JP3037829B2 - Single crystal growing method and single crystal - Google Patents

Single crystal growing method and single crystal

Info

Publication number
JP3037829B2
JP3037829B2 JP4162580A JP16258092A JP3037829B2 JP 3037829 B2 JP3037829 B2 JP 3037829B2 JP 4162580 A JP4162580 A JP 4162580A JP 16258092 A JP16258092 A JP 16258092A JP 3037829 B2 JP3037829 B2 JP 3037829B2
Authority
JP
Japan
Prior art keywords
crystal
melt
growing
single crystal
seed
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP4162580A
Other languages
Japanese (ja)
Other versions
JPH061690A (en
Inventor
保典 古川
正純 佐藤
康平 伊藤
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Hitachi Metals Ltd
Original Assignee
Hitachi Metals Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Hitachi Metals Ltd filed Critical Hitachi Metals Ltd
Priority to JP4162580A priority Critical patent/JP3037829B2/en
Publication of JPH061690A publication Critical patent/JPH061690A/en
Application granted granted Critical
Publication of JP3037829B2 publication Critical patent/JP3037829B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Landscapes

  • Crystals, And After-Treatments Of Crystals (AREA)

Description

【発明の詳細な説明】DETAILED DESCRIPTION OF THE INVENTION

【0001】[0001]

【産業上の利用分野】本発明は、カイロポーラス法ある
いはTSSG法のように融液の温度を下げることにより
融液の表面下で単結晶を育成する育成法に関するもので
あり、特にはフラックス法から成長させるKTiOPO
4(KTP)、KTiOAsO4、RbTiOPO4,R
bTiOAsO4,TlTiOPO4、TlTiOAsO
4単結晶の製造方法とそれにより育成された高品質単結
晶に関するものである。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a growth method for growing a single crystal under the surface of a melt by lowering the temperature of the melt, such as a chiroporous method or a TSSG method, and more particularly to a flux method. KTiOPO grown from
4 (KTP), KTiOAsO 4 , RbTiOPO 4 , R
bTiOAsO 4 , TlTiOPO 4 , TlTiOAsO
(4) The present invention relates to a method for producing a single crystal and a high-quality single crystal grown by the method.

【0002】[0002]

【従来の技術】近年KTP単結晶およびその類似化合物
は優れた非線形光学特性を有するため各種波長変換素子
の材料として用いられてきている。従来、KTP単結晶
およびその類似化合物は500〜700℃で1000気
圧以上の高圧化で水熱合成法により育成されてきた(例
えば、米国特許3,949,323号)。なお、KTP
単結晶とは、KTiOPO4で表される単結晶であり、
KTPの類似化合物とは、KTiOAsO4、RbTi
OPO4,RbTiOAsO4,TlTiOPO4、Tl
TiOAsO4等である。しかし、水熱合成法の装置は
特殊で結晶は高価であるため、より安価で容易な結晶供
給の育成方法が検討された結果、例えば特開平1−11
9598号公報に記載のような、フラックス法による育
成法が開発されてきた。フラックス法による結晶育成で
は、フラックスとして燐酸カリウムや燐酸カリウムと酸
化タングステンを混合したものが用いられている。フラ
ックス法による結晶育成方法として従来から、主には次
の4つの方法が用いられている。第一の方法は融液全体
を徐冷して数ミリ角の結晶を坩堝の底に析出させる方法
であり、第二の方法は育成する結晶と同質の種結晶を融
液の中央付近に沈め、この融液内の種結晶に結晶を成長
させる方法でいわゆるホールデン法と呼ばれるものであ
り、第三の方法は、育成する結晶と同質の種結晶を融液
の表面につけ融液温度を徐冷して、融液表面下に結晶を
育成する方法でいわゆるカイロポーラス法と呼ばれるも
のであり、第四の方法は、育成する結晶と同質の種結晶
を融液の表面につけ、融液温度を徐冷すると共に結晶を
ゆっくり引き上げながら融液表面下に結晶を育成する方
法で、いわゆるTSSG法と呼ばれるものである。単結
晶の育成法として良く用いられるチョクラルスキー法で
は融液の結晶化は融液表面近傍の結晶と融液の界面で行
われるのに対し、カイロポーラス法やTSSG法などの
フラックス法では融液の結晶化が融液中の界面でフラッ
クスからの結晶成分の析出として行われる。このため結
晶の形状に大きな違いがみられ、チョクラルスキー法で
は円筒状であるものが、カイロポーラス法やTSSG法
等のフラックス法による育成結晶では成長容易面に囲ま
れた角柱形等の非常に特色有る形に結晶が成長する。例
えば燐酸カリウムをフラックスに用いてb軸方位に育成
したKTP結晶の外観は図1に示されたようになる。酸
化タングステンを含む燐酸カリウムを含むフラックスを
用いてb軸方向に育成した結晶では図2のようになる。
このように同結晶の同軸方位に育成した結晶でもフラッ
クスによりその外観形状は異なることが報告されている
(人工鉱物学会予稿集1990,p9)。また、軸方位
が異なれば結晶形状もまた異なるのが一般であり、X,
Y,Z軸方位からみた結晶形状の模式図を図3に示す。
(J.Crys.Growth110(1991)P6
97)カイロポーラス法やTSSG法により結晶を育成
する際、温度を非常にゆっくりと降下させていくと回転
させる種結晶の回りに結晶が徐々に析出しながら成長し
ていく。この成長は結晶径の大きさによらず図1や図2
に示したような形状異方性を持った特徴有る成長であ
る。しかしながら、従来、結晶育成に用いる種結晶は、
細長い直方体のものでその断面形状はほぼ正方形に近い
ものであり育成結晶の断面形状とは異なる形状のものが
用いられていた。また、カイロポーラス法およびTSS
G法では、シードホルダーに設置した種結晶をゆっくり
降下させてきて融液表面近傍に種結晶を付けることが通
常行われてた。但し、作業者によっては1mm程度内部
に沈めることもあると考えられるが、融液内に沈められ
る結晶の長さはについては、これまで規定されていなか
った。
2. Description of the Related Art In recent years, KTP single crystals and their analogous compounds have been used as materials for various wavelength conversion elements because of their excellent nonlinear optical characteristics. Conventionally, KTP single crystals and their analogous compounds have been grown by hydrothermal synthesis at a pressure of 500 to 700 ° C. and a pressure of at least 1000 atm (for example, US Pat. No. 3,949,323). In addition, KTP
The single crystal is a single crystal represented by KTiOPO 4 ,
Analogous compounds of KTP include KTiOAsO 4 , RbTi
OPO 4 , RbTiOAsO 4 , TlTiOPO 4 , Tl
TiOAsO 4 or the like. However, since the apparatus of the hydrothermal synthesis method is special and the crystal is expensive, a method of growing the crystal supply that is cheaper and easier is studied.
A growth method based on the flux method as described in US Pat. No. 9598 has been developed. In crystal growth by the flux method, potassium phosphate or a mixture of potassium phosphate and tungsten oxide is used as the flux. Conventionally, the following four methods have been mainly used as crystal growing methods by the flux method. The first method is to slowly cool the entire melt to precipitate crystals of several mm square at the bottom of the crucible, and the second method is to sink a seed crystal of the same quality as the crystal to be grown near the center of the melt. The so-called Holden method is a method of growing a crystal on a seed crystal in this melt, and the third method is to attach a seed crystal of the same quality as the crystal to be grown on the surface of the melt and gradually cool the melt temperature. A method for growing crystals below the surface of the melt, which is referred to as the so-called chiroporous method. In the fourth method, a seed crystal of the same quality as the crystal to be grown is attached to the surface of the melt, and the temperature of the melt is gradually reduced. A method of growing crystals below the surface of the melt while cooling and slowly pulling the crystals, which is called the TSSG method. In the Czochralski method, which is often used as a method for growing single crystals, the crystallization of the melt is performed at the interface between the crystal and the melt in the vicinity of the melt surface, whereas in the flux method such as the chiroporous method or the TSSG method, the melt is crystallized. Crystallization of the liquid takes place at the interface in the melt as precipitation of crystalline components from the flux. For this reason, there is a great difference in the shape of the crystal. In the Czochralski method, a crystal having a cylindrical shape is formed. The crystal grows in a shape having a characteristic. For example, the appearance of a KTP crystal grown in the b-axis direction using potassium phosphate as a flux is as shown in FIG. FIG. 2 shows a crystal grown in the b-axis direction using a flux containing potassium phosphate containing tungsten oxide.
It has been reported that the appearance of the crystal differs depending on the flux even in the crystal grown in the same coaxial orientation of the same crystal (Preprints of the Japan Society of Artificial Minerals 1990, p9). In general, if the axial orientation is different, the crystal shape is also different.
FIG. 3 shows a schematic diagram of the crystal shape as viewed from the Y and Z axis directions.
(J. Crys. Growth110 (1991) P6)
97) When growing a crystal by the chiroporous method or the TSSG method, when the temperature is decreased very slowly, the crystal grows while gradually depositing around the rotating seed crystal. 1 and 2 regardless of the crystal diameter.
This is a characteristic growth having shape anisotropy as shown in FIG. However, conventionally, seed crystals used for crystal growth are:
An elongated rectangular parallelepiped, whose cross-sectional shape is almost a square, and different from the cross-sectional shape of the grown crystal was used. In addition, Chiroporous method and TSS
In the G method, the seed crystal placed on the seed holder was slowly lowered to attach the seed crystal near the melt surface. However, depending on the operator, it is considered that the length of the crystal may be about 1 mm, but the length of the crystal submerged in the melt has not been specified.

【0003】[0003]

【発明が解決しようとする課題】従来のような方法で
は、高品質結晶育成に重要となる結晶育成初期に於いて
特に転位や小傾角粒界や気泡やマイクロクラックなどの
結晶欠陥が導入され易いことにより単結晶の高品質化が
困難であるとの問題があった。したがって、このような
欠陥により育成された結晶の種結晶部分は著しく結晶性
が悪く、種結晶の回りは光学的に不透明であり白濁して
いる。ある程度結晶形状が大きくなると品質は少しずつ
良くなり透明になってくるものの種結晶付近で結晶内に
導入された結晶欠陥の多くは引き継がれて行くので、結
晶品質的に問題であるのは言うまでもない。単結晶の種
結晶近傍の単結晶に発生した結晶欠陥は育成結晶に伝搬
していく傾向があるので、育成初期の欠陥発生は極力避
けなければならないことはよく知られているが、カイロ
ポーラス法およびTSSG法等の方法により融液の温度
を降下させることにより融液表面下に結晶を育成する場
合にも、これらの欠陥の発生のないシーディングと初期
結晶育成を行うことがより重要である。本発明は上記問
題点に鑑み、カイロポーラス法のように温度を降下させ
ることにより融液の表面下で単結晶を育成するに際し、
KTP単結晶及びその類似化合物単結晶をフラックスか
ら高歩留りで高品質で育成する方法およびそれによって
良質結晶を提供することを目的としたものである。
In the conventional method, crystal defects such as dislocations, small-angle grain boundaries, bubbles, and microcracks are likely to be introduced in the initial stage of crystal growth, which is important for high-quality crystal growth. As a result, there is a problem that it is difficult to improve the quality of the single crystal. Therefore, the seed crystal portion of the crystal grown by such a defect has extremely poor crystallinity, and the area around the seed crystal is optically opaque and cloudy. When the crystal shape becomes large to some extent, the quality gradually improves and becomes transparent, but since many of the crystal defects introduced into the crystal near the seed crystal are inherited, it goes without saying that this is a problem in crystal quality. . It is well known that crystal defects generated in a single crystal near the seed crystal of a single crystal tend to propagate to the grown crystal. Also, when growing a crystal below the melt surface by lowering the temperature of the melt by a method such as the TSSG method, it is more important to perform seeding and initial crystal growth without generation of these defects. . In view of the above problems, the present invention, when growing a single crystal under the surface of the melt by lowering the temperature as in the chiroporous method,
It is an object of the present invention to provide a method of growing a single crystal of KTP and its analogous compound single crystal from a flux with high yield and high quality, and to provide a good quality crystal by the method.

【0004】[0004]

【課題を解決するための手段】第一の本発明は、融液の
温度を降下させることにより融液表面に付けた結晶を種
結晶とし融液下に単結晶を育成する単結晶育成方法にお
いて、種結晶として、融液内に沈める部分の種結晶の側
面部のみを育成結晶と少なくとも一部がほぼ相似形にな
るように結晶の成長容易面とほぼ平行な面方位に加工し
た結晶もしくは育成結晶の小片を用いることを特徴とす
る単結晶育成方法である。側面のみが成長容易面とほぼ
平行なために育成結晶の加工が非常に行いやすい。第二
の本発明は、融液の温度を降下させることにより融液表
面に付けた結晶を種結晶とし融液下に単結晶を育成する
単結晶育成方法において、種結晶として、融液内に沈め
る部分の種結晶の成形面または切断研磨面を育成結晶と
少なくとも一部がほぼ相似形になるように結晶の成長容
易面とほぼ平行な面方位に加工するとともに予めエッチ
ング液に浸し表面加工歪層を除去した結晶もしくは育成
結晶の小片を用いることを特徴とする単結晶育成方法で
ある。エッチングを施すことでさらに良好な状態の単結
晶を得ることが可能である。また、本発明は前記の単結
晶育成方法によって得られたMTiOXO4(ここでM
はK,Rbの一種以上、XはAs,Pの一種以上)で表
される単結晶でもある。本願においては該種結晶を融液
表面から2mm以上融液内に沈めることが好ましい。
Means for Solving the Problems A first aspect of the present invention is a single crystal growing method for growing a single crystal under a melt by lowering the temperature of the melt to use a crystal attached to the melt surface as a seed crystal. The seed crystal is grown or grown in such a manner that at least a part of the side surface of the seed crystal submerged in the melt is processed to have a plane orientation substantially parallel to the crystal easy-to-grow surface so that at least a part of the seed crystal becomes substantially similar to the grown crystal. A single crystal growing method characterized by using a small piece of crystal. Since only the side surfaces are substantially parallel to the easy growth surface, processing of the grown crystal is very easy. The second invention is a single crystal growing method in which a crystal attached to the surface of the melt is grown as a seed crystal by lowering the temperature of the melt to grow a single crystal under the melt. The formed surface or cut and polished surface of the seed crystal in the submerged portion is processed into a plane orientation almost parallel to the crystal growth easy surface so that at least a part of the seed crystal becomes almost similar to the grown crystal, and is immersed in an etching solution in advance and surface processing distortion A single crystal growing method characterized by using a crystal or a small piece of a grown crystal from which a layer has been removed. It is possible to obtain a better single crystal by performing etching. In addition, the present invention relates to a method for growing a MTiOXO 4 (where M
Is one or more of K and Rb, and X is one or more of As and P). In the present application, it is preferable that the seed crystal be immersed in the melt at least 2 mm from the surface of the melt.

【0005】[0005]

【実施例】以下、本発明を詳細に説明する。 (実施例1)出発原料としてK2HPO4とTiO2とW
3を用い、以下の反応式によりフラックス(K2WO4
・P25)および結晶成分(KTiOPO4)を作成し
た。4K2HPO4+2TiO2+3WO3=2KTiOP
4+3K2WO4・P25+2H2O上記原料を直径70
mm、高さ70mmの白金坩堝に入れ、カンタルヒータ
ーを用いた通常の縦型電気炉で1000℃に加熱融解さ
せた。融液表面に種結晶を付け、約100rpmで結晶
を回転させながら、融液温度を約3℃/日で降下させな
がら結晶を育成し、約1週間で15*15*7mm程度
の大きさの結晶を育成した。育成に用いた種結晶の軸方
位および形状は図4に示す種類のものを準備した。図4
の(a)〜(c)は結晶のY軸方位の回りに結晶を回転
させて結晶を育成するのに用いたものである。(a)は
X、Y、Zの各面に平行な面に成形した比較用の種結晶
である。(b)は図3に示したKTP育成結晶のXZ断
面およびXY断面にほぼ相似形になるよう側面部を加工
し種結晶のXZ断面を成形したものである。(c)は図
3に示したKTP結晶のXZ断面に相似形でかつY軸方
位にも相似形な部分を含むように成形した種結晶であ
る。図4の(d)〜(f)はZ軸方位の回りに結晶を回
転させて育成するのに用いたものである。(d)はX、
Y、Zの各面に平行な面に成形した比較用の種結晶であ
る。(e)は図3に示したKTP育成結晶のXY断面に
ほぼ相似形になるよう側面部を加工し種結晶のXZおよ
びXY断面を成形したものである。(f)は図3に示し
たKTP結晶のXZ断面に相似形でかつY軸方位にも相
似形な部分を含むように成形した種結晶である。それぞ
れのシードを用いてKTP結晶をY軸およびZ軸方位に
育成したところ、(a)および(d)を用いた場合には
種結晶の回りに白濁した部分が約8mm程度の大きさま
で形成されていた。これに対して(b)および(e)を
用いた場合には種結晶の回りの白濁部は減少し約6mm
角程度の領域であった。(c)および(f)を用いた場
合には種結晶の回りの白濁部は見られないか、或いはせ
いぜい4mm角程度へと減少し、種結晶回りの結晶欠陥
が大幅に減少していることがわかる。したがって、良質
部の製造歩留りが向上し、種結晶付近の高品質化により
成長した部分の品質も向上していた。
DESCRIPTION OF THE PREFERRED EMBODIMENTS The present invention will be described below in detail. (Example 1) K 2 HPO 4 , TiO 2 and W as starting materials
Using O 3 , the flux (K 2 WO 4
· P 2 O 5) and created the crystalline component (KTiOPO 4). 4K 2 HPO 4 + 2TiO 2 + 3WO 3 = 2KTiOP
O 4 + 3K 2 WO 4 · P 2 O 5 + 2H 2 O The above raw materials diameter 70
It was placed in a platinum crucible having a height of 70 mm and a height of 70 mm, and was heated and melted at 1000 ° C. in a normal vertical electric furnace using a Kanthal heater. A seed crystal is attached to the surface of the melt, and while rotating the crystal at about 100 rpm, the crystal is grown while lowering the melt temperature at about 3 ° C./day, and a size of about 15 * 15 * 7 mm is obtained in about one week. A crystal was grown. The seed crystal used for the growth had the axial orientation and shape shown in FIG. FIG.
(A) to (c) are used for growing a crystal by rotating the crystal around the Y-axis orientation of the crystal. (A) is a comparative seed crystal formed on a plane parallel to each of the X, Y, and Z planes. (B) is a side view of the KTP grown crystal shown in FIG. 3 in which the XZ cross section and the XY cross section are substantially similar in shape, and the XZ cross section of the seed crystal is formed. (C) is a seed crystal formed to include a portion similar to the XZ cross section of the KTP crystal shown in FIG. 3 and also similar to the Y-axis orientation. 4D to 4F are used for growing the crystal by rotating the crystal about the Z-axis direction. (D) is X,
This is a comparative seed crystal formed on a plane parallel to each of the Y and Z planes. (E) shows a side view of the KTP grown crystal shown in FIG. 3 having a shape similar to that of the XY section, and the XZ and XY sections of the seed crystal formed. (F) is a seed crystal formed to include a portion similar to the XZ cross section of the KTP crystal shown in FIG. 3 and also similar to the Y-axis orientation. When the KTP crystal was grown in the Y-axis and Z-axis directions using the respective seeds, when (a) and (d) were used, an opaque portion was formed around the seed crystal to a size of about 8 mm. I was On the other hand, when (b) and (e) were used, the cloudiness around the seed crystal was reduced to about 6 mm.
The area was about a corner. In the case of using (c) and (f), no white turbidity around the seed crystal is observed, or it is reduced to at most about 4 mm square, and crystal defects around the seed crystal are greatly reduced. I understand. Therefore, the production yield of the high quality part has been improved, and the quality of the grown part has also been improved by improving the quality near the seed crystal.

【0006】(実施例2) 上記実施例1と同様の種結晶を準備し、融液内部への種
結晶の沈ませる程度と結晶性の関係に付いて調べた。結
晶成長は融液面上での結晶径の広がりと融液中への結晶
成長が起こり大型化されていく。したがって種結晶を融
液内部に沈ませない場合には、結晶育成初期において表
面での結晶成長が結晶成長の大部分であり、図3に示し
た理想的な自然のKTP結晶成長の成長と異なり、また
成長速度は極めて遅い結果であった。一方、融液内部に
種結晶を沈めた場合には融液表面および内部で結晶成長
が同時に起こり結晶育成初期においてもほぼ結晶の理想
形状と相似の形状で成長が起こり、育成初期では結晶の
大きくなる程度も種結晶を融液内に沈めない場合よりも
早く、しかも温度降下速度を遅くしても結晶が成長しや
すいので無理無く極めてスムーズに結晶成長が起こるこ
とが確認された。
Example 2 A seed crystal similar to that of Example 1 was prepared, and the relationship between the degree of precipitation of the seed crystal into the melt and the crystallinity was examined. In the crystal growth, the crystal diameter expands on the melt surface and the crystal grows in the melt, and the size of the crystal grows. Therefore, when the seed crystal is not settled in the melt, the crystal growth on the surface is a large part of the crystal growth in the initial stage of crystal growth, which is different from the ideal natural KTP crystal growth shown in FIG. The growth rate was extremely slow. On the other hand, when the seed crystal is submerged in the melt, crystal growth occurs simultaneously on the surface and inside of the melt, and in the initial stage of crystal growth, growth occurs in a shape similar to the ideal shape of the crystal. It has been confirmed that the crystal growth is as quick as possible when the seed crystal is not submerged in the melt and that the crystal grows easily even if the temperature drop rate is reduced, so that the crystal growth occurs without difficulty and without difficulty.

【0007】(実施例3) 図4のb,cおよびe,fに示す任意の形状に種結晶を
成形して加工の後、結晶表面をエッチングすることによ
り、表面の加工歪層を除去した。この結晶を用いて育成
した結晶では結晶中に含まれる転位が従来の約半分以下
に減少した。
Example 3 A seed crystal was formed into an arbitrary shape shown in b, c, e, and f of FIG. 4 and processed, and then the crystal surface was etched to remove a processed strain layer on the surface. . In the crystal grown using this crystal, the number of dislocations contained in the crystal was reduced to about half or less of the conventional one.

【0008】(実施例4) 上記実施例1から3と同様の手法によりKTP結晶およ
びKTiOAsO4、RbTiOPO4,RbTiOAs
4,TlTiOPO4、TlTiOAsO4単結晶を育
成した。いずれの結晶も適用により高品質化が行われ、
これを用いた光素子の特性の安定化および高効率化に大
きな寄与が確認された。
(Embodiment 4) KTP crystal and KTiOAsO 4 , RbTiOPO 4 , RbTiOAs by the same method as in Embodiments 1 to 3 above.
O 4 , TlTiOPO 4 , and TlTiOAsO 4 single crystals were grown. High quality is achieved by applying both crystals,
Significant contributions to stabilization of characteristics and high efficiency of optical devices using this were confirmed.

【0009】[0009]

【発明の効果】本発明によれば、融液の温度を降下させ
ることにより融液表面下に単結晶を育成する方法におい
て、育成される結晶の液表面方向の断面形状と実質的に
相似の断面形状を有する種結晶を用いるので、結晶欠陥
のない高品質単結晶が歩留り良く育成することになっ
た。また、本発明により育成されるKTP単結晶および
その類似化合物は結晶欠陥の極めて少ない高品質のもの
であるため、これら結晶を非線形光学素子として用いる
SHG素子の高効率化や安定動作化に極めて有効であ
る。
According to the present invention, in a method of growing a single crystal below the surface of a melt by lowering the temperature of the melt, the cross-sectional shape of the grown crystal in the liquid surface direction is substantially similar to that of the single crystal. Since a seed crystal having a sectional shape is used, a high-quality single crystal having no crystal defects is grown with a high yield. In addition, since the KTP single crystal and its analogous compound grown by the present invention are of high quality with very few crystal defects, they are extremely effective in increasing the efficiency and stabilizing the operation of SHG devices using these crystals as nonlinear optical devices. It is.

【図面の簡単な説明】[Brief description of the drawings]

【図1】燐酸カリウムフラックスを用いて育成したKT
P結晶の外観図である。
FIG. 1. KT grown using potassium phosphate flux
It is an external view of a P crystal.

【図2】酸化タングステンと燐酸カリウムを混合したフ
ラックスを用いて育成したKTP結晶の外観図である。
FIG. 2 is an external view of a KTP crystal grown using a flux in which tungsten oxide and potassium phosphate are mixed.

【図3】KTP結晶のX,Y,Z軸方向からみた外観模
式図である。
FIG. 3 is a schematic external view of a KTP crystal as viewed from the X, Y, and Z axis directions.

【図4】本発明により結晶育成に用いた種々の形状の種
結晶の外観図である。
FIG. 4 is an external view of seed crystals of various shapes used for growing a crystal according to the present invention.

───────────────────────────────────────────────────── フロントページの続き (58)調査した分野(Int.Cl.7,DB名) C30B 1/00 - 35/00 ──────────────────────────────────────────────────続 き Continuation of front page (58) Field surveyed (Int.Cl. 7 , DB name) C30B 1/00-35/00

Claims (3)

(57)【特許請求の範囲】(57) [Claims] 【請求項1】 融液の温度を降下させることにより融液
表面に付けた結晶を種結晶とし融液下に単結晶を育成す
る単結晶育成方法において、種結晶として、融液内に沈
める部分の種結晶の少なくとも側面部を育成結晶とほぼ
相似形になるように結晶の成長容易面とほぼ平行な面方
位に加工した種結晶を用いることを特徴とする単結晶育
成方法。
1. A method for growing a single crystal under a melt by using a crystal attached to the surface of the melt as a seed crystal by lowering the temperature of the melt, wherein a portion to be submerged in the melt as a seed crystal is provided. A single crystal growing method, characterized by using a seed crystal processed so that at least a side surface of the seed crystal has a shape substantially similar to that of the grown crystal so as to have a plane orientation substantially parallel to the crystal easy-to-grow surface.
【請求項2】 融液の温度を降下させることにより融液
表面に付けた結晶を種結晶とし融液下に単結晶を育成す
る単結晶育成方法において、種結晶として、融液内に沈
める部分の種結晶の成形面または切断研磨面を育成結晶
と少なくとも一部がほぼ相似形になるように結晶の成長
容易面とほぼ平行な面方位に加工するとともに予めエッ
チング液に浸し表面加工歪層を除去した種結晶を用いる
ことを特徴とする単結晶育成方法。
2. A method for growing a single crystal under a melt by using a crystal attached to the surface of the melt as a seed crystal by lowering the temperature of the melt.
Growing the shaped or cut and polished surface of the seed crystal
And crystal growth so that at least part of it is almost similar
Use a seed crystal that has been processed to a plane orientation almost parallel to the easy plane and that has been previously immersed in an etchant to remove the surface processing strain layer
A method for growing a single crystal, comprising:
【請求項3】 請求項1または2に記載の単結晶育成方
法により育成されたMTiOXO(ここでMはK,R
bの一種以上、XはAs,Pの一種以上)で表される単
結晶。
3. A method of growing a single crystal according to claim 1 or 2, wherein MTiOXO 4 (where M is K, R
b is a single crystal, and X is one or more of As and P).
JP4162580A 1992-06-22 1992-06-22 Single crystal growing method and single crystal Expired - Fee Related JP3037829B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP4162580A JP3037829B2 (en) 1992-06-22 1992-06-22 Single crystal growing method and single crystal

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP4162580A JP3037829B2 (en) 1992-06-22 1992-06-22 Single crystal growing method and single crystal

Publications (2)

Publication Number Publication Date
JPH061690A JPH061690A (en) 1994-01-11
JP3037829B2 true JP3037829B2 (en) 2000-05-08

Family

ID=15757294

Family Applications (1)

Application Number Title Priority Date Filing Date
JP4162580A Expired - Fee Related JP3037829B2 (en) 1992-06-22 1992-06-22 Single crystal growing method and single crystal

Country Status (1)

Country Link
JP (1) JP3037829B2 (en)

Also Published As

Publication number Publication date
JPH061690A (en) 1994-01-11

Similar Documents

Publication Publication Date Title
CN113638045B (en) Compound tin phosphate iodide and tin phosphate iodide birefringent crystal, and preparation method and application thereof
JP3037829B2 (en) Single crystal growing method and single crystal
JPH0664995A (en) Ktiopo4 single crystal and its production
EP0642603B1 (en) Single cesium titanyl arsenate-type crystals and their preparation
JP2507910B2 (en) Method for producing oxide single crystal
JPS61501984A (en) Method for producing a single crystal thin layer of silver thiogallate (AgGaS↓2)
JP2720525B2 (en) Method for producing magnesium-doped lithium niobate single crystal
JPS63301525A (en) Manufacture of bso wafer
KR100274316B1 (en) Manufacturing method of single quartz crystal
JP3289904B2 (en) Method for producing single crystal of MTiOAsO4, composition comprising single-domain crystal of MTIOAsO4 and crystalline MTiOAsO4
JP2738641B2 (en) Method for producing X-axis oriented lithium niobate single crystal
Hemmerling et al. Real structure investigations of LiNbO3 single crystals grown by the flux method
JP4146829B2 (en) Crystal manufacturing equipment
EP1143041A1 (en) Process for producing a planar body of an oxide single crystal
JP3747505B2 (en) Process for producing beta-barium borate single crystal
JPH11106284A (en) Production of single crystal
JP2647052B2 (en) Method for producing rare earth vanadate single crystal
JPH0664994A (en) Method for growing beta-barium borate single crystal
KR920007340B1 (en) Manufacturing method of 3-4 compound material semiconductor crystal
JPS6360194A (en) Method for pulling up single crystal
JPH0782088A (en) Method for growing single crystal
JPS60118696A (en) Method for growing indium phosphide single crystal
JP3010881B2 (en) Single crystal growth method
JPH0723280B2 (en) Single crystal growth method
Balakumar et al. Growth aspects of bismuth titanate single crystals top seeded solution growth technique

Legal Events

Date Code Title Description
LAPS Cancellation because of no payment of annual fees