JPS5938187B2 - Method for producing Group 3-5 compound semiconductor single crystal - Google Patents

Method for producing Group 3-5 compound semiconductor single crystal

Info

Publication number
JPS5938187B2
JPS5938187B2 JP1320581A JP1320581A JPS5938187B2 JP S5938187 B2 JPS5938187 B2 JP S5938187B2 JP 1320581 A JP1320581 A JP 1320581A JP 1320581 A JP1320581 A JP 1320581A JP S5938187 B2 JPS5938187 B2 JP S5938187B2
Authority
JP
Japan
Prior art keywords
single crystal
growth
crystal
compound semiconductor
plane
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired
Application number
JP1320581A
Other languages
Japanese (ja)
Other versions
JPS57129899A (en
Inventor
清治 水庭
敏也 豊島
順吉 中川
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Hitachi Cable Ltd
Original Assignee
Hitachi Cable Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Hitachi Cable Ltd filed Critical Hitachi Cable Ltd
Priority to JP1320581A priority Critical patent/JPS5938187B2/en
Publication of JPS57129899A publication Critical patent/JPS57129899A/en
Publication of JPS5938187B2 publication Critical patent/JPS5938187B2/en
Expired legal-status Critical Current

Links

Landscapes

  • Crystals, And After-Treatments Of Crystals (AREA)
  • Liquid Deposition Of Substances Of Which Semiconductor Devices Are Composed (AREA)

Description

【発明の詳細な説明】 本発明は、GaAs、InP、InAs等の■−V族化
合物半導体単結晶の製造方法に係り、特にボート成長法
を用いて低転位密度の単結晶を製造する方法に関するも
のである。
DETAILED DESCRIPTION OF THE INVENTION The present invention relates to a method for manufacturing single crystals of ■-V group compound semiconductors such as GaAs, InP, InAs, etc., and particularly relates to a method for manufacturing single crystals with a low dislocation density using a boat growth method. It is something.

ボート成長法を用いた■−V族化合物半導体の単結晶製
造においては、従来から(111)面を成長させること
が行われていたが、その理由としては、第1に良好な基
板形状をもつ(100)面ウエー〜を切り出し易いこと
、第2には、(111)面成長は結晶成長が横方向に広
がり易く、かつ、結晶成長界面を平らに制御し易いこと
等によるものである。
In the single crystal production of ■-V group compound semiconductors using the boat growth method, the (111) plane has traditionally been grown. This is because (100) plane wafer ~ is easy to cut out, and secondly, in (111) plane growth, crystal growth tends to spread laterally and it is easy to control the crystal growth interface to be flat.

ところが(111)面成長を行つた場合でも、特に大断
面積の単結晶を製造するときは結晶成長界面を平らに制
御することが困難となる。
However, even when (111) plane growth is performed, it is difficult to control the crystal growth interface to be flat, especially when producing a single crystal with a large cross-sectional area.

例えば成長速度を遅くすると成長界面が凸面となつてす
ベー転位を発生し易くなり、逆に成長速度を速くすると
成長界面が凹面となつて、リネージ転位等の欠陥を発生
し易くなる。
For example, if the growth rate is slowed, the growth interface will become a convex surface, making it easier to generate Beh dislocations, and conversely, if the growth rate is increased, the growth interface will become a concave surface, making it easier to generate defects such as lineage dislocations.

これらの欠陥は(111)面成長を行つて強制的に成長
界面を平らに制御しようとすることに起因するものであ
り、結晶が大形になるほど欠陥が発生する率も大となる
These defects are caused by (111) plane growth and an attempt to forcibly control the growth interface to be flat, and the larger the crystal, the higher the rate at which defects will occur.

なお、良質の単結晶を得ることの困難さは結晶の断面積
の2乗に比例するといわれている。
It is said that the difficulty in obtaining a high-quality single crystal is proportional to the square of the cross-sectional area of the crystal.

本発明は良質で断面積の大きな単結晶を再現性良く成長
させるのに好適な■−V族化合物半導体単結晶の製造方
法を提供することを目的とし、その特徴とするところは
、結晶の成長方向に垂直な面と50〜250の傾角で結
晶の(111)面を成長させることにある。第1図は本
発明の一実施例である製造方法を用いて製造した■−V
族化合物半導体単結晶の斜視図である。
The purpose of the present invention is to provide a method for producing a -V group compound semiconductor single crystal that is suitable for growing a single crystal of good quality and a large cross-sectional area with good reproducibility. The purpose is to grow the (111) plane of the crystal at an inclination angle of 50 to 250 with respect to the plane perpendicular to the direction. Figure 1 shows ■-V manufactured using the manufacturing method that is an embodiment of the present invention.
FIG. 2 is a perspective view of a group compound semiconductor single crystal.

この単結晶はボートより取り出したままのもので、右端
は種結晶3であり、これを種にして単結晶4が成長して
いる。
This single crystal has been taken out from the boat, and the right end is the seed crystal 3, which is used as the seed to grow the single crystal 4.

単結晶4の成長方向は長手方向であるが、それに垂直な
面に対し(111)面2は50〜250の傾角1をもつ
て成長している。この単結晶4を成長させる炉は普通は
横形の電気炉を用いているので、炉内の温度分布は対称
的である。したがつて、結晶成長界面は結晶軸に対して
左右対称になり易く、上記の方法の場合は(111)面
が両サイドまで延びることができないで「く」の字形と
なり易い。第2図は第1図の単結晶の成長界面を示す平
面図である。
Although the growth direction of the single crystal 4 is the longitudinal direction, the (111) plane 2 is grown with an inclination angle 1 of 50 to 250 with respect to a plane perpendicular to the longitudinal direction. Since the furnace for growing this single crystal 4 usually uses a horizontal electric furnace, the temperature distribution inside the furnace is symmetrical. Therefore, the crystal growth interface tends to be symmetrical with respect to the crystal axis, and in the case of the above method, the (111) plane cannot extend to both sides and tends to be dogleg-shaped. FIG. 2 is a plan view showing the growth interface of the single crystal shown in FIG.

単結晶4は「く」の字形の折れ曲つた成長界面5を形成
して矢印を付した実線で示す成長方向6へ成長し、洛融
液7中を進行する。このような成長界面5を有する単結
晶4は、次のような特長をもつている。(1)成長界面
5のピーク部分が成長核となつており、また洛融液の自
由表面ともなつているので転位をとり込みにくくなる。
The single crystal 4 forms a bent growth interface 5 in the shape of a dogleg, grows in a growth direction 6 shown by a solid line with an arrow, and advances in the liquid melt 7. The single crystal 4 having such a growth interface 5 has the following features. (1) The peak portion of the growth interface 5 serves as a growth nucleus and also serves as the free surface of the liquid melt, making it difficult to incorporate dislocations.

(2)成長界面5のピーク位置を境として左右別々の成
長を行うため、あたかも小断面積の2つの結晶を平行し
て成長させると同じことになり、良質大形の単結晶4が
安定して得られる。
(2) Since the growth is performed separately on the left and right sides with the peak position of the growth interface 5 as the boundary, it is the same as growing two crystals with small cross-sections in parallel, and a high-quality, large-sized single crystal 4 is stable. can be obtained.

(3)成長界面5はピークをもつており、見掛け上は凸
面状となつているが、{111}面を成長方向6の横断
面に合わせた場合の凸面とは異なり、成長界面の熱歪は
殆んどなく、すベリ転位等の欠陥の発生が抑制される。
(3) The growth interface 5 has a peak and is apparently convex, but unlike the convex surface when the {111} plane is aligned with the cross section in the growth direction 6, thermal strain at the growth interface There are almost no defects, and the occurrence of defects such as suberly dislocations is suppressed.

(4)成長界面5は自然に「く」の字形となつてくれる
ので、細かな界面制御の調整作業は不良となる。
(4) Since the growth interface 5 naturally takes the shape of a dogleg, fine adjustment work for controlling the interface becomes difficult.

(6)成長界面5の上部に放熱手段を付加すると、{1
11}面を左右方向だけでなく、上下方向にも傾けて成
長させることができる。
(6) If a heat dissipation means is added above the growth interface 5, {1
11} It is possible to grow by tilting the plane not only in the horizontal direction but also in the vertical direction.

但し、本方式によつて得られる単結晶の{100}面は
、従来の直線状成長界面をもつ場合のそれに比較して若
干横方向に延びた左右非対称形となることは明らかであ
る。
However, it is clear that the {100} plane of the single crystal obtained by this method has a left-right asymmetric shape that extends slightly in the lateral direction compared to the case of a conventional linear growth interface.

しかし、良質の大形単結晶の歩留り向上の効果が、この
ような欠点を補つて余りがある。この実施例の方法をG
aAs単結晶の製造に応用した場合を、次に説明する。
However, the effect of improving the yield of high-quality large-sized single crystals more than compensates for these drawbacks. The method of this example is
A case where this method is applied to the production of aAs single crystal will be described next.

まず石英ガラス製ボートにGa4OO9とドーパントと
してのSil2Om9とを収容し、そのボートの一端に
{111}面を15収傾斜させた種結晶を置く。
First, Ga4OO9 and Sil2Om9 as a dopant are placed in a quartz glass boat, and a seed crystal with a {111} plane tilted by 15 is placed at one end of the boat.

更にこのボートの他端にAs4449を入れ、5×1「
6T0rr以下の減圧下で1時間真空引きを行つた後、
封じ切つた状態で低温炉内に設置する。
Furthermore, put As4449 at the other end of this boat and make it 5×1
After evacuation for 1 hour under reduced pressure of 6T0rr or less,
Place in a sealed state in a low temperature furnace.

この低温炉を約610℃に保ち、石英ボート内のAsの
蒸気圧を1at0mに維持し、次の高温炉では1200
℃付近でGaAs合成反応を行わせた後、更に昇温して
種結晶部分を1238℃、GaAs溶融液中の温度勾配
を0.5deg/CTnに調整して種付けを行う。その
後は1.7deg/Hrの速度で冷却し、20時間で全
体を固化?せ、固化した後は約100deg/Hrの速
度で室温まで冷却した。
This low-temperature furnace was kept at about 610°C, and the vapor pressure of As in the quartz boat was maintained at 1at0m.
After the GaAs synthesis reaction is carried out at around 0.degree. C., the temperature is further increased to adjust the seed crystal portion to 1238.degree. C. and the temperature gradient in the GaAs melt to 0.5 deg/CTn to perform seeding. After that, it was cooled at a rate of 1.7deg/Hr, and the whole solidified in 20 hours. After solidification, the mixture was cooled to room temperature at a rate of about 100 deg/hr.

このようにして、幅5cm、長さ23crrLf)Ga
As単結晶823f!が得られたが、この結晶の成長界
面5は第2図に示すごとくピークをもつた「〈]の字形
となり、成長縞(フアセツト)も「く」の字形に現われ
た。
In this way, width 5 cm, length 23 crrLf)Ga
As single crystal 823f! However, as shown in FIG. 2, the growth interface 5 of this crystal was shaped like a "<" with a peak, and the growth stripes (facets) also appeared in the shape of a "<".

この単結晶の{100}面出しを行い洛融KOHでエツ
チングして転位密度を測定したところ、ボートに接触し
ている部分の周囲約5mmを除いて500個/d以下の
値を示し、低い転位密度(EPD)の単結晶であること
を示している。
When the {100} surface of this single crystal was planarized and dislocation density was measured by etching with Rakuten KOH, the dislocation density was found to be less than 500/d except for about 5 mm around the part in contact with the boat, which is a low value. This shows that it is a single crystal with high dislocation density (EPD).

特に、成長界面5のピーク部の転位密度は低く、100
個/d以下の転位密度であつた。なお、傾角が5下以下
の場合は、{111}面がボートの両側に連絡してしま
つて通常の単結晶成長と同じになる。
In particular, the dislocation density at the peak portion of the growth interface 5 is low, with 100
The dislocation density was less than /d. Note that when the inclination angle is less than 5, the {111} planes connect to both sides of the boat, which is the same as normal single crystal growth.

また、傾角が250以上の場合は、{100}面の形状
が乱れて切断が困難となつた。即ち、50〜250の範
囲が適当であることを実験によつて確めた。本実施例の
GaAs単結晶の製造方法は、石英ガラス製ボートにG
aおよびドーパントを収谷すると共に、ボートの一端に
{111}面を15す傾斜させた種結晶を置き、ボート
の他端にAsを置いて減圧した後封じ切る。
Further, when the inclination angle was 250 or more, the shape of the {100} plane was disturbed and cutting became difficult. That is, it was confirmed through experiments that a range of 50 to 250 is appropriate. The method for producing a GaAs single crystal in this example is to
While a and the dopant are collected, a seed crystal with a {111} plane inclined by 15 degrees is placed at one end of the boat, and As is placed at the other end of the boat to reduce the pressure and then seal it off.

このように封入したボートを加熱してAsの蒸気を充満
▲せた後高温加熱してGaAs合成反応を行わせ、更に
昇温してGaAsを溶融して種付けを行い、温度勾配を
付して除去することにより、{111}面を[く」の字
形に成長づせた単結晶が得られる。
After heating the enclosed boat to fill it with As vapor, it is heated to a high temperature to perform a GaAs synthesis reaction, and the temperature is further increased to melt and seed the GaAs, and a temperature gradient is applied. By removing it, a single crystal with {111} planes grown in a dogleg shape can be obtained.

この単結晶は転位密度が低く、結晶欠陥の少いGaAs
単結晶であり、この製造方法は再現性も優れているとい
う効果をもつている。
This single crystal is GaAs with low dislocation density and few crystal defects.
It is a single crystal, and this manufacturing method has the advantage of excellent reproducibility.

上記実施例はGaAs単結晶の製造方法について述べた
ものであるが、他の−V族元素を用いて化合物半導体単
結晶をボート成長法によつて得る場合にもこの製造方法
は応用できる。
Although the above embodiment describes a method for manufacturing a GaAs single crystal, this manufacturing method can also be applied to the case where a compound semiconductor single crystal using other -V group elements is obtained by a boat growth method.

本発明の−V族化合物半導体単結晶の製造方法は、成長
界面のピーク部分が成長核となつているが、その部分は
自由表面で熱歪が少いので低転位で高品位の単結晶が得
られる。
In the method for manufacturing -V group compound semiconductor single crystals of the present invention, the peak portion of the growth interface serves as a growth nucleus, and since that portion is a free surface and has little thermal strain, a high-quality single crystal with low dislocations can be produced. can get.

また、成長界面のピーク部分を境として左右別別に成長
するので成長界面を制御し易く、大形で歩留りの良い単
結晶が得られる等の効果をもつている。
Furthermore, since the growth occurs separately on the left and right sides with the peak portion of the growth interface as a boundary, it is easy to control the growth interface, and a large single crystal with a high yield can be obtained.

【図面の簡単な説明】[Brief explanation of the drawing]

第1図は本発明の一実施例である製造方法を用いて製造
した−V族化合物半導体単結晶の斜視図、第2図は第1
図の単結晶の成長界面を示す平面図である。 1:傾角、2:{111}面、3:種結晶、4:単結晶
、5:成長界面、6:成長方向、7:溶融液。
FIG. 1 is a perspective view of a -V group compound semiconductor single crystal manufactured using a manufacturing method that is an embodiment of the present invention, and FIG.
FIG. 2 is a plan view showing the growth interface of the single crystal shown in the figure. 1: tilt angle, 2: {111} plane, 3: seed crystal, 4: single crystal, 5: growth interface, 6: growth direction, 7: melt.

Claims (1)

【特許請求の範囲】[Claims] 1 ボート成長法によるIII−V族化合物半導体単結晶
の製造方法において、結晶の成長方向に垂直な面と5゜
〜35゜の傾角で結晶の{111}面を成長させること
を特徴とするIII−V族化合物半導体単結晶の製造方法
1. A method for producing a III-V group compound semiconductor single crystal by a boat growth method, characterized in that the {111} plane of the crystal is grown at an angle of 5° to 35° with respect to a plane perpendicular to the crystal growth direction. - A method for producing a group V compound semiconductor single crystal.
JP1320581A 1981-01-30 1981-01-30 Method for producing Group 3-5 compound semiconductor single crystal Expired JPS5938187B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP1320581A JPS5938187B2 (en) 1981-01-30 1981-01-30 Method for producing Group 3-5 compound semiconductor single crystal

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP1320581A JPS5938187B2 (en) 1981-01-30 1981-01-30 Method for producing Group 3-5 compound semiconductor single crystal

Publications (2)

Publication Number Publication Date
JPS57129899A JPS57129899A (en) 1982-08-12
JPS5938187B2 true JPS5938187B2 (en) 1984-09-14

Family

ID=11826649

Family Applications (1)

Application Number Title Priority Date Filing Date
JP1320581A Expired JPS5938187B2 (en) 1981-01-30 1981-01-30 Method for producing Group 3-5 compound semiconductor single crystal

Country Status (1)

Country Link
JP (1) JPS5938187B2 (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS63172078U (en) * 1987-04-30 1988-11-09
JPH0547366Y2 (en) * 1988-02-18 1993-12-14

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS58115100A (en) * 1981-12-28 1983-07-08 Mitsubishi Monsanto Chem Co Preparation of single crystal of inorganic compound
JP3475186B2 (en) 2001-03-21 2003-12-08 株式会社ニチベイ Blinds, blind slats, manufacturing method thereof and molding machine

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS63172078U (en) * 1987-04-30 1988-11-09
JPH0547366Y2 (en) * 1988-02-18 1993-12-14

Also Published As

Publication number Publication date
JPS57129899A (en) 1982-08-12

Similar Documents

Publication Publication Date Title
Bonner InP synthesis and LEC growth of twin-free crystals
EP0751242B1 (en) Process for bulk crystal growth
JPS5938187B2 (en) Method for producing Group 3-5 compound semiconductor single crystal
JP3806791B2 (en) Method for producing compound semiconductor single crystal
TWI281520B (en) InP single crystal, GaAs single crystal, and method for producing thereof
JP2002293686A (en) Method of growing compound semiconductor signal crystal and substrate cut out of the same
JP4344021B2 (en) Method for producing InP single crystal
JPH0247438B2 (en) 33VZOKUKAGOBUTSUHANDOTAITANKETSUSHONOSEIZOHOHO
JP3831913B2 (en) Method for producing compound semiconductor single crystal
JP2773441B2 (en) Method for producing GaAs single crystal
KR920007340B1 (en) Manufacturing method of 3-4 compound material semiconductor crystal
JPS5895697A (en) Preparation of compound semiconductor single crystal of groups 3[5 having low dislocation density
JP2781857B2 (en) Single crystal manufacturing method
KR20230151794A (en) GaAs SINGLE CRYSTAL GROWTH APPARATUS AND GROWTH METHOD
JPH09295887A (en) Growing of crystal and crucible for growing
JPH09110575A (en) Crucible for producing single crystal and production of single crystal
JPH0761886A (en) Production of single crystal and compound semiconductor and production device therefor
KR960014956B1 (en) Galum asenide single crystal growth method
JP2879078B2 (en) Method for producing compound semiconductor crystal and crucible used therefor
JP3135355B2 (en) Method and apparatus for producing compound semiconductor single crystal
JPH04362082A (en) Apparatus and method for producing compound semiconductor crystal
JPH10291890A (en) Production of compound semiconductor single crystal
JPH0357078B2 (en)
JPS61111991A (en) Production of single crystal of semiconductor of group iii-v compound
JPH0524963A (en) Production of compound semiconductor single crystal and apparatus therefor