JPH10291890A - Production of compound semiconductor single crystal - Google Patents

Production of compound semiconductor single crystal

Info

Publication number
JPH10291890A
JPH10291890A JP10063697A JP10063697A JPH10291890A JP H10291890 A JPH10291890 A JP H10291890A JP 10063697 A JP10063697 A JP 10063697A JP 10063697 A JP10063697 A JP 10063697A JP H10291890 A JPH10291890 A JP H10291890A
Authority
JP
Japan
Prior art keywords
crystal
thermal conductivity
single crystal
compound semiconductor
semiconductor single
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP10063697A
Other languages
Japanese (ja)
Inventor
Shinji Yabuki
伸司 矢吹
Michinori Wachi
三千則 和地
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Hitachi Cable Ltd
Original Assignee
Hitachi Cable Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Hitachi Cable Ltd filed Critical Hitachi Cable Ltd
Priority to JP10063697A priority Critical patent/JPH10291890A/en
Publication of JPH10291890A publication Critical patent/JPH10291890A/en
Pending legal-status Critical Current

Links

Landscapes

  • Crystals, And After-Treatments Of Crystals (AREA)
  • Liquid Deposition Of Substances Of Which Semiconductor Devices Are Composed (AREA)

Abstract

PROBLEM TO BE SOLVED: To provide a process for producing a compd. semiconductor single crystal having good reproducibility. SOLUTION: A seed crystal 11 having a carrier concn. higher than the concn. of the crystal to be actually produced is used, by which the thermal conductivity of the seed crystal 11 is made better than the thermal conductivity of the crystal when the thermal conductivity is compared (generally, the electrons in the substance of a metal play a role of propagating heat. There is, therefore, a tendency that the thermal conductivity is high if the carrier concn. is high and GaAs is not an exceptional case). Consequently, the heat eventually flows from the side of the lower thermal conductivity toward the side of the higher thermal conductivity, i.e., the heat eventually flows from the crystal toward the seed crystal 11, by which the radiation of the heat from the seed crystal 11 is accelerated. As a result, the hollowing of the solid liquid boundary is prevented.

Description

【発明の詳細な説明】DETAILED DESCRIPTION OF THE INVENTION

【0001】[0001]

【発明の属する技術分野】本発明は、化合物半導体単結
晶の製造方法に関する。
The present invention relates to a method for producing a compound semiconductor single crystal.

【0002】[0002]

【従来の技術】図3(a)は従来の化合物半導体単結晶
の製造方法を適用した製造装置の概念図であり、図3
(b)は図3(a)に示した製造装置の炉内温度分布を
示す図である。図3(b)の横軸は炉内位置を示し、縦
軸は炉内温度を示す。
2. Description of the Related Art FIG. 3A is a conceptual diagram of a manufacturing apparatus to which a conventional method of manufacturing a compound semiconductor single crystal is applied.
FIG. 3B is a diagram showing a furnace temperature distribution of the manufacturing apparatus shown in FIG. The horizontal axis in FIG. 3B indicates the furnace position, and the vertical axis indicates the furnace temperature.

【0003】ボート法、特にGF法によるGaAs単結
晶の製造方法について説明する。
A method for producing a GaAs single crystal by the boat method, particularly, the GF method will be described.

【0004】図3(a)に示す石英製のアンプル1内
に、Ga(固体)2及び種結晶3を配置した石英製のボ
ート4と、As(固体)5とを収容して真空封止する。
真空封止したアンプル1を、低温炉6と高温炉7とから
なる単結晶製造炉8にセットする。単結晶製造炉8の高
温炉7の上部に結晶の放熱を促進するための目的で放熱
孔9が設けられている。
In a quartz ampoule 1 shown in FIG. 3A, a quartz boat 4 in which Ga (solid) 2 and a seed crystal 3 are arranged, and an As (solid) 5 are housed and vacuum sealed. I do.
The vacuum-sealed ampule 1 is set in a single crystal manufacturing furnace 8 including a low temperature furnace 6 and a high temperature furnace 7. A heat radiating hole 9 is provided above the high temperature furnace 7 of the single crystal manufacturing furnace 8 for the purpose of promoting heat radiation of the crystal.

【0005】単結晶製造炉8にアンプル1をセットした
後、炉内温度を昇温させ、高温炉7を約1238℃、低
温炉6を約600℃に設定し、Ga2とAs5とを反応
させ、GaAsを合成する。GaAsを合成した後高温
炉7は一定の温度勾配を持った温度分布曲線10を作る
ように設定されている(図3(b)参照)。高温炉7を
この温度分布のまま徐々に昇温させることにより、Ga
Asを融液化させて種付けを実施する。種付け後、高温
炉7を徐々に降温させ、種結晶を成長させる。単結晶を
成長させるためには、転位の伝播を防止するため、種結
晶成長時の固液界面形状をフラット若しくは融液側に凸
状にすることが望ましい。このような界面形状にするた
めには結晶の種結晶への放熱を、結晶側面及び底部への
放熱より、より支配的に放熱させた状態にする必要があ
る。
After setting the ampoule 1 in the single crystal production furnace 8, the temperature in the furnace is raised, the high temperature furnace 7 is set at about 1238 ° C., the low temperature furnace 6 is set at about 600 ° C., and Ga 2 and As 5 are reacted. , GaAs is synthesized. After the synthesis of GaAs, the high-temperature furnace 7 is set so as to form a temperature distribution curve 10 having a constant temperature gradient (see FIG. 3B). By gradually raising the temperature of the high-temperature furnace 7 while maintaining this temperature distribution, Ga
The As is melted and seeded. After seeding, the temperature of the high-temperature furnace 7 is gradually lowered to grow a seed crystal. To grow a single crystal, it is desirable that the solid-liquid interface shape during seed crystal growth be flat or convex toward the melt side in order to prevent the propagation of dislocations. In order to achieve such an interface shape, it is necessary to dissipate more heat to the seed crystal than to the side and bottom of the crystal.

【0006】他方、ボート法によるGaAs単結晶製造
方法において、使用する種結晶については、従来より不
純物混入防止の観点から製造する結晶品種による使い分
け、例えば、Siドープ結晶にはアンドープ又はSiド
ープの種結晶を、Znドープ結晶にはアンドープ又はZ
nドープの種結晶を使用している。これ以外のキャリア
濃度等については特に規定は設けずに使用するのが一般
的である。
On the other hand, in the GaAs single crystal manufacturing method by the boat method, the seed crystal to be used is selectively used depending on the type of crystal conventionally manufactured from the viewpoint of preventing impurity contamination. For example, the undoped or Si-doped seed is used for the Si-doped crystal. The crystal is undoped or Z for Zn-doped
An n-doped seed crystal is used. The carrier concentration and the like other than the above are generally used without any particular definition.

【0007】[0007]

【発明が解決しようとする課題】しかしながら、初期成
長段階であるボート肩部付近で固液界面形状が凹面化し
やすく、これにより得られる結晶が多結晶化するという
問題がある。この原因としては、ボート肩部での成長段
階では、結晶側への放熱が結晶固化部が種結晶しか存在
せず放熱がされにくく、結晶からの放熱以上に、ボート
を介しての結晶側面及び底部への放熱が多いためであ
る。
However, there is a problem that the solid-liquid interface shape tends to be concave near the boat shoulder, which is the initial growth stage, and the resulting crystal is polycrystalline. As a cause of this, in the growth stage at the boat shoulder, the heat dissipation to the crystal side is difficult to dissipate because the crystal solidified portion only has a seed crystal, and the heat dissipation from the crystal, the crystal side surface through the boat and This is because there is much heat radiation to the bottom.

【0008】そこでこの多結晶化の解決策として、種結
晶部の温度勾配を急俊にする対策を検討したが、ヒータ
の能力やシーディング時の設定温度の問題等により、界
面形状の凹面化が解決するまで温度勾配を急俊に設定で
きず解決に至っていない。また、結晶固化部からの放熱
(種結晶側への放熱)は同様のまま、放熱孔からの放熱
を増やすことで、結晶上部への放熱を結晶側面及び底部
に対し、より支配的にすることで固液界面の凹面化防止
を検討したが、これによりボート肩部の界面形状は改善
できるが、ボート肩部以降の固液界面が寝過ぎてしま
い、固液界面とウェハの採取面とが乖離し、ウェハ面内
特性のバラツキが大きくなるという新たな問題が発生し
た。
Therefore, as a solution to the polycrystallization, measures were taken to make the temperature gradient of the seed crystal portion steep. However, due to problems such as the ability of the heater and the set temperature at the time of seeding, a concave surface of the interface shape was formed. Until the problem is solved, the temperature gradient cannot be set rapidly and the solution has not been reached. In addition, heat radiation from the crystal solidification part (heat radiation to the seed crystal side) remains the same, and heat radiation from the heat radiation hole is increased, so that heat radiation to the top of the crystal becomes more dominant to the side and bottom of the crystal. In order to improve the shape of the interface at the boat shoulder, the solid-liquid interface beyond the shoulder of the boat is overly sluggish, and the solid-liquid interface and the wafer sampling surface become inconsistent. A new problem has arisen in that the divergence increases and the in-plane characteristics of the wafer vary greatly.

【0009】そこで、本発明の目的は、上記課題を解決
し、再現性の良い化合物半導体単結晶の製造方法を提供
することにある。
Accordingly, an object of the present invention is to solve the above-mentioned problems and to provide a method for producing a compound semiconductor single crystal with good reproducibility.

【0010】[0010]

【課題を解決するための手段】上記目的を達成するため
に本発明の化合物半導体単結晶の製造方法は、ボート法
による化合物半導体単結晶を製造する製造方法におい
て、製造される化合物半導体単結晶のキャリア濃度より
高いキャリア濃度の種結晶を用いて化合物半導体単結晶
を製造するものである。
In order to achieve the above object, a method of manufacturing a compound semiconductor single crystal according to the present invention is a method of manufacturing a compound semiconductor single crystal by a boat method, comprising: A compound semiconductor single crystal is manufactured using a seed crystal having a carrier concentration higher than the carrier concentration.

【0011】上記構成に加え本発明の化合物半導体単結
晶の製造方法は、種結晶の熱伝導率が化合物半導体単結
晶の熱伝導率より大きいのが好ましい。
In addition to the above constitution, in the method for producing a compound semiconductor single crystal of the present invention, it is preferable that the thermal conductivity of the seed crystal is larger than that of the compound semiconductor single crystal.

【0012】本発明によれば、実際に製造される結晶よ
り高いキャリア濃度の種結晶を用いることにより、熱伝
導率を比較した場合、結晶より種結晶の方が熱伝導率を
良くすることができる(一般的に金属においては、物質
内の電子が熱を伝播する役割の一員を担っている。よっ
てキャリア濃度が高ければ熱伝導率も高くなる傾向を有
しており、GaAsもこの例に漏れない。)。このため
熱は、熱伝導率の低い方から高い方へ、つまり、結晶側
から種結晶側へと熱が流れるようになり、種結晶からの
放熱促進が図れる。その結果、固液界面の凹面化が防止
される。
According to the present invention, by using a seed crystal having a higher carrier concentration than that of an actually manufactured crystal, when the thermal conductivity is compared, the seed crystal can improve the thermal conductivity more than the crystal. (In general, in a metal, electrons in a substance play a role in transmitting heat. Therefore, when the carrier concentration is high, the thermal conductivity tends to be high, and GaAs is also used in this example. No leakage.) For this reason, heat flows from the lower thermal conductivity to the higher thermal conductivity, that is, from the crystal side to the seed crystal side, so that heat radiation from the seed crystal can be promoted. As a result, the solid-liquid interface is prevented from being concave.

【0013】[0013]

【発明の実施の形態】以下、本発明の実施の形態を添付
図面に基づいて詳述する。
Embodiments of the present invention will be described below in detail with reference to the accompanying drawings.

【0014】図1(a)は本発明の化合物半導体単結晶
の製造方法を適用した製造装置の一実施の形態を示す図
であり、図1(b)は図1(a)に示した製造装置の炉
内温度分布を示す図である。図1(b)の横軸は炉内位
置を示し、縦軸は炉内温度を示す。尚、図1に示した従
来例と同様の部材には共通の符号を用いた。
FIG. 1A is a view showing an embodiment of a manufacturing apparatus to which the method for manufacturing a compound semiconductor single crystal of the present invention is applied, and FIG. 1B is a view showing the manufacturing method shown in FIG. It is a figure which shows the furnace temperature distribution of an apparatus. The horizontal axis in FIG. 1 (b) indicates the furnace position, and the vertical axis indicates the furnace temperature. The same members as those in the conventional example shown in FIG.

【0015】図1(a)において、製造される化合物半
導体単結晶のキャリア濃度より高いキャリア濃度の種結
晶11が石英製のボート4の肩部に設置されている。ボ
ート4の本体にはGa(固体)2が収容されている。ボ
ート4はキャピラリー付の隔壁12で左右に仕切られた
石英製のアンプル1の一方の側(図では右側)に収容さ
れており、他方の側(図では左側)にはAs(固体)5
が収容されている。
In FIG. 1A, a seed crystal 11 having a carrier concentration higher than the carrier concentration of a compound semiconductor single crystal to be manufactured is provided on a shoulder of a boat 4 made of quartz. The main body of the boat 4 contains Ga (solid) 2. The boat 4 is housed on one side (the right side in the figure) of a quartz ampoule 1 partitioned left and right by a partition wall 12 with a capillary, and As (solid) 5 on the other side (the left side in the figure).
Is housed.

【0016】アンプル1は低温炉6と高温炉7とからな
る単結晶製造炉8内に収容されており、As5が低温炉
6側に位置し、ボート4が高温炉7側になるように位置
している。高温炉7には放熱孔9が形成されている。
The ampoule 1 is accommodated in a single crystal manufacturing furnace 8 comprising a low-temperature furnace 6 and a high-temperature furnace 7. The ampule 5 is positioned on the low-temperature furnace 6 side, and the boat 4 is positioned on the high-temperature furnace 7 side. doing. The high-temperature furnace 7 has a heat radiating hole 9 formed therein.

【0017】このような装置を用いて化合物半導体単結
晶を製造すると、実際に得られる結晶(ボート4内で得
られる結晶)より高いキャリア濃度の種結晶11を用い
ることにより、熱伝導率を比較した場合、結晶より種結
晶11の方が熱伝導率を良くすることができる。このた
め熱は、熱伝導率の低い方から高い方へ、つまり、結晶
側から種結晶11側へ(図では左方向)と熱が流れるよ
うになり、種結晶11からの放熱促進が図れる。その結
果、固液界面の凹面化が防止される。
When a compound semiconductor single crystal is manufactured using such an apparatus, the thermal conductivity is compared by using a seed crystal 11 having a higher carrier concentration than the crystal actually obtained (crystal obtained in the boat 4). In this case, the heat conductivity of the seed crystal 11 can be better than that of the crystal. Therefore, heat flows from the lower thermal conductivity to the higher thermal conductivity, that is, from the crystal side to the seed crystal 11 side (to the left in the figure), and the heat radiation from the seed crystal 11 can be promoted. As a result, the solid-liquid interface is prevented from being concave.

【0018】[0018]

【実施例】このような装置を用いて、GF法によるボー
ト結晶成長により、種結晶11のキャリア濃度を変えて
試作した。以下その詳細を具体的な数値を挙げて説明す
るが限定されるものではない。
EXAMPLE Using such an apparatus, a prototype was produced by changing the carrier concentration of the seed crystal 11 by boat crystal growth by the GF method. Hereinafter, the details will be described with specific numerical values, but the present invention is not limited thereto.

【0019】炉内の温度分布は図1(b)の曲線10に
示すように低温炉6では約600℃であり高温炉7では
1238℃前後の温度勾配を有している。
The temperature distribution in the furnace has a temperature gradient of about 600 ° C. in the low-temperature furnace 6 and a temperature gradient of about 1238 ° C. in the high-temperature furnace 7 as shown by a curve 10 in FIG.

【0020】結晶成長は、固化率0.1でのキャリア濃
度が2.0×1017(個/cm3 )であるφ2インチサ
イズのSiドープGaAs結晶を用いて行った。種結晶
11a〜11eのキャリア濃度は以下の(1) 〜(5) の5
通りとした。
Crystal growth was performed using a φ-inch Si-doped GaAs crystal having a carrier concentration of 2.0 × 10 17 (pieces / cm 3 ) at a solidification rate of 0.1. The carrier concentrations of the seed crystals 11a to 11e are as follows: (1) to (5)
As expected.

【0021】(1) 2.0×1017(個/cm3 ) (2) 5.0×1017(個/cm3 ) (3) 1.0×1018(個/cm3 ) (4) 2.0×1018(個/cm3 ) (5) 3.0×1018(個/cm3 ) 次に図1に示した装置を用いた結晶成長について説明す
る。
(1) 2.0 × 10 17 (pieces / cm 3 ) (2) 5.0 × 10 17 (pieces / cm 3 ) (3) 1.0 × 10 18 (pieces / cm 3 ) (4) 2.0 × 10 18 (pieces / cm 3 ) (5) 3.0 × 10 18 (pieces / cm 3 ) Next, crystal growth using the apparatus shown in FIG. 1 will be described.

【0022】図1に示すアンプル1内に、ボート4、G
a、As5及び種結晶11を入れて真空封止する。真空
封止したアンプル1を単結晶製造炉8にセットし、昇
温、反応を行い、その後高温炉7の温度勾配を0.5d
eg/cmに設定する。この温度分布条件により、種付
けを行った後、高温炉7を0.1℃/hrの速度で降温
させ単結晶成長を行う。
In the ampoule 1 shown in FIG.
a, As5 and the seed crystal 11 are charged and vacuum sealed. The vacuum-sealed ampoule 1 is set in a single crystal production furnace 8, and the temperature is raised and the reaction is performed.
Set to eg / cm. After seeding under the temperature distribution conditions, the temperature of the high-temperature furnace 7 is lowered at a rate of 0.1 ° C./hr to perform single crystal growth.

【0023】図2(a)〜図2(b)は、各キャリア濃
度の種結晶でのボート肩部のストリエーション(成長
縞)の模式図である。図2(a)は条件(1) に対応し、
図2(b)は条件(2) 、図2(c)は条件(3) 、図2
(d)は条件(4) 、図2(e)は条件(5) に対応してい
る。図2(a)〜図2(b)より種結晶11a〜11e
と結晶13a〜13eとのキャリア濃度の差が広がるに
つれストリエーションの凹面度合いが緩和されていくの
が観察できた。
FIGS. 2A and 2B are schematic diagrams of striations (growth fringes) at the shoulder of the boat with seed crystals having different carrier concentrations. FIG. 2A corresponds to the condition (1),
FIG. 2B shows the condition (2), and FIG. 2C shows the condition (3).
(D) corresponds to the condition (4), and FIG. 2 (e) corresponds to the condition (5). 2 (a) and 2 (b), the seed crystals 11a to 11e are shown.
It can be observed that as the difference in carrier concentration between the crystal and the crystals 13a to 13e is widened, the degree of striation is reduced.

【0024】以上において本発明によれば、結晶固液界
面、特にボート肩部での固液界面の凹面化が防止できる
ようになり、多結晶化を有効に解消し、再現性良く単結
晶を得ることができる。
As described above, according to the present invention, it is possible to prevent the crystal-solid interface, particularly the solid-liquid interface at the shoulder of the boat, from being concave, to effectively eliminate polycrystallization, and to obtain a single crystal with good reproducibility. Obtainable.

【0025】尚、本発明の化合物半導体単結晶の製造方
法は、GF法による全ての化合物半導体単結晶製造(G
aP、InAs、InP等)に適用可能である。また、
HB法、VB法、VGF法による全ての化合物半導体単
結晶製造(GaP、InAs、InP等)についても適
用可能である。
The method for producing a compound semiconductor single crystal of the present invention is applicable to all compound semiconductor single crystals (G
aP, InAs, InP, etc.). Also,
The present invention is also applicable to all compound semiconductor single crystal production (GaP, InAs, InP, etc.) by the HB method, the VB method, and the VGF method.

【0026】[0026]

【発明の効果】以上要するに本発明によれば、次のよう
な優れた効果を発揮する。
In summary, according to the present invention, the following excellent effects are exhibited.

【0027】製造される化合物半導体単結晶のキャリア
濃度より高いキャリア濃度の種結晶を用いて化合物半導
体単結晶を製造することにより、結晶側から種結晶側へ
と熱が流れるようになり、種結晶からの放熱促進が図れ
固液界面の凹面化が防止され再現性の良い結晶が得られ
る。
By producing a compound semiconductor single crystal using a seed crystal having a carrier concentration higher than the carrier concentration of the compound semiconductor single crystal to be produced, heat flows from the crystal side to the seed crystal side. This promotes heat dissipation, prevents the solid-liquid interface from being concave, and provides a crystal with good reproducibility.

【図面の簡単な説明】[Brief description of the drawings]

【図1】(a)は本発明の化合物半導体単結晶の製造方
法を適用した製造装置の一実施の形態を示す図であり、
(b)は(a)に示した製造装置の炉内温度分布を示す
図である。
FIG. 1A is a diagram showing an embodiment of a manufacturing apparatus to which a method for manufacturing a compound semiconductor single crystal of the present invention is applied,
(B) is a figure which shows the furnace temperature distribution of the manufacturing apparatus shown to (a).

【図2】(a)〜(b)は、各キャリア濃度の種結晶で
のボート肩部のストリエーションの模式図である。
FIGS. 2A and 2B are schematic diagrams of striation of a shoulder portion of a boat with seed crystals having different carrier concentrations.

【図3】(a)は従来の化合物半導体単結晶の製造方法
を適用した製造装置の概念図であり、(b)は(a)に
示した製造装置の炉内温度分布を示す図である。
3A is a conceptual diagram of a manufacturing apparatus to which a conventional method of manufacturing a compound semiconductor single crystal is applied, and FIG. 3B is a diagram showing a furnace temperature distribution of the manufacturing apparatus shown in FIG. .

【符号の説明】[Explanation of symbols]

1 アンプル 2 Ga 4 ボート 5 As 6 低温炉 7 高温炉 8 単結晶製造炉 11 種結晶 REFERENCE SIGNS LIST 1 ampoule 2 Ga 4 boat 5 As 6 low-temperature furnace 7 high-temperature furnace 8 single-crystal manufacturing furnace 11 seed crystal

Claims (2)

【特許請求の範囲】[Claims] 【請求項1】 ボート法による化合物半導体単結晶を製
造する製造方法において、製造される化合物半導体単結
晶のキャリア濃度より高いキャリア濃度の種結晶を用い
て化合物半導体単結晶を製造することを特徴とする化合
物半導体単結晶の製造方法。
1. A manufacturing method for manufacturing a compound semiconductor single crystal by a boat method, wherein the compound semiconductor single crystal is manufactured using a seed crystal having a carrier concentration higher than the carrier concentration of the compound semiconductor single crystal to be manufactured. Of producing a compound semiconductor single crystal.
【請求項2】 上記種結晶の熱伝導率が上記化合物半導
体単結晶の熱伝導率より大きい請求項1に記載の化合物
半導体単結晶の製造方法。
2. The method according to claim 1, wherein the thermal conductivity of the seed crystal is higher than the thermal conductivity of the compound semiconductor single crystal.
JP10063697A 1997-04-17 1997-04-17 Production of compound semiconductor single crystal Pending JPH10291890A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP10063697A JPH10291890A (en) 1997-04-17 1997-04-17 Production of compound semiconductor single crystal

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP10063697A JPH10291890A (en) 1997-04-17 1997-04-17 Production of compound semiconductor single crystal

Publications (1)

Publication Number Publication Date
JPH10291890A true JPH10291890A (en) 1998-11-04

Family

ID=14279326

Family Applications (1)

Application Number Title Priority Date Filing Date
JP10063697A Pending JPH10291890A (en) 1997-04-17 1997-04-17 Production of compound semiconductor single crystal

Country Status (1)

Country Link
JP (1) JPH10291890A (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2005231909A (en) * 2004-02-17 2005-09-02 Nikko Materials Co Ltd Method for vapor growth

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2005231909A (en) * 2004-02-17 2005-09-02 Nikko Materials Co Ltd Method for vapor growth
JP4499444B2 (en) * 2004-02-17 2010-07-07 日鉱金属株式会社 Vapor growth method

Similar Documents

Publication Publication Date Title
US5871580A (en) Method of growing a bulk crystal
JPH10291890A (en) Production of compound semiconductor single crystal
JPH0244798B2 (en)
JP2002255697A (en) GALLIUM-ARSENIC SINGLE CRYSTAL AND GaAs WAFER AND PRODUCTION METHOD FOR GaAs SINGLE CRYSTAL
Dutta et al. Bulk growth of GaSb and Ga 1-x In x Sb
JPS606918B2 (en) Method for producing Group 3-5 compound single crystal
JPS5938187B2 (en) Method for producing Group 3-5 compound semiconductor single crystal
JP2004307227A (en) Production method for compound semiconductor single crystal
JP2773441B2 (en) Method for producing GaAs single crystal
JP2001151593A (en) Quartz boat and method of producing compound semiconductor single crystal by boat method using the same
JPS61197499A (en) Method of growing single crystal of inorganic compound
JPS6153186A (en) Heater for resistance heating
JPS6389497A (en) Production of silicon-added gallium arsenic single crystal
Gillessen et al. Temperature Gradient Solution Growth
KR920007340B1 (en) Manufacturing method of 3-4 compound material semiconductor crystal
JP2610034B2 (en) Single crystal growth method
JPH0222200A (en) Production of semiconductor single crystal of iii-v compound
JPH01290587A (en) Production of single crystal of compound semiconductor
JP2005047797A (en) InP SINGLE CRYSTAL, GaAs SINGLE CRYSTAL, AND METHOD FOR PRODUCING THEM
JPH11180792A (en) Production of compound semiconductor single crystal
JPH0247438B2 (en) 33VZOKUKAGOBUTSUHANDOTAITANKETSUSHONOSEIZOHOHO
JPH0867593A (en) Method for growing single crystal
JP2001130999A (en) METHOD FOR PRODUCING GaAs SEMICONDUCTOR SINGLE CRYSTAL
JP2002348192A (en) Apparatus for making compound semiconductor single crystal
JPS60118696A (en) Method for growing indium phosphide single crystal