JPS63285191A - Method for growing compound semiconductor single crystal - Google Patents
Method for growing compound semiconductor single crystalInfo
- Publication number
- JPS63285191A JPS63285191A JP11970887A JP11970887A JPS63285191A JP S63285191 A JPS63285191 A JP S63285191A JP 11970887 A JP11970887 A JP 11970887A JP 11970887 A JP11970887 A JP 11970887A JP S63285191 A JPS63285191 A JP S63285191A
- Authority
- JP
- Japan
- Prior art keywords
- inner tube
- crystal
- atmospheric gas
- crucible
- compound semiconductor
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Granted
Links
- 239000013078 crystal Substances 0.000 title claims abstract description 37
- 239000004065 semiconductor Substances 0.000 title claims abstract description 18
- 150000001875 compounds Chemical class 0.000 title claims abstract description 17
- 238000000034 method Methods 0.000 title description 9
- OKTJSMMVPCPJKN-UHFFFAOYSA-N Carbon Chemical compound [C] OKTJSMMVPCPJKN-UHFFFAOYSA-N 0.000 claims abstract description 14
- 239000000565 sealant Substances 0.000 claims abstract description 7
- 229910002804 graphite Inorganic materials 0.000 claims description 6
- 239000010439 graphite Substances 0.000 claims description 6
- 238000002109 crystal growth method Methods 0.000 claims description 5
- 239000012212 insulator Substances 0.000 claims description 2
- 239000007789 gas Substances 0.000 abstract description 21
- VYPSYNLAJGMNEJ-UHFFFAOYSA-N silicon dioxide Inorganic materials O=[Si]=O VYPSYNLAJGMNEJ-UHFFFAOYSA-N 0.000 abstract description 12
- 239000010453 quartz Substances 0.000 abstract description 10
- 238000007789 sealing Methods 0.000 abstract description 9
- 229910052799 carbon Inorganic materials 0.000 abstract description 7
- 239000011261 inert gas Substances 0.000 abstract description 7
- 239000002994 raw material Substances 0.000 abstract description 4
- 238000004519 manufacturing process Methods 0.000 abstract description 2
- 238000002231 Czochralski process Methods 0.000 abstract 1
- 238000011109 contamination Methods 0.000 abstract 1
- 239000007770 graphite material Substances 0.000 abstract 1
- 239000012774 insulation material Substances 0.000 abstract 1
- CURLTUGMZLYLDI-UHFFFAOYSA-N Carbon dioxide Chemical compound O=C=O CURLTUGMZLYLDI-UHFFFAOYSA-N 0.000 description 6
- 229910001218 Gallium arsenide Inorganic materials 0.000 description 6
- 229910002092 carbon dioxide Inorganic materials 0.000 description 3
- 239000001569 carbon dioxide Substances 0.000 description 3
- 239000011810 insulating material Substances 0.000 description 3
- 229910052814 silicon oxide Inorganic materials 0.000 description 3
- 239000008710 crystal-8 Substances 0.000 description 2
- 230000000694 effects Effects 0.000 description 2
- 239000012535 impurity Substances 0.000 description 2
- 239000000155 melt Substances 0.000 description 2
- 239000000203 mixture Substances 0.000 description 2
- 239000010703 silicon Substances 0.000 description 2
- XUIMIQQOPSSXEZ-UHFFFAOYSA-N Silicon Chemical compound [Si] XUIMIQQOPSSXEZ-UHFFFAOYSA-N 0.000 description 1
- 230000004913 activation Effects 0.000 description 1
- 230000015572 biosynthetic process Effects 0.000 description 1
- 239000003795 chemical substances by application Substances 0.000 description 1
- 239000011248 coating agent Substances 0.000 description 1
- 238000000576 coating method Methods 0.000 description 1
- 238000007796 conventional method Methods 0.000 description 1
- 238000005516 engineering process Methods 0.000 description 1
- 238000010438 heat treatment Methods 0.000 description 1
- 238000005468 ion implantation Methods 0.000 description 1
- 239000007788 liquid Substances 0.000 description 1
- 230000013011 mating Effects 0.000 description 1
- NJPPVKZQTLUDBO-UHFFFAOYSA-N novaluron Chemical compound C1=C(Cl)C(OC(F)(F)C(OC(F)(F)F)F)=CC=C1NC(=O)NC(=O)C1=C(F)C=CC=C1F NJPPVKZQTLUDBO-UHFFFAOYSA-N 0.000 description 1
- 238000010899 nucleation Methods 0.000 description 1
- 229910052710 silicon Inorganic materials 0.000 description 1
- 239000000758 substrate Substances 0.000 description 1
- 238000003786 synthesis reaction Methods 0.000 description 1
Landscapes
- Crystals, And After-Treatments Of Crystals (AREA)
- Liquid Deposition Of Substances Of Which Semiconductor Devices Are Composed (AREA)
Abstract
Description
【発明の詳細な説明】
〔産業上の利用分野〕
本発明はGaAs、InP等の■−■族化合物半導体結
晶を液体封止チョクラルスキ法を用いて単結晶に成長さ
せる単結晶成長方法に関するものである。[Detailed Description of the Invention] [Field of Industrial Application] The present invention relates to a single crystal growth method for growing a ■-■ group compound semiconductor crystal such as GaAs, InP, etc. into a single crystal using the liquid-sealed Czochralski method. be.
従来、この種の化合物半導体単結晶成長方法は、第2図
に示すような成長装置を用いて行なわれている。すなわ
ち、サセプタ14上に設置したルツボ15に半導体原料
及び封止剤であるB20.を入れ、ヒータ13により加
熱して溶融状態とする。第2図には溶融状態の封止用B
2o310及び融液11が示されている。この時、容器
18内部は不活性ガスにより加圧されている0次に種結
晶ホルダ6に取り付けられた種結晶8を降ろして融液1
1に接触させた後、ルツボ温度を下げ、融液11を過飽
和状態にしながら種結晶8を引き上げ結晶9に成長させ
る。Conventionally, this type of compound semiconductor single crystal growth method has been carried out using a growth apparatus as shown in FIG. That is, a semiconductor raw material and a sealing agent B20. is heated by the heater 13 to bring it into a molten state. Figure 2 shows B for sealing in a molten state.
2o310 and melt 11 are shown. At this time, the seed crystal 8 attached to the zero-order seed crystal holder 6, which is pressurized with an inert gas inside the container 18, is lowered and the melt 1 is
1, the crucible temperature is lowered and the seed crystal 8 is pulled up and grown into a crystal 9 while the melt 11 is brought into a supersaturated state.
上述した従来の化合物半導体単結晶を液体封止チョクラ
ルスキー法で成長させる技術では、第2図に示すグラフ
ァイト製のヒータ13及び保温材12と封止用B203
10の間を、雰囲気ガスが熱対流によって自由に行き来
できる。In the conventional technique of growing a compound semiconductor single crystal using the liquid-sealed Czochralski method described above, a heater 13 and a heat insulating material 12 made of graphite and a sealing B203 shown in FIG.
10, atmospheric gas can freely move between them by thermal convection.
そのことによって、グラファイト製部材から発生する炭
酸ガスが820.によって還元され、この還元された炭
素が成長結晶中に混入し、約5X1015cm−3から
lXl016crn−3の濃度の浅いアクセプタ不純物
□準位が形成され、高温熱処理後の成長結晶の電気的特
性が不安定であったり、V族/■族元素組成比のズレの
電気的特性に与える影響度が大きくなったり、LSI製
作工程におけるSiイオン注入後の活性化率が低くなる
等の欠点がある。As a result, the carbon dioxide gas generated from the graphite member is 820. This reduced carbon mixes into the growing crystal, forming a shallow acceptor impurity □ level of about 5X1015cm-3 to lXl016crn-3, which impairs the electrical properties of the grown crystal after high-temperature heat treatment. There are disadvantages such as stability, the degree of influence of deviation in the composition ratio of Group V/Group ■ elements on electrical characteristics becomes large, and the activation rate after Si ion implantation in the LSI manufacturing process becomes low.
本発明の目的は、このような欠点を除き、内部に石英製
内管を配置して雰囲気ガスの行き来を防止することによ
り、結晶への炭素の混入を除き、結晶の電気的特性を安
定化した化合物半導体単結晶成長方法を提供することに
ある。The purpose of the present invention is to eliminate such drawbacks, to prevent the introduction of carbon into the crystal, and to stabilize the electrical characteristics of the crystal by arranging a quartz inner tube inside to prevent atmospheric gas from flowing back and forth. An object of the present invention is to provide a method for growing a compound semiconductor single crystal.
本発明の化合物半導体単結晶成長方法は、化合物半導体
を単結晶成長する際に、封止剤として用いるB2O3に
接する雰囲気ガスと、ヒータ、保温材等のグラファイト
製部材に接する雰囲気ガスとを隔離しながら結晶成長を
行なうことを特徴とする。The compound semiconductor single crystal growth method of the present invention separates the atmospheric gas in contact with B2O3 used as a sealant from the atmospheric gas in contact with graphite members such as heaters and heat insulators when growing a compound semiconductor single crystal. It is characterized by the ability to grow crystals while
〔実施例〕 次に、本発明について図面を参照して説明する。〔Example〕 Next, the present invention will be explained with reference to the drawings.
第1図は本発明の一実施例を説明するための化合物半導
体単結晶成長装置を示す縦断面図である。FIG. 1 is a longitudinal sectional view showing a compound semiconductor single crystal growth apparatus for explaining one embodiment of the present invention.
本実施例に用いる装置は、PBNルツボ15を保持する
ことが出来る石英製の下部内管5を有し、上部内管1上
端中央には、種結晶ホルダ6外径よりも大きな穴があり
、かつ高温状態で内管内外の雰囲気ガスの出入りを防止
するために上部内管1の種結晶ホルダ6間を封止用B2
0.で封止することが可能な受は皿状の構造となってい
る。The device used in this example has a lower inner tube 5 made of quartz that can hold a PBN crucible 15, and a hole larger than the outer diameter of the seed crystal holder 6 at the center of the upper end of the upper inner tube 1. In addition, a sealing B2 is provided between the seed crystal holders 6 of the upper inner tube 1 in order to prevent atmospheric gas from entering and exiting the inner tube under high temperature conditions.
0. The receiver has a dish-like structure that can be sealed with.
上部内管1と下部内管5とは、すり合わせ構造により気
密性を保ち、不活性ガス導入口2と内管内部の圧力を外
部へ逃がすバルブ4とを有する構造の内管をもっている
。The upper inner tube 1 and the lower inner tube 5 maintain airtightness through a mating structure, and have an inner tube having an inert gas inlet 2 and a valve 4 for releasing the pressure inside the inner tube to the outside.
アンドープGaAs結晶成長する場合の例に説明する。An example of growing an undoped GaAs crystal will be explained.
この方法は、I nP、GaP、I nAs等の他の■
−v族化合物半導体について、アンドープ又は不純物ド
ープを問わず適用することができる。This method can be applied to other
-V group compound semiconductors can be applied regardless of whether they are undoped or doped with impurities.
P’BNルツボ15に原料であるGaとAs(又は多結
晶GaAs)を入れ、更に封止剤であるB20.(10
)を入れる。ルツボ15を機械的に保持するためのサセ
プタ14内に下部内管5を収め、次に原材料が収容され
ているルツボ15を配置した後、上部内管1を下部内管
5にすり合わせ、ガス導入バイブ2を接続されMo等で
製作された不活性ガス導入口を接続し、種結晶ホルダ6
と上部内管1とのシール用にB2O3を上部内管1の上
端に配置する。The raw materials Ga and As (or polycrystalline GaAs) are placed in the P'BN crucible 15, and the sealant B20. (10
). The lower inner tube 5 is placed in the susceptor 14 for mechanically holding the crucible 15, and then the crucible 15 containing the raw material is placed, the upper inner tube 1 is rubbed against the lower inner tube 5, and gas is introduced. Connect the vibrator 2 and connect the inert gas inlet made of Mo etc., and attach the seed crystal holder 6.
B2O3 is placed at the upper end of the upper inner tube 1 for sealing between the upper inner tube 1 and the upper inner tube 1.
成長炉を締めた後の不活性ガスによるガス置換は、上部
内管1の上端の穴と種結晶ホルダ6とのすき間から真空
排気を行ない、不活性ガス導入口からガスを入れ、加圧
することによって行なう。To replace the gas with inert gas after closing the growth furnace, evacuate from the gap between the hole at the upper end of the upper inner tube 1 and the seed crystal holder 6, and then introduce gas from the inert gas inlet and pressurize it. This is done by
成長炉内のガス置換終了後は、炉内を高圧状態にして昇
温する。この昇温過程において、ルツボ15が石英内管
により覆われていることは何ら問題とはならない。次に
昇温後、封止剤であるB2O3中にとけている泡を除去
するために圧力を2気圧程度迄下げる必要がある。この
時、上部内管1に付属しているバルブ4により内管内の
雰囲気ガスを成長炉内を通じて、成長炉外へ逃がすこと
ができる。After replacing the gas in the growth furnace, the inside of the furnace is brought into a high pressure state and the temperature is increased. In this temperature raising process, the fact that the crucible 15 is covered by the quartz inner tube does not pose any problem. Next, after raising the temperature, it is necessary to lower the pressure to about 2 atmospheres in order to remove bubbles dissolved in the B2O3 sealant. At this time, the valve 4 attached to the upper inner tube 1 allows atmospheric gas in the inner tube to escape through the growth furnace to the outside of the growth furnace.
次に、内管内部を再び加圧して、種付は及び成長を行な
った。この結果、成長結晶中の炭素濃度は約2X10t
5c!l−3と低減された。Next, the inside of the inner tube was pressurized again to carry out seeding and growth. As a result, the carbon concentration in the grown crystal is approximately 2X10t.
5c! It was reduced to l-3.
これに対して、第2図の従来の化合物半導体成長方法で
は、保温材12.ヒータ13.サセプタ14等のグラフ
ァイト製部材と封止剤であるB20310とが雰囲気ガ
スを共有することにより、雰囲気ガス中の炭酸ガスがB
20.により還元されて成長したGaAs結晶中に、約
5×1015CIO−3からlXl016cm−3の濃
度の炭素が混入していた。In contrast, in the conventional compound semiconductor growth method shown in FIG. Heater 13. By sharing the atmospheric gas between the graphite members such as the susceptor 14 and the sealant B20310, the carbon dioxide in the atmospheric gas is reduced to B20310.
20. The GaAs crystal grown by reduction was contaminated with carbon at a concentration of about 5 x 1015 CIO-3 to lXl016 cm-3.
次に本発明の化合物半導体単結晶成長方法の他の例を示
す。Next, another example of the compound semiconductor single crystal growth method of the present invention will be shown.
高温状態に長時間されされる石英内管から雰囲気ガス中
へ飛散する珪素及び酸化珪素は、炭酸ガスの場合と同様
にB2O3と反応し、結果とじて成長結晶中に混入して
浅いドナー順位を形成し、半絶縁性化しない。Silicon and silicon oxide, which are scattered into the atmospheric gas from the quartz inner tube that is kept in a high temperature state for a long time, react with B2O3 in the same way as carbon dioxide gas, and as a result, they mix into the growing crystal and cause a shallow donor rank. formed and does not become semi-insulating.
そこで、雰囲気ガスの対流があまり発生しない様に低圧
状fl(5気圧)とし、かつB2O3を厚く(通常2c
m程度の厚さを6cmとした)することにより、約I
X 107Ω・Ωの半絶縁性化GaAs結晶を成長する
ことができた。Therefore, we set the pressure fl (5 atm) to be low so that the convection of the atmospheric gas does not occur too much, and thicken B2O3 (usually 2c
By making the thickness of about 100 m to 6 cm), about
A semi-insulating GaAs crystal of x 107Ω·Ω could be grown.
このGaAsの直接合成時に飛散するAsが石英内管内
壁に付着して、一種のコーティングの役目をはなし、石
英内管からの珪素及び酸化珪素の飛散を抑制しているこ
とも、半絶縁性化に寄与していると考えられる。The fact that the As scattered during the direct synthesis of GaAs adheres to the inner wall of the quartz inner tube and acts as a kind of coating, suppressing the scattering of silicon and silicon oxide from the quartz inner tube, also makes it semi-insulating. It is thought that this contributes to
以上の様に本発明により半絶縁性基板の成長に適用可能
である。As described above, the present invention is applicable to the growth of semi-insulating substrates.
以上説明したように本発明は、ルツボ、化合物半導体融
液、封止剤であるB2O3とヒータ、保温材1等のグラ
ファイト製部材とが雰囲気ガスを共有することがない様
に、石英製などの内管を配置することにより、成長した
結晶に混入する炭素の濃度を低減できる効果がある。As explained above, the present invention is designed to prevent the crucible, compound semiconductor melt, B2O3 as a sealant from sharing atmospheric gas with graphite members such as the heater and heat insulating material 1. The arrangement of the inner tube has the effect of reducing the concentration of carbon mixed into the grown crystal.
第1図は本発明の化合物半導体成長方法の一実施例を説
明する結晶成長装置の縦断面図、第2図は従来の化合物
半導体成長方法の一例を説明する結晶成長装置の縦断面
図である。
1・・・上部石英内管、2・・・不活性ガス導入パイプ
、3・・・上部石英内管と種結晶ホルダとの間の封止用
B2O3,4・・・バルブ、5・・・下部石英内管、6
・・・種結晶ホルダ、7・・・上軸、8・・・種結晶、
9・・・結晶、10・・・封止用Bz Os 、 11
・・・融液、12・・・保温材、13・・・ヒータ、1
4・・・サセプタ、15・・・ルツボ、16・・・ペデ
スタル、17・・・下軸、18・・・容器。FIG. 1 is a vertical cross-sectional view of a crystal growth apparatus for explaining an embodiment of the compound semiconductor growing method of the present invention, and FIG. 2 is a vertical cross-sectional view of a crystal growth apparatus for explaining an example of a conventional compound semiconductor growing method. . DESCRIPTION OF SYMBOLS 1... Upper quartz inner tube, 2... Inert gas introduction pipe, 3... B2O3 for sealing between the upper quartz inner tube and the seed crystal holder, 4... Valve, 5... Lower quartz inner tube, 6
... Seed crystal holder, 7... Upper shaft, 8... Seed crystal,
9... Crystal, 10... Bz Os for sealing, 11
... Melt liquid, 12 ... Heat insulating material, 13 ... Heater, 1
4... Susceptor, 15... Crucible, 16... Pedestal, 17... Lower shaft, 18... Container.
Claims (1)
るB_2O_3に接する雰囲気ガスと、ヒータ、保温材
等のグラファイト製部材に接する雰囲気ガスとを隔離し
ながら結晶成長を行なうことを特徴とする化合物半導体
単結晶成長方法。A compound characterized in that when growing a single crystal of a compound semiconductor, the crystal growth is performed while separating the atmospheric gas in contact with B_2O_3 used as a sealant from the atmospheric gas in contact with graphite members such as heaters and heat insulators. Semiconductor single crystal growth method.
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP62119708A JPH0699234B2 (en) | 1987-05-15 | 1987-05-15 | Compound semiconductor single crystal growth equipment |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP62119708A JPH0699234B2 (en) | 1987-05-15 | 1987-05-15 | Compound semiconductor single crystal growth equipment |
Publications (2)
Publication Number | Publication Date |
---|---|
JPS63285191A true JPS63285191A (en) | 1988-11-22 |
JPH0699234B2 JPH0699234B2 (en) | 1994-12-07 |
Family
ID=14768130
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
JP62119708A Expired - Lifetime JPH0699234B2 (en) | 1987-05-15 | 1987-05-15 | Compound semiconductor single crystal growth equipment |
Country Status (1)
Country | Link |
---|---|
JP (1) | JPH0699234B2 (en) |
Cited By (1)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US8101022B2 (en) * | 2008-02-27 | 2012-01-24 | Green Energy Technology, Inc. | Crystal-growing furnace system with emergent pressure-release arrangement |
Citations (4)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JPS60127295A (en) * | 1983-12-13 | 1985-07-06 | Toshiba Corp | Production of single crystal of gaas and device therefor |
JPS60176988A (en) * | 1984-02-22 | 1985-09-11 | Toshiba Corp | Production unit for single crystal of semiconductor |
JPS60264390A (en) * | 1984-06-08 | 1985-12-27 | Sumitomo Electric Ind Ltd | Growing method for single crystal |
JPS61158890A (en) * | 1984-12-28 | 1986-07-18 | Fujitsu Ltd | Crystal growth apparatus |
-
1987
- 1987-05-15 JP JP62119708A patent/JPH0699234B2/en not_active Expired - Lifetime
Patent Citations (4)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JPS60127295A (en) * | 1983-12-13 | 1985-07-06 | Toshiba Corp | Production of single crystal of gaas and device therefor |
JPS60176988A (en) * | 1984-02-22 | 1985-09-11 | Toshiba Corp | Production unit for single crystal of semiconductor |
JPS60264390A (en) * | 1984-06-08 | 1985-12-27 | Sumitomo Electric Ind Ltd | Growing method for single crystal |
JPS61158890A (en) * | 1984-12-28 | 1986-07-18 | Fujitsu Ltd | Crystal growth apparatus |
Cited By (1)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US8101022B2 (en) * | 2008-02-27 | 2012-01-24 | Green Energy Technology, Inc. | Crystal-growing furnace system with emergent pressure-release arrangement |
Also Published As
Publication number | Publication date |
---|---|
JPH0699234B2 (en) | 1994-12-07 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
CN112359409A (en) | Gallium arsenide single crystal growth device and growth method | |
JPS60251191A (en) | Process for growing single crystal of compound having high dissociation pressure | |
JP3596337B2 (en) | Method for manufacturing compound semiconductor crystal | |
JPS63285191A (en) | Method for growing compound semiconductor single crystal | |
US3290181A (en) | Method of producing pure semiconductor material by chemical transport reaction using h2s/h2 system | |
JPS6018638B2 (en) | Silicon single crystal pulling equipment | |
JP3793934B2 (en) | Method for producing semi-insulating InP single crystal | |
JPS61197499A (en) | Method of growing single crystal of inorganic compound | |
CN214496543U (en) | Gallium arsenide single crystal growth device | |
JP2612897B2 (en) | Single crystal growing equipment | |
JP2737990B2 (en) | Compound semiconductor single crystal manufacturing equipment | |
JP2003146791A (en) | Method of manufacturing compound semiconductor single crystal | |
JP2830315B2 (en) | High dissociation pressure single crystal manufacturing equipment | |
JPH03252385A (en) | Production of single crystal having high dissociation pressure | |
JP2766716B2 (en) | Single crystal manufacturing method | |
JPS61215292A (en) | Apparatus for producing compound semiconductor single crystal | |
JPH089517B2 (en) | Single crystal manufacturing method | |
JPH11189499A (en) | Production of compound semiconductor single crystal | |
JPS63274690A (en) | Method and apparatus for producing inp single crystal | |
JP3392245B2 (en) | Method for manufacturing compound semiconductor single crystal | |
JPH0364477B2 (en) | ||
JPH07291788A (en) | Production of compound semiconductor single crystal | |
JPS6212695A (en) | Treatment of crucible | |
Talyzin et al. | The Preparation and Properties of Indium Phosphide | |
JPH10291890A (en) | Production of compound semiconductor single crystal |