JPS61242983A - Production of semiconductor single crystal rod - Google Patents

Production of semiconductor single crystal rod

Info

Publication number
JPS61242983A
JPS61242983A JP8199285A JP8199285A JPS61242983A JP S61242983 A JPS61242983 A JP S61242983A JP 8199285 A JP8199285 A JP 8199285A JP 8199285 A JP8199285 A JP 8199285A JP S61242983 A JPS61242983 A JP S61242983A
Authority
JP
Japan
Prior art keywords
crystal
single crystal
crystal rod
seed
plane
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP8199285A
Other languages
Japanese (ja)
Inventor
Hirotoshi Yamagishi
浩利 山岸
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Shin Etsu Handotai Co Ltd
Original Assignee
Shin Etsu Handotai Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Shin Etsu Handotai Co Ltd filed Critical Shin Etsu Handotai Co Ltd
Priority to JP8199285A priority Critical patent/JPS61242983A/en
Publication of JPS61242983A publication Critical patent/JPS61242983A/en
Pending legal-status Critical Current

Links

Landscapes

  • Crystals, And After-Treatments Of Crystals (AREA)
  • Liquid Deposition Of Substances Of Which Semiconductor Devices Are Composed (AREA)

Abstract

PURPOSE:To eliminate the cutting loss in the slicing of wafers and to improve the yield in the growth of a single crystal rod by pulling-up process of floating zone process, by inclining the seed crystal rod from the principal crystal orientation by a necessary angle. CONSTITUTION:In the growth of a single crystal rod by the pulling-up process or floating zone process, the seed crystal having a crystal axis deviated slightly from the <100> or <111> plane is used as the seed. The deviation is 4+ or -2 deg. from the <100> plane or 3+ or -1 deg. from the <111> plane. A wafer having principal plane inclined from the <100> or <111> plane by 4 deg. or 3 deg. can be produced by slicing the single crystal rod grown from the seed crystal nearly perpendicularly to the axis of growth.

Description

【発明の詳細な説明】 11五度机肛九乱 本発明は半導体単結晶棒、たとえばシリコン、ゲルマニ
ウム、化合物半導体単結晶棒などを引上法または浮遊帯
域法により製造する方法に関するもので、特に結晶方位
を特定化した種結晶を使用する方法に係るものである。
DETAILED DESCRIPTION OF THE INVENTION The present invention relates to a method for manufacturing semiconductor single crystal rods, such as silicon, germanium, compound semiconductor single crystal rods, etc., by a pulling method or a floating zone method. The present invention relates to a method using a seed crystal with a specified crystal orientation.

災來列技先 チョクラルスキー法によりシリコン、ゲルマニウムなど
の単結晶棒を育成する方法は公知であり、また化合物半
導体たとえばGaAs、OaPなとのm−v族化合物半
導体を液体封止引上法(LEC法)で育成する方法も周
知である。とくに高純度化を目的とする場合に、シリコ
ン単結晶を育成する方法として浮遊帯域法(FZ法)が
知られている。
A method of growing single crystal bars of silicon, germanium, etc. by the Czochralski method is well known, and a method of growing a single crystal rod of silicon, germanium, etc. by the Czochralski method is also known. (LEC method) is also well known. The floating zone method (FZ method) is known as a method for growing silicon single crystals, especially when the purpose is to achieve high purity.

これらの場合、単結晶棒は通常主要成長軸たとえば<1
00>または(111)方位に沿って引上げられたのち
、ウェーハに切断され、エツチング、鏡面研磨などの工
程を経て半導体素子の加工に供される。
In these cases, single crystal rods usually have a main growth axis e.g. <1
After being pulled up along the 00> or (111) direction, the wafers are cut into wafers and subjected to processes such as etching and mirror polishing to be used for processing semiconductor devices.

°nが  しようとする、l]  、 この単結晶ウェーハは、目的とする半導体装置によって
は、主要成長軸いいかえると主表面が(100)または
(111)面から若干傾斜した結晶面を有することを要
求され、(100)結晶ウェーハについては4°、(1
11)結晶ウェーハについては3″の傾斜が必要とされ
る。この場合には、単結晶棒からとのウェーハを切り出
す際に、当然ながらウェーハの結晶方位をそれぞれ主軸
から4゜もしくは3°傾けて切り出す必要があり−この
傾斜切断に伴って単結晶の損失が起る。たとえば。
Depending on the target semiconductor device, this single crystal wafer may have a crystal plane whose main surface is slightly inclined from the (100) or (111) plane, in other words, the main growth axis. 4° for (100) crystal wafers, (1
11) For crystalline wafers, a tilt of 3" is required. In this case, when cutting the wafer from a single crystal bar, the crystal orientation of the wafer is of course tilted by 4° or 3° from the main axis, respectively. It is necessary to cut - this oblique cutting is accompanied by a loss of single crystal, e.g.

直径dの単結晶を切断傾角4°で切断すると、その切断
損失りはL=d tan4@で表されるので。
When a single crystal with diameter d is cut at a cutting angle of 4°, the cutting loss is expressed as L=d tan4@.

dが150mmのときLは10.5m+、dが200閣
のときLは14.0mmとなる。この損失はウェーハが
大口径化するにしたがい大きくなり、製品のコストにお
よぼす影響はきわめて大きい。
When d is 150 mm, L is 10.5 m+, and when d is 200 mm, L is 14.0 mm. This loss increases as the diameter of the wafer increases, and the impact on the cost of the product is extremely large.

。  、を  するための 本発明は上述のような不利を解決するため、半導体装置
において最も要求度の高い(100)方位から4°傾け
た結晶、および(111)方位から3°傾けた結晶を歩
留り良く得る方法について種々研究の結果なされたもの
で、種結晶棒自体を主要結晶方位から必要角度傾斜させ
て使用することにより、この目的を達し得るとの知見に
基いている。すなわち引上法あるいは浮遊帯域法により
単結晶棒を育成する方法において、結晶軸の方向が<i
oo>方位もしくは(111)方位から、わずかに傾斜
した方位を有する種結晶を使用することを特徴とする半
導体単結晶棒の製造方法である。
. In order to solve the above-mentioned disadvantages, the present invention provides a crystal tilted by 4 degrees from the (100) orientation, which is the most demanding in semiconductor devices, and a crystal tilted by 3 degrees from the (111) orientation. This was done as a result of various studies on how to obtain a good crystal orientation, and is based on the knowledge that this objective can be achieved by using the seed crystal rod itself at a required angle from the main crystal orientation. In other words, in the method of growing single crystal rods by the pulling method or the floating zone method, the direction of the crystal axis is <i
This method of manufacturing a semiconductor single crystal rod is characterized in that a seed crystal having an orientation slightly tilted from the oo> orientation or the (111) orientation is used.

前記(100)方位もしくは(111)方位から、わず
かに傾斜させるとは、それぞれ4°を中心にして±2″
′以内、もしくは3″を中心にして±1″1″傾斜させ
ることである。これらの範囲をはずれた傾斜を与えると
、従来法におけるごとく<100〉方位もしくは(11
1)方位から±30′以内に精度良く切り出された種結
晶を使用して引上げ、かつ切断する方法に較べて歩留り
的に有意差がないことによる。
Slightly tilting from the (100) direction or (111) direction means ±2'' with a center of 4 degrees, respectively.
If the slope is outside these ranges, it will be tilted in the <100> direction or (11) as in the conventional method.
1) There is no significant difference in yield compared to the method of pulling and cutting using a seed crystal that is precisely cut within ±30' from the orientation.

つぎに本発明を、シリコン単結晶棒の引上法を例にして
さらに詳しく述べる。まず第1図に示すように、(00
1)の方位を有するシリコン単結晶を主軸の(001)
方位から(100)の方位に向けて4″傾けて切り出し
、太さ110m1X10++、長さ60m+の種結晶棒
を作製した。ついで、これを引上機の種保持部に固定し
、石英ルツボ中の溶融シリコンに浸漬した抜栓々に引上
げ、直径125mのシリコン単結晶棒を育成した。この
シリコン単結晶棒を成長軸にほぼ垂直に切断してウェー
ハを切り出したところ、すべてのウェーハは(0013
方向から(100)方向に4@傾いており、切断損失は
全くなかった。この傾きは、第2図に示すように、単結
晶棒の側面に現われた晶癖線間の間隔a、b、b′、C
の間に、a(b”b’(cという関係があることから明
らかに認められた。
Next, the present invention will be described in more detail using a method of pulling a silicon single crystal rod as an example. First, as shown in Figure 1, (00
1) Silicon single crystal with main axis (001)
A seed crystal rod with a thickness of 110 m 1 x 10 ++ and a length of 60 m + was produced by cutting it at an angle of 4 inches toward the (100) direction.Next, this was fixed to the seed holding part of the pulling machine and placed in a quartz crucible. A silicon single-crystal rod with a diameter of 125 m was grown by lifting it into a plug immersed in molten silicon.When this silicon single-crystal rod was cut almost perpendicular to the growth axis to cut out wafers, all wafers were (0013
It was tilted 4@ in the (100) direction, and there was no cutting loss at all. As shown in Figure 2, this slope is determined by the distances a, b, b', C
It was clearly recognized that there is a relationship between a(b"b'(c).

また、この結晶成長に際しては、不純物ムラに起因する
ストライエーションは、結晶成長軸に対して同心円状を
呈していた。これに対し従来法のように、結晶成長軸を
(100)±30′の方位に引上げ育成した結晶棒を、
主軸から4°傾けて切断したウェーハには同心円状のス
トライエーションはみられず、明らかに本発明によるも
のとは異なるものであった。
Further, during this crystal growth, striations caused by impurity unevenness had a concentric circular shape with respect to the crystal growth axis. On the other hand, as in the conventional method, a crystal rod grown by pulling the crystal growth axis in the (100) ± 30' direction,
No concentric striations were observed in the wafer cut at an angle of 4° from the main axis, which clearly differed from the one according to the present invention.

なお、上記の実施例は結晶軸の方向が(III)方位か
ら3°傾けた方位を有する種結晶を使用した場合も晶癖
線間の間隔が各々異なり、かつ同心円状のストライエー
ションがみられるような単結晶棒が得られた。
In addition, in the above example, even when using a seed crystal whose crystal axis direction is tilted by 3 degrees from the (III) direction, the intervals between the habit lines are different, and concentric striations are observed. A single crystal rod was obtained.

本発明の方法は、チョクラルスキー法により種結晶を使
用して融体からシリコン、ゲルマニウムなどの単結晶棒
を引上げ育成する場合、液体封止法(LEC法)により
融体から(3aAs、GaPなどの化合物半導体棒を引
上げ育成する場合、浮遊帯域単結晶育成法によりたとえ
ばシリコン単結晶棒を育成する場合に有利に適用される
In the method of the present invention, when pulling and growing a single crystal rod of silicon, germanium, etc. from a melt using a seed crystal using the Czochralski method, the method of the present invention can be used to grow a single crystal rod of silicon, germanium, etc. from a melt using a liquid confinement method (LEC method). This method is advantageously applied when pulling and growing a compound semiconductor rod such as, for example, a silicon single crystal rod using the floating zone single crystal growth method.

l胛夙夏釆 本発明の方法によれば、融体からの引上法または浮遊帯
域法に使用する種結晶として、(100)方向もしくは
(111)方向かられずかに傾斜させたものを使用する
ことにより、目的とする結晶方位の単結晶棒が得られる
ので、ウェーハ切り出し時における切断損失がなく、歩
留り良く単結晶つエーハを製造することができる。
According to the method of the present invention, a seed crystal that is slightly tilted from the (100) direction or the (111) direction is used as the seed crystal used in the pulling method from the melt or the floating zone method. By doing so, a single crystal rod having the desired crystal orientation can be obtained, so that there is no cutting loss when cutting out the wafer, and single crystal wafers can be manufactured with a high yield.

【図面の簡単な説明】[Brief explanation of drawings]

第1図は、本発明による種結晶の結晶軸方向を示す斜視
図であり、第2図は実施例における単結晶棒の晶癖線間
の間隔を示す横断面図である。 特許出願人 信越半導体株式会社 第1図 中011 第2図
FIG. 1 is a perspective view showing the crystal axis direction of a seed crystal according to the present invention, and FIG. 2 is a cross-sectional view showing the spacing between habit lines of a single crystal rod in an example. Patent applicant: Shin-Etsu Semiconductor Co., Ltd. 011 in Figure 1 Figure 2

Claims (1)

【特許請求の範囲】 1)引上法あるいは浮遊帯域法により単結晶棒を育成す
る方法において、結晶軸の方向が〈100〉方位もしく
は〈111〉方位から、わずかに傾斜した方位を有する
種結晶を使用することを特徴とする半導体単結晶棒の製
造方法。 2)結晶軸の方向が〈100〉方位から4°またはその
±2°傾斜した方位を有する種結晶を使用することを特
徴とする特許請求の範囲第1項記載の方法。 3)結晶軸の方向が〈111〉方位から3°またはその
±1°傾斜した方位を有する種結晶を使用することを特
徴とする特許請求の範囲第1項記載の方法。
[Claims] 1) A seed crystal whose crystal axis direction is slightly inclined from the <100> direction or the <111> direction, in a method of growing a single crystal rod by a pulling method or a floating zone method. A method for manufacturing a semiconductor single crystal rod, characterized by using. 2) The method according to claim 1, characterized in that a seed crystal whose crystal axis direction is tilted by 4° or ±2° from the <100> orientation is used. 3) The method according to claim 1, characterized in that a seed crystal whose crystal axis direction is tilted by 3° or ±1° from the <111> orientation is used.
JP8199285A 1985-04-17 1985-04-17 Production of semiconductor single crystal rod Pending JPS61242983A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP8199285A JPS61242983A (en) 1985-04-17 1985-04-17 Production of semiconductor single crystal rod

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP8199285A JPS61242983A (en) 1985-04-17 1985-04-17 Production of semiconductor single crystal rod

Publications (1)

Publication Number Publication Date
JPS61242983A true JPS61242983A (en) 1986-10-29

Family

ID=13761969

Family Applications (1)

Application Number Title Priority Date Filing Date
JP8199285A Pending JPS61242983A (en) 1985-04-17 1985-04-17 Production of semiconductor single crystal rod

Country Status (1)

Country Link
JP (1) JPS61242983A (en)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS63123893A (en) * 1986-11-13 1988-05-27 Mitsubishi Metal Corp Production of silicon single crystal
JP2016186956A (en) * 2015-03-27 2016-10-27 株式会社Sumco Method of manufacturing silicon wafer
JP2018198331A (en) * 2018-09-05 2018-12-13 株式会社Sumco Method for manufacturing silicon wafer

Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS56109896A (en) * 1980-02-01 1981-08-31 Hitachi Ltd Semiconductor single crystal and its growing method

Patent Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS56109896A (en) * 1980-02-01 1981-08-31 Hitachi Ltd Semiconductor single crystal and its growing method

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS63123893A (en) * 1986-11-13 1988-05-27 Mitsubishi Metal Corp Production of silicon single crystal
JP2016186956A (en) * 2015-03-27 2016-10-27 株式会社Sumco Method of manufacturing silicon wafer
JP2018198331A (en) * 2018-09-05 2018-12-13 株式会社Sumco Method for manufacturing silicon wafer

Similar Documents

Publication Publication Date Title
EP0445036B1 (en) Polycrystalline silicon rod for floating zone method and process for making the same
TWI301160B (en)
JPS61242983A (en) Production of semiconductor single crystal rod
JP2848067B2 (en) Seed crystal of silicon single crystal
US6491753B2 (en) Method for the growing of single crystals
JP4407188B2 (en) Silicon wafer manufacturing method and silicon wafer
JPH04362084A (en) Wafer preparation of semiconductor material
JP3787888B2 (en) Crystal growth method and growth crucible
JP2001031494A (en) Production of silicon single crystal wafer
US4217167A (en) Method of growing large low defect, monocrystals of BeO
JPS61232298A (en) Production of silicon single crystal
JPH09110575A (en) Crucible for producing single crystal and production of single crystal
US6338755B1 (en) Method for producing a single crystalline member
KR200285675Y1 (en) Semiconductor silicon ingot
JPH01115890A (en) Method for growing single crystal
JPH0818899B2 (en) Crystal growth method
JPS60200893A (en) Crucible
JP3037829B2 (en) Single crystal growing method and single crystal
JPH11274021A (en) Manufacture of wafer and &lt;111&gt; wafer manufactured thereby
JPS5848520B2 (en) Method for pulling lithium niobate single crystal
JPH0354184A (en) Crucible for crystal production
JPS6360194A (en) Method for pulling up single crystal
JPS60195098A (en) Production of lithium niobate single crystal
JP2018145078A (en) Method for growing lithium tantalate single crystal
JPH0243718B2 (en)