JPS58115100A - Preparation of single crystal of inorganic compound - Google Patents

Preparation of single crystal of inorganic compound

Info

Publication number
JPS58115100A
JPS58115100A JP21269281A JP21269281A JPS58115100A JP S58115100 A JPS58115100 A JP S58115100A JP 21269281 A JP21269281 A JP 21269281A JP 21269281 A JP21269281 A JP 21269281A JP S58115100 A JPS58115100 A JP S58115100A
Authority
JP
Japan
Prior art keywords
single crystal
boat
growth
wafer
preparation
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP21269281A
Other languages
Japanese (ja)
Other versions
JPH0329759B2 (en
Inventor
Fumio Orito
文夫 折戸
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Mitsubishi Kasei Polytec Co
Original Assignee
Mitsubishi Monsanto Chemical Co
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Mitsubishi Monsanto Chemical Co filed Critical Mitsubishi Monsanto Chemical Co
Priority to JP21269281A priority Critical patent/JPS58115100A/en
Publication of JPS58115100A publication Critical patent/JPS58115100A/en
Publication of JPH0329759B2 publication Critical patent/JPH0329759B2/ja
Granted legal-status Critical Current

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C30CRYSTAL GROWTH
    • C30BSINGLE-CRYSTAL GROWTH; UNIDIRECTIONAL SOLIDIFICATION OF EUTECTIC MATERIAL OR UNIDIRECTIONAL DEMIXING OF EUTECTOID MATERIAL; REFINING BY ZONE-MELTING OF MATERIAL; PRODUCTION OF A HOMOGENEOUS POLYCRYSTALLINE MATERIAL WITH DEFINED STRUCTURE; SINGLE CRYSTALS OR HOMOGENEOUS POLYCRYSTALLINE MATERIAL WITH DEFINED STRUCTURE; AFTER-TREATMENT OF SINGLE CRYSTALS OR A HOMOGENEOUS POLYCRYSTALLINE MATERIAL WITH DEFINED STRUCTURE; APPARATUS THEREFOR
    • C30B29/00Single crystals or homogeneous polycrystalline material with defined structure characterised by the material or by their shape
    • C30B29/10Inorganic compounds or compositions
    • C30B29/40AIIIBV compounds wherein A is B, Al, Ga, In or Tl and B is N, P, As, Sb or Bi
    • CCHEMISTRY; METALLURGY
    • C30CRYSTAL GROWTH
    • C30BSINGLE-CRYSTAL GROWTH; UNIDIRECTIONAL SOLIDIFICATION OF EUTECTIC MATERIAL OR UNIDIRECTIONAL DEMIXING OF EUTECTOID MATERIAL; REFINING BY ZONE-MELTING OF MATERIAL; PRODUCTION OF A HOMOGENEOUS POLYCRYSTALLINE MATERIAL WITH DEFINED STRUCTURE; SINGLE CRYSTALS OR HOMOGENEOUS POLYCRYSTALLINE MATERIAL WITH DEFINED STRUCTURE; AFTER-TREATMENT OF SINGLE CRYSTALS OR A HOMOGENEOUS POLYCRYSTALLINE MATERIAL WITH DEFINED STRUCTURE; APPARATUS THEREFOR
    • C30B11/00Single-crystal growth by normal freezing or freezing under temperature gradient, e.g. Bridgman-Stockbarger method
    • C30B11/14Single-crystal growth by normal freezing or freezing under temperature gradient, e.g. Bridgman-Stockbarger method characterised by the seed, e.g. its crystallographic orientation

Landscapes

  • Chemical & Material Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Crystallography & Structural Chemistry (AREA)
  • Materials Engineering (AREA)
  • Metallurgy (AREA)
  • Organic Chemistry (AREA)
  • Inorganic Chemistry (AREA)
  • Crystals, And After-Treatments Of Crystals (AREA)
  • Liquid Deposition Of Substances Of Which Semiconductor Devices Are Composed (AREA)

Abstract

PURPOSE:To obtain a disc-shaped single crystal wafer having large diameter, by specifying the relations between the direction of the long axis of the boat, the <111> direction and the (110) face in the preparation of a single crystal of a III-V group compound by boat growth process. CONSTITUTION:The symbols 2, 3, 4 and 5 represent the single crystal of a III-V group compound obtained by the boat growth process, the direction of the long axis of the boat or the direction of the growth of the single crystal, the <111> direction, and the upper surface or free surface of the single crystal, respectively. In the preparation of the single crystal 2, the directions 3 and 4 are adjusted to be included essentially in the (110) face, and the direction 4 is titled from the direction 3 toward the bottom of the boat by <=5 deg.. When the angle of tilt exceeds 5 deg., the obtained wafer is distorted. A disc-shaped (100) face III-V group compound wafer having a diameter of >40mm. can be manufactured by the present process from a single crystal obtained by the use of a boat having a diameter of about 50mm..

Description

【発明の詳細な説明】 素からなる無機化合物(以下r ut−v族化合物」と
いう。)の単結晶の製造方法に関する。
DETAILED DESCRIPTION OF THE INVENTION The present invention relates to a method for producing a single crystal of an inorganic compound (hereinafter referred to as a "rut-v group compound").

m−’v族化合物、特に、 GaAsの単結晶は、一般
に温度傾斜法(GF法)、水平ブリッジマン法(HB法
)等のボート成長法によシ製造される。
Single crystals of m-'v group compounds, particularly GaAs, are generally produced by boat growth methods such as the temperature gradient method (GF method) and the horizontal Bridgman method (HB method).

も簡単であるという特長があるが、得られた単結晶から
切り出したウエノ・は、半円状の形状を有するので、か
かるウェハを用いた場合FET。
However, since the wafer cut from the obtained single crystal has a semicircular shape, when such a wafer is used, it can be used as an FET.

I’C等の素子の製造工程を一自動化し難いという難点
があった。
There is a problem in that it is difficult to automate the manufacturing process of elements such as I'C.

一般にボート成長法では、単結晶の品質、収率等の点か
ら、<///>方向が成長方向、すなわちボートの成長
方向と一致し、かつ(/10)面が鉛直面に一致するよ
うに選ばれる。このような単結晶から切り出されたウニ
・・は第1図に平面はボート成長法により得られた単結
晶から切シ   ′出シたウエノ・である。ボートの直
径は通常はjO1lII+程度であるので、このボート
により得られるおむすび形のウエノ・から円形のウエノ
・を切り出すときは直径36m程度の円形(100)面
つエバが得られるに過ぎなかった。またボートの直径を
大きくすることは、電気炉を大型にする必要があること
、単結晶収率が低下すること等 4の問題があった。
In general, in the boat growth method, from the viewpoint of single crystal quality, yield, etc., the <///> direction coincides with the growth direction, that is, the boat growth direction, and the (/10) plane coincides with the vertical plane. selected. The plane of the sea urchin cut out from such a single crystal is shown in FIG. 1, which is cut out from a single crystal obtained by the boat growth method. Since the diameter of the boat is usually about jO1lII+, when cutting a circular ueno from the rice ball-shaped ueno obtained by using this boat, only a circular (100)-sided eba with a diameter of about 36 m can be obtained. In addition, increasing the diameter of the boat had four problems, including the need to increase the size of the electric furnace and a decrease in single crystal yield.

本発明者は、従来よりも大きな直径の円形を八 有する■−■族化合物単結晶ウニ・を製造し得る方法を
開発することを目的として鋭意研究を重ねた結果本発明
に到達したものである。
The present inventor has arrived at the present invention as a result of intensive research aimed at developing a method for producing a single crystal sea urchin, a compound of the ■-■ group, which has eight circular shapes with a larger diameter than conventional methods. .

本発明の上記の目的は■−v族化合物の単結晶をボート
成長法により製造する方法において、単結晶成長用ボー
トの長軸方向及び<///>方向が(/10)面に実質
的に含まれ、かつ、上記<//ケ方向が上記長軸方向と
7以内の角度をなすように、上記< /// >方向を
上記ボートの底面の方向に傾けたことを特徴とする方法
により達せられる。
The above object of the present invention is to provide a method for producing a single crystal of a V-group compound by a boat growth method, in which the major axis direction and the <///> direction of the single crystal growth boat are substantially aligned with the (/10) plane. , and the method is characterized by tilting the < /// > direction toward the bottom of the boat so that the < /// direction makes an angle of 7 or less with the major axis direction. This can be achieved by

本発明を図面に基づいて説明する。The present invention will be explained based on the drawings.

第2図はボート成長法により得られたI−■族化合物単
結晶の部分斜視図である。
FIG. 2 is a partial perspective view of a single crystal of a group I-■ compound obtained by the boat growth method.

第2図で、2はボート成長法により得られた長円ボート
の長軸方向、すなわち、単結晶の成長方向である。矢印
ダは<///>方向を示す。jは、単結晶の上面いわゆ
るフリー面である。
In FIG. 2, 2 is the long axis direction of the elliptical boat obtained by the boat growth method, that is, the growth direction of the single crystal. Arrow d indicates the <///> direction. j is the upper surface of the single crystal, the so-called free surface.

本発明方法によりI−V族化合物単結晶を製造するには
、長袖方向3及び(/// >方向Vが、実質的に(i
io)面内に含まれ、かつ、グが3に対してボートの底
面の方向に50以内の角度をなすように傾ける。この場
合、2〜グ0の範囲がより好ましく、j″を超えると結
晶性が劣化し単結晶の収率が減少する。また、3及びグ
を含む平面が(iio )面と50以内の角度をなすこ
とが望ましく、joを超えるとウエノ・の形がゆがむの
で好ましくない。
In order to produce a group IV compound single crystal by the method of the present invention, long sleeve direction 3 and (/// > direction V are substantially (i
io) included in the plane and tilted so that the angle makes an angle of less than 50 with respect to 3 towards the bottom of the boat; In this case, the range of 2 to 0 is more preferable, and if it exceeds j'', the crystallinity will deteriorate and the yield of single crystal will decrease. It is desirable to have a shape of 0. If it exceeds jo, the shape of ueno will be distorted, so it is not preferable.

単結晶の成長方法は、通常のボート成長法、例えば、G
F法、HB法等により行なわれる。
The single crystal growth method is the usual boat growth method, for example, G
This is carried out by the F method, HB method, etc.

本発明方法によれば、50m程度の直径のボートを用い
て製造された単結晶を用いても直径≠0III+ヲ超え
る円形の(IOの面111−V族化合物ウニ・・全製造
することができるので、大型の電気炉を必要とせず、さ
らに単結晶の収率が劣化しやすい大型のボートを使用す
る必要がなくなり産業上の利用価値は極めて大である。
According to the method of the present invention, even if a single crystal produced using a boat with a diameter of about 50 m is used, it is possible to produce a circular (IO surface 111-V group compound sea urchin) whose diameter exceeds ≠0III+. Therefore, there is no need for a large electric furnace, and furthermore, there is no need to use a large boat, which tends to deteriorate the yield of single crystals, so the industrial value is extremely great.

次に、実施例に基づいて本発−明をさらに具体的に説明
する。
Next, the present invention will be explained in more detail based on Examples.

実施例 第3図に縦断正面模型図を示すGF法単結晶製造装置に
よりGaAs単結晶を成長させた。第3図において、6
は単結晶成長用石英ボート。
EXAMPLE A GaAs single crystal was grown using a GF method single crystal manufacturing apparatus whose vertical cross-sectional front model is shown in FIG. In Figure 3, 6
is a quartz boat for single crystal growth.

7はボート6の種結晶を載置する部分である。7 is a part of the boat 6 on which the seed crystal is placed.

♂はボート6を封入した石英製封管、りはAsでおって
GaAsが融点付近で分解するのを防止するため電気炉
ioにより約tio℃に加熱される。/lは、ボート6
を加熱する電気炉であって、必要な温度勾配を得るため
に、グ個の部分に分割して制御される。12は温度勾配
をなだらかにするために用いられるSiC製の炉心管で
おる。
♂ is a sealed quartz tube in which the boat 6 is enclosed, and ♂ is made of As and heated to about tio° C. in an electric furnace IO to prevent GaAs from decomposing near its melting point. /l is boat 6
It is an electric furnace for heating the furnace, which is divided into several parts and controlled in order to obtain the required temperature gradient. 12 is a SiC furnace core tube used to smooth the temperature gradient.

直径jO藺断面が半円形、長さ3ざθ閣の石英ボートに
、多結晶GaAsを/!OQ?チャージした。これに8
1を0..2f添加した。 ボート6、の種結晶載置部
7に種結晶を載置し、(/10)面が鉛直面に一致し、
かつ<///>A8方向及びボート乙の長軸方向が前記
(/10 )面に含まれ、かつ(iti >A8方向が
長軸方向から下方へ≠0傾く7ように成長方向を規定し
た。
Polycrystalline GaAs is placed in a quartz boat with a semicircular cross section and a length of 3 squares. OQ? I charged it. 8 to this
1 to 0. .. 2f was added. Place the seed crystal on the seed crystal placement part 7 of the boat 6, so that the (/10) plane coincides with the vertical plane,
and<///>The growth direction is defined such that the A8 direction and the long axis direction of the boat A are included in the (/10) plane, and the (iti>A8 direction is tilted downward by ≠0 from the long axis direction). .

上記ボートを石英封管にAsとともに封入した。The above boat was sealed together with As in a quartz sealed tube.

この封管を電気炉に装入し、電気炉ioをtsi。This sealed tube is charged into an electric furnace, and the electric furnace IO is heated.

℃とした。また、電気炉//については、ボート6の種
結晶部を/230℃、他の末端が1210℃、その間の
温度分布が実質上、直線となるように制御した。
℃. Further, regarding the electric furnace //, the seed crystal part of the boat 6 was controlled at /230°C and the other end at 1210°C, so that the temperature distribution therebetween was substantially linear.

電気炉各部が所定の温度に達した後、o、j’c/時間
の降温速度で電気炉/lを降温させた。
After each part of the electric furnace reached a predetermined temperature, the temperature of the electric furnace/l was lowered at a temperature lowering rate of o, j'c/hour.

得られた単結晶から(ioo)面ウェハを切り出し、該
ウェハから直径’I1mの円形ウェハを得ることができ
た。得られたウェハのエッチピット密度(EPD )は
7. j X’ / 03/cry!であツタ。
An (ioo) plane wafer was cut from the obtained single crystal, and a circular wafer with a diameter of 1 m was obtained from the wafer. The etch pit density (EPD) of the obtained wafer was 7. j X' / 03/cry! And ivy.

【図面の簡単な説明】 第1図はボート成長法単結晶から切り出したウェハの平
面図である。第2図はボート成長法により得られた単結
晶の部分斜視図である。 第3図はGF法単結晶製造装置の縦断正面模型図であ゛
る。 l・・・・・・・・ウェハ 3・・・・・・・・ボートの長軸方向 ≠・・・・・・・・<///>方向 特許出願人   三菱モンサント化成株式会社代 理 
人  弁理士 長谷用   −(ほか7名)
BRIEF DESCRIPTION OF THE DRAWINGS FIG. 1 is a plan view of a wafer cut from a boat-grown single crystal. FIG. 2 is a partial perspective view of a single crystal obtained by the boat growth method. FIG. 3 is a vertical cross-sectional front model view of the GF method single crystal manufacturing apparatus. l...Wafer 3...Boat's long axis direction ≠...
Person Patent Attorney Hase - (7 others)

Claims (1)

【特許請求の範囲】[Claims] 周期律表第■族元素及び第V族元素からなる無機化合物
の単結晶をボート成長法により製造する方法において、
単結晶成長用ボートの長袖方向及び</I//>方向が
(llO)面内に実質的に含まれ、かつ、上記<///
>方向と上記長軸方向が50以内の角度をなすように上
記<///>方向を上記ボートの底面の方向に傾けたこ
とを特徴とする方法。
In a method for producing a single crystal of an inorganic compound consisting of a Group I element and a Group V element of the periodic table by a boat growth method,
The long sleeve direction and the </I//> direction of the single crystal growth boat are substantially included in the (llO) plane, and the above <///
A method characterized in that the <///> direction is tilted toward the bottom of the boat such that the > direction and the major axis direction form an angle of 50 or less.
JP21269281A 1981-12-28 1981-12-28 Preparation of single crystal of inorganic compound Granted JPS58115100A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP21269281A JPS58115100A (en) 1981-12-28 1981-12-28 Preparation of single crystal of inorganic compound

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP21269281A JPS58115100A (en) 1981-12-28 1981-12-28 Preparation of single crystal of inorganic compound

Publications (2)

Publication Number Publication Date
JPS58115100A true JPS58115100A (en) 1983-07-08
JPH0329759B2 JPH0329759B2 (en) 1991-04-25

Family

ID=16626842

Family Applications (1)

Application Number Title Priority Date Filing Date
JP21269281A Granted JPS58115100A (en) 1981-12-28 1981-12-28 Preparation of single crystal of inorganic compound

Country Status (1)

Country Link
JP (1) JPS58115100A (en)

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5334457A (en) * 1976-09-13 1978-03-31 Toshiba Corp Manufacture for face plate
JPS54141388A (en) * 1978-04-25 1979-11-02 Hitachi Cable Ltd Production of compound semiconductor single crystal
JPS57129899A (en) * 1981-01-30 1982-08-12 Hitachi Cable Ltd Manufacture of single crystal of 3-5 group compound semiconductor

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5334457A (en) * 1976-09-13 1978-03-31 Toshiba Corp Manufacture for face plate
JPS54141388A (en) * 1978-04-25 1979-11-02 Hitachi Cable Ltd Production of compound semiconductor single crystal
JPS57129899A (en) * 1981-01-30 1982-08-12 Hitachi Cable Ltd Manufacture of single crystal of 3-5 group compound semiconductor

Also Published As

Publication number Publication date
JPH0329759B2 (en) 1991-04-25

Similar Documents

Publication Publication Date Title
JP4844428B2 (en) Method for producing sapphire single crystal
JP4174086B2 (en) Seed and fluoride crystals for crystal growth
JP2008056518A (en) Method for producing sapphire single crystal
JP4844429B2 (en) Method for producing sapphire single crystal
JPS58115100A (en) Preparation of single crystal of inorganic compound
JP4407188B2 (en) Silicon wafer manufacturing method and silicon wafer
JP2010064936A (en) Method for producing semiconductor crystal
JP7128124B2 (en) Polycrystalline silicon rod, polycrystalline silicon rod and manufacturing method thereof
Khattak et al. Recent developments in sapphire growth by heat exchanger method (HEM)
JP2006151745A (en) Method for producing single crystal and oxide single crystal obtained by using the same
JP2021031342A (en) Production method of lithium tantalate single crystal
JP2021031341A (en) Production method of lithium tantalate single crystal
CN110644043A (en) Large-size artificial alumina doped colored gemstone and production method thereof
JPH04362084A (en) Wafer preparation of semiconductor material
KR100907184B1 (en) Quartz crucible for grower of single crystal and fabrication method thereof
JPH0449185Y2 (en)
JP2809364B2 (en) Method for producing lithium tetraborate single crystal
KR920007340B1 (en) Manufacturing method of 3-4 compound material semiconductor crystal
JPS61242983A (en) Production of semiconductor single crystal rod
JPS5997591A (en) Method and apparatus for growing single crystal
JP2005132717A (en) Compound semiconductor single crystal and its manufacturing method
JPH1087306A (en) Pyrolytic boron nitride vessel
JPH0346433B2 (en)
JPS61132599A (en) Method for producing group iii-v single crystal, and part therefor
JPS63107887A (en) Crucible for pulling up single crystal