JPS58115100A - Preparation of single crystal of inorganic compound - Google Patents
Preparation of single crystal of inorganic compoundInfo
- Publication number
- JPS58115100A JPS58115100A JP21269281A JP21269281A JPS58115100A JP S58115100 A JPS58115100 A JP S58115100A JP 21269281 A JP21269281 A JP 21269281A JP 21269281 A JP21269281 A JP 21269281A JP S58115100 A JPS58115100 A JP S58115100A
- Authority
- JP
- Japan
- Prior art keywords
- single crystal
- boat
- growth
- wafer
- preparation
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Granted
Links
Classifications
-
- C—CHEMISTRY; METALLURGY
- C30—CRYSTAL GROWTH
- C30B—SINGLE-CRYSTAL GROWTH; UNIDIRECTIONAL SOLIDIFICATION OF EUTECTIC MATERIAL OR UNIDIRECTIONAL DEMIXING OF EUTECTOID MATERIAL; REFINING BY ZONE-MELTING OF MATERIAL; PRODUCTION OF A HOMOGENEOUS POLYCRYSTALLINE MATERIAL WITH DEFINED STRUCTURE; SINGLE CRYSTALS OR HOMOGENEOUS POLYCRYSTALLINE MATERIAL WITH DEFINED STRUCTURE; AFTER-TREATMENT OF SINGLE CRYSTALS OR A HOMOGENEOUS POLYCRYSTALLINE MATERIAL WITH DEFINED STRUCTURE; APPARATUS THEREFOR
- C30B29/00—Single crystals or homogeneous polycrystalline material with defined structure characterised by the material or by their shape
- C30B29/10—Inorganic compounds or compositions
- C30B29/40—AIIIBV compounds wherein A is B, Al, Ga, In or Tl and B is N, P, As, Sb or Bi
-
- C—CHEMISTRY; METALLURGY
- C30—CRYSTAL GROWTH
- C30B—SINGLE-CRYSTAL GROWTH; UNIDIRECTIONAL SOLIDIFICATION OF EUTECTIC MATERIAL OR UNIDIRECTIONAL DEMIXING OF EUTECTOID MATERIAL; REFINING BY ZONE-MELTING OF MATERIAL; PRODUCTION OF A HOMOGENEOUS POLYCRYSTALLINE MATERIAL WITH DEFINED STRUCTURE; SINGLE CRYSTALS OR HOMOGENEOUS POLYCRYSTALLINE MATERIAL WITH DEFINED STRUCTURE; AFTER-TREATMENT OF SINGLE CRYSTALS OR A HOMOGENEOUS POLYCRYSTALLINE MATERIAL WITH DEFINED STRUCTURE; APPARATUS THEREFOR
- C30B11/00—Single-crystal growth by normal freezing or freezing under temperature gradient, e.g. Bridgman-Stockbarger method
- C30B11/14—Single-crystal growth by normal freezing or freezing under temperature gradient, e.g. Bridgman-Stockbarger method characterised by the seed, e.g. its crystallographic orientation
Landscapes
- Chemical & Material Sciences (AREA)
- Engineering & Computer Science (AREA)
- Crystallography & Structural Chemistry (AREA)
- Materials Engineering (AREA)
- Metallurgy (AREA)
- Organic Chemistry (AREA)
- Inorganic Chemistry (AREA)
- Crystals, And After-Treatments Of Crystals (AREA)
- Liquid Deposition Of Substances Of Which Semiconductor Devices Are Composed (AREA)
Abstract
Description
【発明の詳細な説明】
素からなる無機化合物(以下r ut−v族化合物」と
いう。)の単結晶の製造方法に関する。DETAILED DESCRIPTION OF THE INVENTION The present invention relates to a method for producing a single crystal of an inorganic compound (hereinafter referred to as a "rut-v group compound").
m−’v族化合物、特に、 GaAsの単結晶は、一般
に温度傾斜法(GF法)、水平ブリッジマン法(HB法
)等のボート成長法によシ製造される。Single crystals of m-'v group compounds, particularly GaAs, are generally produced by boat growth methods such as the temperature gradient method (GF method) and the horizontal Bridgman method (HB method).
も簡単であるという特長があるが、得られた単結晶から
切り出したウエノ・は、半円状の形状を有するので、か
かるウェハを用いた場合FET。However, since the wafer cut from the obtained single crystal has a semicircular shape, when such a wafer is used, it can be used as an FET.
I’C等の素子の製造工程を一自動化し難いという難点
があった。There is a problem in that it is difficult to automate the manufacturing process of elements such as I'C.
一般にボート成長法では、単結晶の品質、収率等の点か
ら、<///>方向が成長方向、すなわちボートの成長
方向と一致し、かつ(/10)面が鉛直面に一致するよ
うに選ばれる。このような単結晶から切り出されたウニ
・・は第1図に平面はボート成長法により得られた単結
晶から切シ ′出シたウエノ・である。ボートの直
径は通常はjO1lII+程度であるので、このボート
により得られるおむすび形のウエノ・から円形のウエノ
・を切り出すときは直径36m程度の円形(100)面
つエバが得られるに過ぎなかった。またボートの直径を
大きくすることは、電気炉を大型にする必要があること
、単結晶収率が低下すること等 4の問題があった。In general, in the boat growth method, from the viewpoint of single crystal quality, yield, etc., the <///> direction coincides with the growth direction, that is, the boat growth direction, and the (/10) plane coincides with the vertical plane. selected. The plane of the sea urchin cut out from such a single crystal is shown in FIG. 1, which is cut out from a single crystal obtained by the boat growth method. Since the diameter of the boat is usually about jO1lII+, when cutting a circular ueno from the rice ball-shaped ueno obtained by using this boat, only a circular (100)-sided eba with a diameter of about 36 m can be obtained. In addition, increasing the diameter of the boat had four problems, including the need to increase the size of the electric furnace and a decrease in single crystal yield.
本発明者は、従来よりも大きな直径の円形を八
有する■−■族化合物単結晶ウニ・を製造し得る方法を
開発することを目的として鋭意研究を重ねた結果本発明
に到達したものである。The present inventor has arrived at the present invention as a result of intensive research aimed at developing a method for producing a single crystal sea urchin, a compound of the ■-■ group, which has eight circular shapes with a larger diameter than conventional methods. .
本発明の上記の目的は■−v族化合物の単結晶をボート
成長法により製造する方法において、単結晶成長用ボー
トの長軸方向及び<///>方向が(/10)面に実質
的に含まれ、かつ、上記<//ケ方向が上記長軸方向と
7以内の角度をなすように、上記< /// >方向を
上記ボートの底面の方向に傾けたことを特徴とする方法
により達せられる。The above object of the present invention is to provide a method for producing a single crystal of a V-group compound by a boat growth method, in which the major axis direction and the <///> direction of the single crystal growth boat are substantially aligned with the (/10) plane. , and the method is characterized by tilting the < /// > direction toward the bottom of the boat so that the < /// direction makes an angle of 7 or less with the major axis direction. This can be achieved by
本発明を図面に基づいて説明する。The present invention will be explained based on the drawings.
第2図はボート成長法により得られたI−■族化合物単
結晶の部分斜視図である。FIG. 2 is a partial perspective view of a single crystal of a group I-■ compound obtained by the boat growth method.
第2図で、2はボート成長法により得られた長円ボート
の長軸方向、すなわち、単結晶の成長方向である。矢印
ダは<///>方向を示す。jは、単結晶の上面いわゆ
るフリー面である。In FIG. 2, 2 is the long axis direction of the elliptical boat obtained by the boat growth method, that is, the growth direction of the single crystal. Arrow d indicates the <///> direction. j is the upper surface of the single crystal, the so-called free surface.
本発明方法によりI−V族化合物単結晶を製造するには
、長袖方向3及び(/// >方向Vが、実質的に(i
io)面内に含まれ、かつ、グが3に対してボートの底
面の方向に50以内の角度をなすように傾ける。この場
合、2〜グ0の範囲がより好ましく、j″を超えると結
晶性が劣化し単結晶の収率が減少する。また、3及びグ
を含む平面が(iio )面と50以内の角度をなすこ
とが望ましく、joを超えるとウエノ・の形がゆがむの
で好ましくない。In order to produce a group IV compound single crystal by the method of the present invention, long sleeve direction 3 and (/// > direction V are substantially (i
io) included in the plane and tilted so that the angle makes an angle of less than 50 with respect to 3 towards the bottom of the boat; In this case, the range of 2 to 0 is more preferable, and if it exceeds j'', the crystallinity will deteriorate and the yield of single crystal will decrease. It is desirable to have a shape of 0. If it exceeds jo, the shape of ueno will be distorted, so it is not preferable.
単結晶の成長方法は、通常のボート成長法、例えば、G
F法、HB法等により行なわれる。The single crystal growth method is the usual boat growth method, for example, G
This is carried out by the F method, HB method, etc.
本発明方法によれば、50m程度の直径のボートを用い
て製造された単結晶を用いても直径≠0III+ヲ超え
る円形の(IOの面111−V族化合物ウニ・・全製造
することができるので、大型の電気炉を必要とせず、さ
らに単結晶の収率が劣化しやすい大型のボートを使用す
る必要がなくなり産業上の利用価値は極めて大である。According to the method of the present invention, even if a single crystal produced using a boat with a diameter of about 50 m is used, it is possible to produce a circular (IO surface 111-V group compound sea urchin) whose diameter exceeds ≠0III+. Therefore, there is no need for a large electric furnace, and furthermore, there is no need to use a large boat, which tends to deteriorate the yield of single crystals, so the industrial value is extremely great.
次に、実施例に基づいて本発−明をさらに具体的に説明
する。Next, the present invention will be explained in more detail based on Examples.
実施例
第3図に縦断正面模型図を示すGF法単結晶製造装置に
よりGaAs単結晶を成長させた。第3図において、6
は単結晶成長用石英ボート。EXAMPLE A GaAs single crystal was grown using a GF method single crystal manufacturing apparatus whose vertical cross-sectional front model is shown in FIG. In Figure 3, 6
is a quartz boat for single crystal growth.
7はボート6の種結晶を載置する部分である。7 is a part of the boat 6 on which the seed crystal is placed.
♂はボート6を封入した石英製封管、りはAsでおって
GaAsが融点付近で分解するのを防止するため電気炉
ioにより約tio℃に加熱される。/lは、ボート6
を加熱する電気炉であって、必要な温度勾配を得るため
に、グ個の部分に分割して制御される。12は温度勾配
をなだらかにするために用いられるSiC製の炉心管で
おる。♂ is a sealed quartz tube in which the boat 6 is enclosed, and ♂ is made of As and heated to about tio° C. in an electric furnace IO to prevent GaAs from decomposing near its melting point. /l is boat 6
It is an electric furnace for heating the furnace, which is divided into several parts and controlled in order to obtain the required temperature gradient. 12 is a SiC furnace core tube used to smooth the temperature gradient.
直径jO藺断面が半円形、長さ3ざθ閣の石英ボートに
、多結晶GaAsを/!OQ?チャージした。これに8
1を0..2f添加した。 ボート6、の種結晶載置部
7に種結晶を載置し、(/10)面が鉛直面に一致し、
かつ<///>A8方向及びボート乙の長軸方向が前記
(/10 )面に含まれ、かつ(iti >A8方向が
長軸方向から下方へ≠0傾く7ように成長方向を規定し
た。Polycrystalline GaAs is placed in a quartz boat with a semicircular cross section and a length of 3 squares. OQ? I charged it. 8 to this
1 to 0. .. 2f was added. Place the seed crystal on the seed crystal placement part 7 of the boat 6, so that the (/10) plane coincides with the vertical plane,
and<///>The growth direction is defined such that the A8 direction and the long axis direction of the boat A are included in the (/10) plane, and the (iti>A8 direction is tilted downward by ≠0 from the long axis direction). .
上記ボートを石英封管にAsとともに封入した。The above boat was sealed together with As in a quartz sealed tube.
この封管を電気炉に装入し、電気炉ioをtsi。This sealed tube is charged into an electric furnace, and the electric furnace IO is heated.
℃とした。また、電気炉//については、ボート6の種
結晶部を/230℃、他の末端が1210℃、その間の
温度分布が実質上、直線となるように制御した。℃. Further, regarding the electric furnace //, the seed crystal part of the boat 6 was controlled at /230°C and the other end at 1210°C, so that the temperature distribution therebetween was substantially linear.
電気炉各部が所定の温度に達した後、o、j’c/時間
の降温速度で電気炉/lを降温させた。After each part of the electric furnace reached a predetermined temperature, the temperature of the electric furnace/l was lowered at a temperature lowering rate of o, j'c/hour.
得られた単結晶から(ioo)面ウェハを切り出し、該
ウェハから直径’I1mの円形ウェハを得ることができ
た。得られたウェハのエッチピット密度(EPD )は
7. j X’ / 03/cry!であツタ。An (ioo) plane wafer was cut from the obtained single crystal, and a circular wafer with a diameter of 1 m was obtained from the wafer. The etch pit density (EPD) of the obtained wafer was 7. j X' / 03/cry! And ivy.
【図面の簡単な説明】
第1図はボート成長法単結晶から切り出したウェハの平
面図である。第2図はボート成長法により得られた単結
晶の部分斜視図である。
第3図はGF法単結晶製造装置の縦断正面模型図であ゛
る。
l・・・・・・・・ウェハ
3・・・・・・・・ボートの長軸方向
≠・・・・・・・・<///>方向
特許出願人 三菱モンサント化成株式会社代 理
人 弁理士 長谷用 −(ほか7名)BRIEF DESCRIPTION OF THE DRAWINGS FIG. 1 is a plan view of a wafer cut from a boat-grown single crystal. FIG. 2 is a partial perspective view of a single crystal obtained by the boat growth method. FIG. 3 is a vertical cross-sectional front model view of the GF method single crystal manufacturing apparatus. l...Wafer 3...Boat's long axis direction ≠...
Person Patent Attorney Hase - (7 others)
Claims (1)
の単結晶をボート成長法により製造する方法において、
単結晶成長用ボートの長袖方向及び</I//>方向が
(llO)面内に実質的に含まれ、かつ、上記<///
>方向と上記長軸方向が50以内の角度をなすように上
記<///>方向を上記ボートの底面の方向に傾けたこ
とを特徴とする方法。In a method for producing a single crystal of an inorganic compound consisting of a Group I element and a Group V element of the periodic table by a boat growth method,
The long sleeve direction and the </I//> direction of the single crystal growth boat are substantially included in the (llO) plane, and the above <///
A method characterized in that the <///> direction is tilted toward the bottom of the boat such that the > direction and the major axis direction form an angle of 50 or less.
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP21269281A JPS58115100A (en) | 1981-12-28 | 1981-12-28 | Preparation of single crystal of inorganic compound |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP21269281A JPS58115100A (en) | 1981-12-28 | 1981-12-28 | Preparation of single crystal of inorganic compound |
Publications (2)
Publication Number | Publication Date |
---|---|
JPS58115100A true JPS58115100A (en) | 1983-07-08 |
JPH0329759B2 JPH0329759B2 (en) | 1991-04-25 |
Family
ID=16626842
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
JP21269281A Granted JPS58115100A (en) | 1981-12-28 | 1981-12-28 | Preparation of single crystal of inorganic compound |
Country Status (1)
Country | Link |
---|---|
JP (1) | JPS58115100A (en) |
Citations (3)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JPS5334457A (en) * | 1976-09-13 | 1978-03-31 | Toshiba Corp | Manufacture for face plate |
JPS54141388A (en) * | 1978-04-25 | 1979-11-02 | Hitachi Cable Ltd | Production of compound semiconductor single crystal |
JPS57129899A (en) * | 1981-01-30 | 1982-08-12 | Hitachi Cable Ltd | Manufacture of single crystal of 3-5 group compound semiconductor |
-
1981
- 1981-12-28 JP JP21269281A patent/JPS58115100A/en active Granted
Patent Citations (3)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JPS5334457A (en) * | 1976-09-13 | 1978-03-31 | Toshiba Corp | Manufacture for face plate |
JPS54141388A (en) * | 1978-04-25 | 1979-11-02 | Hitachi Cable Ltd | Production of compound semiconductor single crystal |
JPS57129899A (en) * | 1981-01-30 | 1982-08-12 | Hitachi Cable Ltd | Manufacture of single crystal of 3-5 group compound semiconductor |
Also Published As
Publication number | Publication date |
---|---|
JPH0329759B2 (en) | 1991-04-25 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
JP4844428B2 (en) | Method for producing sapphire single crystal | |
JP4174086B2 (en) | Seed and fluoride crystals for crystal growth | |
JP2008056518A (en) | Method for producing sapphire single crystal | |
JP4844429B2 (en) | Method for producing sapphire single crystal | |
JPS58115100A (en) | Preparation of single crystal of inorganic compound | |
JP4407188B2 (en) | Silicon wafer manufacturing method and silicon wafer | |
JP2010064936A (en) | Method for producing semiconductor crystal | |
JP7128124B2 (en) | Polycrystalline silicon rod, polycrystalline silicon rod and manufacturing method thereof | |
Khattak et al. | Recent developments in sapphire growth by heat exchanger method (HEM) | |
JP2006151745A (en) | Method for producing single crystal and oxide single crystal obtained by using the same | |
JP2021031342A (en) | Production method of lithium tantalate single crystal | |
JP2021031341A (en) | Production method of lithium tantalate single crystal | |
CN110644043A (en) | Large-size artificial alumina doped colored gemstone and production method thereof | |
JPH04362084A (en) | Wafer preparation of semiconductor material | |
KR100907184B1 (en) | Quartz crucible for grower of single crystal and fabrication method thereof | |
JPH0449185Y2 (en) | ||
JP2809364B2 (en) | Method for producing lithium tetraborate single crystal | |
KR920007340B1 (en) | Manufacturing method of 3-4 compound material semiconductor crystal | |
JPS61242983A (en) | Production of semiconductor single crystal rod | |
JPS5997591A (en) | Method and apparatus for growing single crystal | |
JP2005132717A (en) | Compound semiconductor single crystal and its manufacturing method | |
JPH1087306A (en) | Pyrolytic boron nitride vessel | |
JPH0346433B2 (en) | ||
JPS61132599A (en) | Method for producing group iii-v single crystal, and part therefor | |
JPS63107887A (en) | Crucible for pulling up single crystal |