and the resistivity of the crystal decreases accordingly.

P形の導電性を示すようになることが報告されている(
J、Appl 、Phs、、 vnl、53 、 m8
 、 (1982,5771)LEC法では化学量論組
成比制御が技術的に難かしいため、結晶成長の初期と後
期とでは原料融液の組成比のズレが生じる。したがって
、所望の半絶縁性領域を引上げインゴット全体にわたっ
て安定して得ることは々かなか困難である。
It has been reported that P-type conductivity is exhibited (
J, Appl, Phs,, vnl, 53, m8
(1982, 5771) Since it is technically difficult to control the stoichiometric composition ratio in the LEC method, a deviation occurs in the composition ratio of the raw material melt between the early and late stages of crystal growth. Therefore, it is often difficult to stably obtain the desired semi-insulating region throughout the pulled ingot.

また、結晶製造雰囲気からの不純物の混入が多く、上述
したEL2とカーボンなどの浅いアクセプター不純物の
補償効果に加えて、浅いドナーとアクセプター不純物同
志の補償が加わってたまた1半絶縁性化する場合がある
。このような基板をプロセスに流した場合、プロセスで
の熱処理により抵抗率の低下や導電型の変化がおこりや
すい。
In addition, there are many impurities mixed in from the crystal manufacturing atmosphere, and in addition to the above-mentioned compensation effect of shallow acceptor impurities such as EL2 and carbon, compensation of shallow donor and acceptor impurities is added, and the case becomes semi-insulating. There is. When such a substrate is subjected to a process, the heat treatment during the process tends to cause a decrease in resistivity and a change in conductivity type.

したがって、LEC法による単結晶製造では、再現性の
良い半絶縁性制御による歩留りの向上と・プロセスでの
熱変成をうけない安定した半絶縁性結晶の作成とが重要
な課題になっている。
Therefore, in the production of single crystals using the LEC method, important issues are improving the yield through semi-insulating control with good reproducibility and creating stable semi-insulating crystals that are not subject to thermal transformation during the process.

〔発明の目的〕[Purpose of the invention]

本発明°は上述したLEC法による半絶縁性GaAsの
製造上の欠点を改良したもので、特に1熱的に安定な半
絶縁結晶の製造歩留りを大幅に向上できる方法および装
置を提供することを目的としている。
The present invention is an attempt to improve the above-mentioned drawbacks in the production of semi-insulating GaAs by the LEC method, and particularly to provide a method and apparatus that can significantly improve the production yield of thermally stable semi-insulating crystals. The purpose is

〔発明の概要〕[Summary of the invention]

すなわち、本発明は、高圧容器中でLEC法によpGa
As単結晶を製造するにあたり、原料融液からのAs 
の蒸発を押えるために必要な加圧不活性ガスを、従来の
ように単に結晶成長場近傍へ封止込めておくのでは女く
、加圧不活性ガスを連続的に供給および排気することに
よシ結晶成長場近傍において、上方から下方への連続的
・定常的なガスの流れを生じせしめることを特徴として
いる。
That is, the present invention provides pGa by LEC method in a high-pressure container.
In producing As single crystal, As from the raw material melt
The pressurized inert gas needed to suppress the evaporation of the crystals cannot be simply sealed and stored near the crystal growth field as in the past, but instead the pressurized inert gas is continuously supplied and exhausted. It is characterized by producing a continuous and steady flow of gas from above to below in the vicinity of the crystal growth field.

更に前記供給するガスと結晶成長雰囲気との温度差を少
なくするために、前記供給するガスを予め加熱すること
を特徴としている。また、前記排気するガスを供給する
ガスとして再利用するためのガス循環回路を設ける。こ
の循環回路に加圧供給ガス圧を一定に制御するための昇
圧装置と、排気ガスを清浄化するだめのろ過装置および
加圧供給ガスの温度を高温一定にするための補助加熱装
置を設けることを特徴としている。
Furthermore, the method is characterized in that the supplied gas is heated in advance in order to reduce the temperature difference between the supplied gas and the crystal growth atmosphere. Further, a gas circulation circuit is provided for reusing the exhaust gas as a supply gas. This circulation circuit is provided with a pressure booster to control the pressure of the pressurized supply gas to a constant level, a filtration device to purify the exhaust gas, and an auxiliary heating device to keep the temperature of the pressurized supply gas constant at a high temperature. It is characterized by

〔発明の効果〕〔Effect of the invention〕

本発明のように、加圧不活性ガスを連続的に供給排気す
ることによって、結晶成長場近傍での清浄度が保たれ、
結晶原料融液中への不純物混入が減少することは勿論で
あるが、前記不活性ガスの上方から下方への連続的な流
れを形成せしめることによって、これまで高圧雰囲気ガ
ス中の結晶成長での固有の問題であった高圧ガス対流に
よる不純物の舞いあがりを抑制することができ、ひいて
はこのような舞いあがりによる原料融液中への不純物の
混入が極減できる。特に、結晶成長炉部においてヒータ
、保温筒などは熱的特性および経済的な観点から材質と
してカーボンが用いられており、上記の方法により特に
カーボンの混入が大幅に抑制される。このことは、前述
したEL2による補償効果の安定性につながる。すなわ
ちEL2濃度が引上げ条件によって種々変動しても、浅
いアクセプタ不純物を十分に補償できるため、自由キャ
リアが発生せず半絶縁性特性を維持するに十分な高抵抗
となる。更に、上記したように結晶成長雰囲気での清浄
度の向上により、その他の電気的に活性な不純物の混入
も同時に抑制されるため、補償度の小さい高純度で自由
キャリアの移動度の大きい結晶が得られる。このような
結晶は、熱的に安定でありデバイスプロセスにおいて熱
変成をおこすことがない。
As in the present invention, by continuously supplying and exhausting pressurized inert gas, cleanliness near the crystal growth field is maintained,
It goes without saying that the contamination of impurities into the crystal raw material melt is reduced, but by forming a continuous flow of the inert gas from above to below, it is possible to reduce the incorporation of impurities into the crystal raw material melt. The inherent problem of impurities floating up due to high-pressure gas convection can be suppressed, and contamination of impurities into the raw material melt due to such floating can be minimized. In particular, carbon is used as a material for heaters, heat-insulating cylinders, etc. in the crystal growth furnace section from the viewpoint of thermal properties and economy, and the above-mentioned method can greatly suppress the contamination of carbon. This leads to stability of the compensation effect by EL2 mentioned above. That is, even if the EL2 concentration varies depending on the pulling conditions, the shallow acceptor impurity can be sufficiently compensated for, so that free carriers are not generated and the resistance is high enough to maintain semi-insulating characteristics. Furthermore, as mentioned above, the improved cleanliness of the crystal growth atmosphere simultaneously suppresses the contamination of other electrically active impurities, making it possible to produce crystals with high purity and high free carrier mobility with a low degree of compensation. can get. Such crystals are thermally stable and do not undergo thermal transformation during device processes.

また、予め加熱されたガスを供給することによって、供
給ガスと結晶成長雰囲気との大きな温度差による結晶成
長の乱れをなくすことができるばかりか、供給ガスの温
度を適宜調整することによシ、結晶成長の進行に伴って
変動する熱環境をより安定化することが可能であり、単
結晶製造の安定性の改善につながる。
In addition, by supplying preheated gas, it is possible to not only eliminate disturbances in crystal growth due to large temperature differences between the supply gas and the crystal growth atmosphere, but also to adjust the temperature of the supply gas appropriately. It is possible to further stabilize the thermal environment that fluctuates as crystal growth progresses, leading to improved stability in single crystal production.

更に、排気するガスを再び供給ガスとして利用するため
のガス循環回路を設けることにより、連続的にガスを供
給排気することによって生じる大量のガスの消費が抑え
られる結果、本発明はより効果的になる。
Furthermore, by providing a gas circulation circuit for reusing the exhausted gas as supply gas, the consumption of a large amount of gas caused by continuously supplying and exhausting gas can be suppressed, and as a result, the present invention can be made more effective. Become.

〔発明の実施例〕[Embodiments of the invention]

以下、本発明による実施例を説明する。 Examples according to the present invention will be described below.

実施例1 第1図および第2図は、それぞれ、従来のLEC法に−
よるG a A s単結晶の製造方法および本発明のL
EC法によるGaAs単結晶の製造方法の説明図である
。1は高圧容器で、その内部にヒータ2が設置され、さ
らにその内部にカーボンルツボ3およびpBNルツボ4
がルツボ駆動軸5上に設けられている。6はGaAs原
料融液で、7はカプセル剤であるB2O3である。Ga
As 学結晶9を成長させるには、種結晶8を原料融液
6にかじませたのち引上軸10を回軸させながら引上げ
ていく。従来の方法では、高圧容器1内に加圧充填され
た不活性雰囲気ガスを高圧容器1内に封じ込めた状態で
結晶成長を行うため、高圧容器1内には複雑な高圧ガス
対流12が生じ、ヒータ2、カーボンルツボ3、保温筒
12などから発生するカーボン粉じん等の不純物源を高
圧容器内に対流させていた。
Example 1 FIGS. 1 and 2 respectively show the conventional LEC method--
The method for producing a G a As single crystal and the L of the present invention
FIG. 2 is an explanatory diagram of a method for manufacturing a GaAs single crystal using an EC method. 1 is a high-pressure container in which a heater 2 is installed, and a carbon crucible 3 and a pBN crucible 4 in the high-pressure container.
is provided on the crucible drive shaft 5. 6 is a GaAs raw material melt, and 7 is B2O3 which is a capsule. Ga
To grow the As science crystal 9, the seed crystal 8 is made to bite into the raw material melt 6, and then pulled up while rotating the pulling shaft 10. In the conventional method, crystal growth is performed while the inert atmospheric gas pressurized and filled into the high-pressure container 1 is confined, so a complex high-pressure gas convection 12 occurs within the high-pressure container 1. Impurity sources such as carbon dust generated from the heater 2, carbon crucible 3, heat insulating cylinder 12, etc. were caused to convect within the high pressure container.

本実施例では、内径96mのpBNルツボ内に1却のG
aAs原料融液を作シ、引上げ軸を約3r、p、mの速
度で回転させながら約10 m / Hrの速度で2イ
ンチG a A s結晶を引上げ作成した。結晶作成工
程において、高圧容器内に上部のガス供給口21から約
10気圧に加圧したルガスを約20t/min連続的に
供給し、同時に下部のガス排気口22から同量のガス排
気を行なった結果、高圧容器内にはほぼ定常的な上方か
ら下方へのガスの流れ13が形成された。このことは、
従来の方法で目視によ)観察されていたカーボン粉じん
等の舞いあがりがなくなったことなどによシ確かめられ
た。以上の方法により得られた結晶の抵抗率を測定した
ところ、第3図の(イ)の如くインゴットの頭部から後
尾部にわたって1OΩ・副板上の値を示し、一様な半絶
縁特性が得られた。この結果を従来の方法(ロ)による
結果と第3図において比較すると、従来の方法による結
果では固化率0.2〜0.5の一部分で半絶縁特性が得
られるKすぎなかったものが、本発明では、固化率0.
1〜0.9の2インチ直胴部全域において半絶縁特性が
得られた。また、従来の方法および本発明の方法のいず
れの方法においても、半絶縁領域での電導型はn型であ
ったが、従来の方法によるものでは、半絶縁性領域での
電子移動度は〜3000 ctI/v 、 s、ec程
度であった本のが、本発明の方法によるものでは400
0cJ/v、 sec 以上と大幅に大きくなった。両
方法により得られた半絶縁性結晶基板850℃、水素雰
囲気中で30分間の熱処理を行って抵抗率の変化を調べ
たところ、従来の方法による基板では抵抗率は〜1oΩ
・(7)がら10〜1OΩ・画と低下したが、本発明の
方法による基板においては、上記熱処理による抵抗率の
変化は全く見られなかった。
In this example, a pBN crucible with an inner diameter of 96 m contains 100% G
An aAs raw material melt was prepared, and a 2-inch GaAs crystal was pulled at a speed of about 10 m/Hr while rotating the pulling shaft at a speed of about 3 r, p, m. In the crystal creation process, gas pressurized to about 10 atmospheres is continuously supplied into the high-pressure container from the upper gas supply port 21 at a rate of about 20 t/min, and at the same time, the same amount of gas is exhausted from the lower gas exhaust port 22. As a result, an almost constant upward-to-downward gas flow 13 was formed within the high-pressure vessel. This means that
This was confirmed by the fact that carbon dust, etc., which had been observed using conventional methods (visually), disappeared. When the resistivity of the crystal obtained by the above method was measured, it showed a value of 10Ω above the subplate from the head to the tail of the ingot, as shown in Figure 3 (a), indicating uniform semi-insulating properties. Obtained. Comparing this result with the results obtained by the conventional method (b) in Figure 3, the results obtained by the conventional method showed that semi-insulating properties could be obtained at a solidification rate of 0.2 to 0.5, but K was not too high. In the present invention, the solidification rate is 0.
Semi-insulating properties were obtained over the entire 2-inch straight body portion of 1 to 0.9. Furthermore, in both the conventional method and the method of the present invention, the conductivity type in the semi-insulating region was n-type, but in the conventional method, the electron mobility in the semi-insulating region was ~ The book was about 3000 ctI/v, s, ec, but by the method of the present invention, it was about 400 ctI/v, s, ec.
It became significantly larger than 0 cJ/v, sec. When the semi-insulating crystal substrates obtained by both methods were heat-treated at 850°C for 30 minutes in a hydrogen atmosphere and changes in resistivity were investigated, the resistivity of the substrates obtained by the conventional method was ~1oΩ.
- Although the resistivity decreased to 10 to 1 OΩ·m compared to (7), no change in resistivity was observed at all due to the heat treatment in the substrate prepared by the method of the present invention.

実施例2 本実施例では第4図に示すようK、ガス供給系統41に
補助加熱装置42を設けて供給ガスを予め、高圧容器内
壁部近傍の温度〜300℃よりも高い〜500℃に熱し
ながら供給する方法を用いた。これまで、成長結晶中の
熱歪等を低減する目的で、保温筒などを設けて炉内の温
度勾配を小さくしていたが、本実施例の方法により、保
温筒などを用いることなく容易に温度勾配の低減化が図
かられ、抵抗率等の電気的特性において実施例と同等以
上の効果が得られたことに加えて、結晶中の熱歪も更に
少くなった。すなわち、本発明の方法によシ保温筒から
の不純物混入が消去できるので、単結晶製造でのより安
定した半絶縁特性制御が可能になった。さらに供給ガス
の温度を調整するだけで結晶製造条件に応じて炉内の温
度勾配の最適化が可能になり、この結果、結晶中の熱歪
の低減化、結晶製造歩留の向上が達成された。
Example 2 In this example, as shown in FIG. 4, an auxiliary heating device 42 is provided in the gas supply system 41 to preheat the supplied gas to ~500°C, which is higher than the ~300°C temperature near the inner wall of the high-pressure vessel. We used a method of supplying Up until now, in order to reduce thermal distortion etc. in the growing crystal, a heat insulating cylinder etc. have been installed to reduce the temperature gradient in the furnace, but the method of this example allows for easy reduction of the temperature gradient in the furnace without using a heat insulating cylinder etc. The temperature gradient was reduced, and in addition to the same or better effects as in the example in terms of electrical properties such as resistivity, the thermal strain in the crystal was further reduced. That is, since the method of the present invention eliminates the contamination of impurities from the heat insulating cylinder, it has become possible to more stable control of semi-insulating properties in the production of single crystals. Furthermore, by simply adjusting the temperature of the supplied gas, it is possible to optimize the temperature gradient within the furnace according to the crystal manufacturing conditions, resulting in a reduction in thermal strain in the crystal and an improvement in crystal manufacturing yield. Ta.

実施例3 本実施例では、上記の実施例で排気するガスを再び供給
ガスとしても利用するためのガス循環回路を設けた。第
5図に示すように、この循環回路には排気ガス中の不純
物を除去するためのろ過装置51、供給ガスの圧力、流
量を調整するための昇圧装置52および既に実施例2で
示した供給ガスの温度を調整するための補助加熱装置4
2をシリーズに設けた。このような方法により、大量の
ガスを消費することな〈実施例2で示した本発明による
効果が得られるため、その工業上の利点は大きい。
Example 3 In this example, a gas circulation circuit was provided to use the gas exhausted in the above example as a supply gas again. As shown in FIG. 5, this circulation circuit includes a filtration device 51 for removing impurities in the exhaust gas, a booster 52 for adjusting the pressure and flow rate of the supply gas, and the supply gas already shown in Example 2. Auxiliary heating device 4 for adjusting gas temperature
2 in the series. This method has great industrial advantages because the effects of the present invention shown in Example 2 can be obtained without consuming a large amount of gas.

〔発明の他の実施例〕[Other embodiments of the invention]

上述した実施例においては、すべて半絶縁性G a A
 s単結晶製造に関するものであるが、本発明の適用は
これに限定されないことは、その原理からして明らかで
ある。不純物を意図的に添加して導電性GaAs結晶を
製造する場合においても、好壕しくない不純物の混入を
抑えることは半導体特性を制御するうえでの基本であり
、これに対して本発明が適用され、その効果が発揮され
る。また、GaAs結晶以外の、同じLEC法によシ製
造されるGaPやInP等においても本発明を適用する
ことで高純度高品質結晶の製造が可能になる。
In the embodiments described above, all semi-insulating Ga A
Although the present invention relates to the production of single crystals, it is clear from its principle that the application of the present invention is not limited thereto. Even when manufacturing conductive GaAs crystals by intentionally adding impurities, suppressing the incorporation of undesirable impurities is fundamental to controlling semiconductor characteristics, and the present invention is applicable to this. and its effects will be demonstrated. Further, by applying the present invention to GaP, InP, etc. other than GaAs crystals, which are manufactured by the same LEC method, it becomes possible to manufacture high-purity, high-quality crystals.

【図面の簡単な説明】[Brief explanation of drawings]

第1図は従来の方法を説明するための図、第2図は本発
明の詳細な説明するための図、第3図は本発明の詳細な
説明する図、第4図および第5図はそれぞれ本発明の実
施例2および3を説明する図である。 1・・・高圧容器、2・・・ヒータ、3・・・カーボン
ルツボ、4・・・pBNルツボ、5・・・ルツボ駆動軸
、6・・・原料融液、7・・・Btus、8・・・穐結
晶、9・・・単結晶、10・・・引上軸、11・・・保
温筒、12・・・高圧ガス対流、13・・・定常ガス流
、21・・・ガス供給口、22・・・ガス排気口、41
・・・ガス供給系、42・・・補助加熱装置、51・・
・ろ過装置、52・・・昇圧装置。
FIG. 1 is a diagram for explaining the conventional method, FIG. 2 is a diagram for explaining the present invention in detail, FIG. 3 is a diagram for explaining the present invention in detail, and FIGS. 4 and 5 are diagrams for explaining the present invention in detail. FIG. 6 is a diagram illustrating Examples 2 and 3 of the present invention, respectively. DESCRIPTION OF SYMBOLS 1... High pressure container, 2... Heater, 3... Carbon crucible, 4... PBN crucible, 5... Crucible drive shaft, 6... Raw material melt, 7... Btus, 8 ... Amber crystal, 9 ... Single crystal, 10 ... Pulling shaft, 11 ... Heat insulation cylinder, 12 ... High pressure gas convection, 13 ... Steady gas flow, 21 ... Gas supply Port, 22... Gas exhaust port, 41
...Gas supply system, 42...Auxiliary heating device, 51...
- Filtration device, 52...pressure boosting device.

Claims (4)

【特許請求の範囲】[Claims] (1)高圧容器中で液体カプセル引上げ法によシGaA
s単結晶を製造するにあたり、加圧不活性ガスを連続的
に供給および排気する手段とにより高圧容器の上方から
下方への連続的なガスの流れを生じせしめることを特徴
とするGaAs単結晶の製造方法。
(1) GaA obtained by liquid capsule pulling method in a high-pressure container
In producing the GaAs single crystal, a continuous flow of gas is produced from the top to the bottom of the high-pressure container by means of continuously supplying and exhausting pressurized inert gas. Production method.
(2)加圧不活性ガスは予め加熱されたガスであること
を特徴とする特許請求の範囲第1項記載のGa、As単
結晶の製造方法。
(2) The method for producing a Ga, As single crystal according to claim 1, wherein the pressurized inert gas is a preheated gas.
(3)高圧容器中で液体カプセル引上げ法によりGaA
s単結晶を製造する装置において、加圧不活性ガスを連
続的に供給し排気するためのガス循環回路を設けたこと
を特徴とするG a A s単結晶の製造装置。
(3) GaA by liquid capsule pulling method in a high-pressure container
1. An apparatus for producing a GaAs single crystal, characterized in that the apparatus is equipped with a gas circulation circuit for continuously supplying and exhausting pressurized inert gas.
(4)ガス循環回路は、濾過装置、昇圧装置および補助
加熱装置とを具備していることを特徴とする特許請求の
範囲第3項記載のG a A s単結晶の製造装置。
(4) The GaAs single crystal manufacturing apparatus according to claim 3, wherein the gas circulation circuit includes a filtration device, a pressure booster, and an auxiliary heating device.
JP58233575A 1983-12-13 1983-12-13 Production of single crystal of gaas and device therefor Pending JPS60127295A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP58233575A JPS60127295A (en) 1983-12-13 1983-12-13 Production of single crystal of gaas and device therefor

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP58233575A JPS60127295A (en) 1983-12-13 1983-12-13 Production of single crystal of gaas and device therefor

Publications (1)

Publication Number Publication Date
JPS60127295A true JPS60127295A (en) 1985-07-06

Family

ID=16957215

Family Applications (1)

Application Number Title Priority Date Filing Date
JP58233575A Pending JPS60127295A (en) 1983-12-13 1983-12-13 Production of single crystal of gaas and device therefor

Country Status (1)

Country Link
JP (1) JPS60127295A (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS63285191A (en) * 1987-05-15 1988-11-22 Nec Corp Method for growing compound semiconductor single crystal

Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS548111U (en) * 1977-06-20 1979-01-19

Patent Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS548111U (en) * 1977-06-20 1979-01-19

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS63285191A (en) * 1987-05-15 1988-11-22 Nec Corp Method for growing compound semiconductor single crystal

Similar Documents

Publication Publication Date Title
US11851784B2 (en) Apparatus and method for growing high-purity semi-insulating silicon carbide crystal
US4147572A (en) Method for epitaxial production of semiconductor silicon carbide utilizing a close-space sublimation deposition technique
CN109234804B (en) Silicon carbide single crystal growth method
JPS6046998A (en) Pulling up of single crystal and its device
US5895527A (en) Single crystal pulling apparatus
JP4120016B2 (en) Method for producing semi-insulating GaAs single crystal
US5840116A (en) Method of growing crystals
JPS60127295A (en) Production of single crystal of gaas and device therefor
JPS60226492A (en) Single crystal producer for compound semiconductor
JPS6350399A (en) Method for growing p-type sic single crystal
JP2531875B2 (en) Method for producing compound semiconductor single crystal
JPS6230700A (en) Compound semiconductor single crystal and production thereof
JPS63295498A (en) Production of single-crystal of group iii-v compound semiconductor
JPS59131597A (en) Production of high-quality gallium arsenide single crystal
JPS62230694A (en) Production of gaas single crystal
JPH07165488A (en) Apparatus for producing single crystal and method therefor
JPS59131598A (en) Production of gaas single crystal
JPH069025Y2 (en) Compound semiconductor single crystal manufacturing equipment
KR960014956B1 (en) Galum asenide single crystal growth method
JPS59203793A (en) Preparation of semiinsulative ga-as single crystal
JPS5820800A (en) Preparing apparatus of single crystal from compound semiconductor of groups 3[5
JPS59131599A (en) Production of gaas single crystal
JPH03237088A (en) Method for growing single crystal
JPS5948788B2 (en) Vapor phase epitaxial growth method
JPH06172098A (en) Production of gaas single crystal