JPH11106284A - Production of single crystal - Google Patents

Production of single crystal

Info

Publication number
JPH11106284A
JPH11106284A JP27001197A JP27001197A JPH11106284A JP H11106284 A JPH11106284 A JP H11106284A JP 27001197 A JP27001197 A JP 27001197A JP 27001197 A JP27001197 A JP 27001197A JP H11106284 A JPH11106284 A JP H11106284A
Authority
JP
Japan
Prior art keywords
crystal
seed crystal
single crystal
melt
seed
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP27001197A
Other languages
Japanese (ja)
Inventor
Makoto Watanabe
誠 渡邊
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Sony Corp
Original Assignee
Sony Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Sony Corp filed Critical Sony Corp
Priority to JP27001197A priority Critical patent/JPH11106284A/en
Publication of JPH11106284A publication Critical patent/JPH11106284A/en
Pending legal-status Critical Current

Links

Landscapes

  • Crystals, And After-Treatments Of Crystals (AREA)

Abstract

PROBLEM TO BE SOLVED: To provide a method for producing a single crystal having a large diameter and good quality by inserting a step for removing at least a part of a contacting face of a seed crystal with a molten liquid before the step for growing the single crystal on the seed crystal while gradually cooling the molten liquid and rotating the seed crystal. SOLUTION: A seed crystal 1 has a processing strain layer generated accompanied with cutting and grinding processing and present as a very thin layer on the whole or a part of the surface. A tip part of the seed crystal 1 is brought into contact with the molten liquid 3, comprising a raw material composition and a flux, and having a temperature a little higher, e.g. about 5 deg.C higher than the equilibrium temperature for crystallizing the crystal 2 out, for about 10 min to remove the processing strain layer on the surface of the seed crystal 1. The molten liquid is gradually cooled while allowing the rotating seed crystal 1 to keep contact with the molten liquid 3 to start the growth of the single crystal 2 on the seed crystal 1. By the method, the seed crystal can be successively subjected to the growth of the single crystal 2 without exposing the surface of the clean seed crystal after removing the processing strain layer to the atmosphere.

Description

【発明の詳細な説明】DETAILED DESCRIPTION OF THE INVENTION

【0001】[0001]

【発明の属する技術分野】本発明は単結晶の製造方法に
関し、さらに詳しくは、電子部品等を製造するための単
結晶を、融液成長法により結晶性良く製造する際に用い
て好適な単結晶の製造方法に関する。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a method for producing a single crystal, and more particularly, to a single crystal suitable for producing a single crystal for producing electronic parts and the like with good crystallinity by a melt growth method. The present invention relates to a method for producing a crystal.

【0002】[0002]

【従来の技術】電子機器の高性能化、小型化の進展にと
もない、電子機器を構成する電子部品には機能性を有す
る各種の単結晶材料が採用されるものが増えてきた。電
気光学的機能を有するリン酸チタン酸カリウム等や、強
誘電性を有するチタン酸バリウム等の単結晶材料がこれ
に相当する。
2. Description of the Related Art With the advancement of high performance and miniaturization of electronic devices, various types of functional single crystal materials have been adopted as electronic components constituting the electronic devices. Single crystal materials such as potassium phosphate titanate having an electro-optical function and barium titanate having ferroelectricity correspond thereto.

【0003】例えば、コヒーレンシーの良好なレーザ光
を透過させることにより、基本波長の1/2の波長の短
波長レーザ光が得られる非線型光学素子としては、MT
iOXO4 (MはK,Rb,Cs等のIa族金属を、X
はP,As等のVa族元素をそれぞれ表す)単結晶、そ
の中でもリン酸チタン酸カリウム(KTiOPO4 ,以
下KTPと略記する)単結晶が用いられる。
For example, a non-linear optical element capable of transmitting a short-wavelength laser beam having a wavelength half the fundamental wavelength by transmitting a laser beam having good coherency is MT.
iOXO 4 (M is a group Ia metal such as K, Rb, Cs,
Represents a Va group element such as P or As) single crystal, and among them, potassium phosphate titanate (KTiOPO 4 , hereinafter abbreviated as KTP) single crystal is used.

【0004】KTP等の機能性単結晶は、良質の電子部
品を効率良く製造するために、大口径の単結晶基板を効
率良く切り出すことが可能な、結晶欠陥の少ない大型の
単結晶インゴットとして得られることが望ましい。
A functional single crystal such as KTP is obtained as a large single crystal ingot with a small number of crystal defects and capable of efficiently cutting a large-diameter single crystal substrate in order to efficiently produce high-quality electronic components. It is desirable that

【0005】これらKTP等の単結晶を製造する方法と
して一般的な方法は、単結晶の原料組成物を融剤(フラ
ックス)に過飽和状態に融解した融液から成長させる融
液成長法がある。とりわけ、融液に種結晶を接触させ、
この種結晶上に選択的にエピタキシャル成長させるTS
SG (Top Seeded Solution Growth) 法が通常採用され
る。実際にKTP単結晶を成長するには、KTP原料組
成物を融剤に溶解して融液とし、、種結晶を融液表面か
ら接触させ、かつ種結晶を垂直軸に沿って回転させなが
ら融液を徐冷し、過飽和状態として種結晶上にのみ単結
晶を成長させればよい。このTSSG法によれば、単結
晶の大口径化が期待でき、また種結晶の結晶方位を選ぶ
ことにより、成長する単結晶の成長方位を制御すること
が可能であるという特徴を有する。種結晶としては、所
望とする単結晶と同一組成の単結晶を機械加工により例
えば角柱状に切り出して使用する。
As a general method for producing a single crystal such as KTP, there is a melt growth method in which a single crystal raw material composition is grown from a melt melted in a supersaturated state with a flux. Above all, the seed crystal is brought into contact with the melt,
TS selectively epitaxially grown on this seed crystal
The SG (Top Seeded Solution Growth) method is usually adopted. To actually grow a KTP single crystal, the KTP raw material composition is dissolved in a flux to form a melt, the seed crystal is brought into contact with the melt surface, and the melt is rotated while rotating the seed crystal along a vertical axis. The solution may be gradually cooled, and a single crystal may be grown only on the seed crystal in a supersaturated state. According to the TSSG method, the single crystal can be expected to have a large diameter, and the growth direction of the growing single crystal can be controlled by selecting the crystal orientation of the seed crystal. As the seed crystal, a single crystal having the same composition as a desired single crystal is cut out into, for example, a prism shape by machining and used.

【0006】[0006]

【発明が解決しようとする課題】先述したように、KT
P等の単結晶製造においては、大口径の単結晶基板を切
り出すことが可能な、結晶欠陥のない良質の大型単結晶
を歩留り良く成長させることが望まれる。しかしなが
ら、機械加工により切り出された種結晶の表面には、加
工歪により生じた原子配列の乱れた領域、すなわち加工
変質層が不可避的に存在する。このため、単結晶の成長
初期段階においては、種結晶の切り出し面の不規則に乱
れた結晶配列と、一定の格子定数をもって成長すべき単
結晶の結晶配列との不整合が発生する。
As described above, KT
In the production of a single crystal such as P, it is desired to grow a high-quality large single crystal free of crystal defects and capable of cutting a large-diameter single crystal substrate with high yield. However, on the surface of the seed crystal cut out by machining, there is inevitably a region in which the atomic arrangement is disordered due to the processing strain, that is, a damaged layer. Therefore, in the initial stage of the growth of the single crystal, a mismatch occurs between the disordered crystal arrangement of the cut surface of the seed crystal and the crystal arrangement of the single crystal to be grown with a constant lattice constant.

【0007】このため、種結晶の表面付近から複数の単
結晶が同時に成長を開始する現象、すなわち複数の核生
成による小傾角粒界が発生した。これによって得られる
結晶は、複数の小さな単結晶の集合体となり、大口径の
単結晶成長を阻害していた。このようにして得られた複
数の小さな単結晶の集合体の結晶ブロックからは、大口
径の単結晶基板を切り出すことが困難であり、良質の電
子部品等を効率良く製造することができない。
For this reason, a phenomenon in which a plurality of single crystals start to grow simultaneously from the vicinity of the surface of the seed crystal, that is, a small-angle grain boundary due to generation of a plurality of nuclei occurred. The resulting crystal formed an aggregate of a plurality of small single crystals, which hindered the growth of large-diameter single crystals. It is difficult to cut out a large-diameter single-crystal substrate from a crystal block of a plurality of small single-crystal aggregates obtained in this way, and it is not possible to efficiently manufacture high-quality electronic components and the like.

【0008】本発明は、かかる従来技術の問題点に鑑み
提案するものであり、融液成長法によりKTP等の単結
晶を成長するにあたり、特に成長初期に発生していた複
数の核生成による小傾角粒界の発生を防止し、大口径で
良質の単結晶を成長することが可能な単結晶の製造方法
を提供することをその課題とする。
The present invention has been made in view of the above-mentioned problems of the prior art. In growing a single crystal such as KTP by a melt growth method, the present invention is particularly applicable to a small crystal due to a plurality of nuclei generated at an early stage of growth. It is an object of the present invention to provide a method of manufacturing a single crystal capable of preventing generation of a tilt grain boundary and growing a high-quality single crystal with a large diameter.

【0009】[0009]

【課題を解決するための手段】本発明の単結晶の製造方
法は、上述の課題を解決するために提案するものであ
り、原料組成物と融剤とを含む融液に種結晶を接触せし
め、この融液を徐冷するとともに前記種結晶を回転しつ
つ、この種結晶上に単結晶を成長させる工程を有する単
結晶の製造方法であって、種結晶上に単結晶を成長させ
る工程に先立ち、種結晶の、融液との接触面の少なくと
も一部を除去する工程を挿入することを特徴とする。
Means for Solving the Problems The method for producing a single crystal of the present invention is proposed to solve the above-mentioned problems, and comprises contacting a seed crystal with a melt containing a raw material composition and a flux. A method for producing a single crystal having a step of growing a single crystal on the seed crystal while gradually cooling the melt and rotating the seed crystal, wherein the step of growing the single crystal on the seed crystal is performed. Prior to this, a step of removing at least a part of the contact surface of the seed crystal with the melt is inserted.

【0010】この種結晶の、融液との接触面の少なくと
も一部を除去する工程は、融液の温度を、この単結晶の
結晶析出平衡温度より高温に設定しつつ、この種結晶の
融液との接触面の少なくとも一部を融液中に溶解する工
程によることが望ましい。この結晶析出平衡温度とは、
融液中に種結晶を接触させた際に、種結晶の溶解も、種
結晶への結晶析出も起こらない平衡温度のことである。
結晶析出平衡温度は、個々の結晶材料および融剤の種
類、圧力等により決定される固有の温度である。
The step of removing at least a part of the contact surface of the seed crystal with the melt is performed by setting the temperature of the melt at a temperature higher than the crystal precipitation equilibrium temperature of the single crystal. It is desirable to dissolve at least a part of the contact surface with the liquid in the melt. This crystal precipitation equilibrium temperature
It is the equilibrium temperature at which neither dissolution of the seed crystal nor precipitation of the crystal on the seed crystal occurs when the seed crystal is brought into contact with the melt.
The crystal precipitation equilibrium temperature is a unique temperature determined by the type, pressure, etc. of each crystal material and flux.

【0011】またこの種結晶の、融液との接触面の少な
くとも一部を除去する工程は、種結晶表面の加工変質層
を除去する工程であることが望ましい。
Preferably, the step of removing at least a part of the contact surface of the seed crystal with the melt is a step of removing a work-affected layer on the surface of the seed crystal.

【0012】さらに本発明において、種結晶の融液との
接触面は、成長する前記単結晶の晶癖により出現する結
晶面に準じる面に加工されていることが望ましい。
Further, in the present invention, the contact surface of the seed crystal with the melt is desirably processed to a surface similar to the crystal surface which appears due to the crystal habit of the growing single crystal.

【0013】従来より、融液法によるKTP等の単結晶
の製造においては、機械加工により切り出した種結晶表
面の加工歪層の存在については、特段の注意は払われて
いなかった。無論、種結晶表面を鏡面研磨すべく、機械
加工による切り出し後、さらに例えば超微粒子研磨剤に
より鏡面研磨を加える方法はあった。しかしながら、鏡
面研磨は所詮ミクロな領域での機械加工にすぎず、ミク
ロな加工歪が入ることは免れ得ない。したがって、鏡面
研磨加工された種結晶を用いても、小傾角粒界のない単
結晶を得ることは困難であった。
Conventionally, in the production of single crystals such as KTP by the melt method, no special attention has been paid to the existence of a strained layer on the surface of a seed crystal cut out by machining. Of course, there has been a method of mirror-polishing the surface of the seed crystal and then performing mirror-polishing using, for example, an ultrafine abrasive after cutting out by machining. However, mirror polishing is merely a mechanical processing in a micro area, and micro processing distortion cannot be avoided. Therefore, it has been difficult to obtain a single crystal having no small-angle grain boundaries even if a seed crystal that has been mirror-polished is used.

【0014】本発明においては、種結晶上に単結晶を成
長する工程に先立って、種結晶と融液との接触面の少な
くとも一部を除去する工程を挿入することにより、単結
晶中の小傾角粒界の発生を防止した。
In the present invention, prior to the step of growing a single crystal on the seed crystal, a step of removing at least a part of the contact surface between the seed crystal and the melt is inserted to thereby reduce the size of the single crystal. The generation of tilt grain boundaries was prevented.

【0015】この種結晶と融液との接触面の少なくとも
一部を除去する工程は、融液の温度を、単結晶の結晶析
出平衡温度より高温に設定しつつ、種結晶の融液との接
触面の少なくとも一部を融液中に溶解する工程であるこ
とが望ましい。この工程により、種結晶表面の加工歪層
が除去され、種結晶表面の結晶配列と、成長する単結晶
の結晶配列の不整合がなくなり、小傾角粒界のない大型
の単結晶を得ることができる。
In the step of removing at least a part of the contact surface between the seed crystal and the melt, the step of setting the temperature of the melt at a temperature higher than the crystal precipitation equilibrium temperature of the single crystal and the step of removing the seed crystal from the melt are performed. Desirably, the step is to dissolve at least a part of the contact surface in the melt. By this step, the strained layer on the surface of the seed crystal is removed, the crystal arrangement on the surface of the seed crystal and the crystal arrangement of the growing single crystal are eliminated, and a large single crystal without a small tilt grain boundary can be obtained. it can.

【0016】また種結晶の切り出し面と、成長する単結
晶の晶癖により出現する結晶面とが一致していない場合
には、種結晶の近傍に空洞等の巨視的欠陥が発生する場
合があった。したがって、種結晶の融液との接触面が、
成長する単結晶の晶癖により出現する結晶面に準じる面
に加工されている場合には、小傾角粒界の発生ととも
に、巨視的欠陥の発生をも防止することが可能となる。
If the cut surface of the seed crystal does not match the crystal surface that appears due to the crystal habit of the growing single crystal, macroscopic defects such as cavities may be generated near the seed crystal. Was. Therefore, the contact surface of the seed crystal with the melt is
In the case where the surface is processed so as to conform to the crystal plane that appears due to the crystal habit of the growing single crystal, it is possible to prevent the generation of macroscopic defects as well as the generation of small-angle grain boundaries.

【0017】[0017]

【発明の実施の形態】以下、本発明の具体的実施の形態
につき、図面を参照しながら説明する。
DESCRIPTION OF THE PREFERRED EMBODIMENTS Hereinafter, specific embodiments of the present invention will be described with reference to the drawings.

【0018】まず、本発明の単結晶の製造方法に使用し
た単結晶成長装置の概略構成を、図1を参照して説明す
る。図1はTSSG法により単結晶を成長させる単結晶
成長装置の一例を示す概略断面図である。図1におい
て、白金等のルツボ4内には、融剤(フラックス)中に
単結晶成分が溶解された融液3が、加熱炉6により所定
の温度に保持制御されている。この融液3には、サファ
イアや白金等からなる回転棒5に保持された種結晶1が
接触しており、この種結晶1上に単結晶2が成長する。
図1の装置では、回転棒5の回転駆動装置、温度制御装
置、あるいは装置全体のシステム制御装置等の細部は図
示を省略する。
First, a schematic configuration of a single crystal growing apparatus used in the method for producing a single crystal of the present invention will be described with reference to FIG. FIG. 1 is a schematic sectional view showing an example of a single crystal growing apparatus for growing a single crystal by the TSSG method. In FIG. 1, a melt 3 in which a single crystal component is dissolved in a flux (flux) is held and controlled at a predetermined temperature by a heating furnace 6 in a crucible 4 made of platinum or the like. The seed crystal 1 held by a rotating rod 5 made of sapphire, platinum or the like is in contact with the melt 3, and a single crystal 2 grows on the seed crystal 1.
In the apparatus shown in FIG. 1, details such as a rotation driving device of the rotating rod 5, a temperature control device, and a system control device of the whole device are omitted.

【0019】これらのうち、回転棒5の回転速度、すな
わち種結晶1の回転速度は、成長する単結晶2の品質や
融液3の撹拌効果等の観点から、30〜300rpm程
度が選ばれる。また回転方向は一方向回転でもよいが、
所定時間毎に回転方向を逆転することが均質な単結晶2
を得るために好ましい。
Among these, the rotation speed of the rotating rod 5, that is, the rotation speed of the seed crystal 1, is selected to be about 30 to 300 rpm from the viewpoint of the quality of the growing single crystal 2 and the stirring effect of the melt 3. The rotation direction may be one-way rotation,
Single crystal 2 whose rotation direction is reversed every predetermined time
Is preferred to obtain

【0020】融液3の温度は、単結晶2の成長工程中、
成長を連続的に継続させるために徐冷する。この徐冷速
度は、単結晶2の成長に要する時間を可及的に低減する
ためや、種結晶1表面以外での結晶核生成を防止するた
め、0.01〜5℃/hr程度の範囲に選ばれる。
The temperature of the melt 3 is set during the growth process of the single crystal 2.
Slowly cooling to keep the growth continuous. The slow cooling rate is in the range of about 0.01 to 5 ° C./hr in order to reduce the time required for growing the single crystal 2 as much as possible, and to prevent the generation of crystal nuclei other than on the surface of the seed crystal 1. Is chosen.

【0021】種結晶1としては、例えばその断面が2×
2mm、長さが10〜15mm程度の正角柱状のものが
採用され、その長軸を回転棒5の軸方向と一致するよう
に回転棒5に取りつける。KTP単結晶を成長する際に
用いる種結晶1の下方斜視図を図2に示す。図2の例
は、c軸方向に単結晶2を成長するために、種結晶1の
<001>方位が長手方向となるように、すなわち種結
晶1の長手方向の先端断面が{0,0,1}面となるよ
うに母材となるKTP単結晶を切り出し、研磨加工を施
したものである。
The seed crystal 1 has, for example, a cross section of 2 ×
A rectangular prism having a length of about 2 mm and a length of about 10 to 15 mm is used, and the long axis is attached to the rotating rod 5 so as to coincide with the axial direction of the rotating rod 5. FIG. 2 shows a lower perspective view of the seed crystal 1 used for growing a KTP single crystal. In the example of FIG. 2, in order to grow the single crystal 2 in the c-axis direction, the <001> orientation of the seed crystal 1 is set to be in the longitudinal direction, that is, the tip section of the seed crystal 1 in the longitudinal direction is {0, 0}. , A KTP single crystal serving as a base material is cut out and polished so as to have a 1} plane.

【0022】他の結晶軸方向、すなわちa軸方向に単結
晶2を成長する場合には、種結晶1の長手方向の先端面
が{1,0,0}面となるように、KTP単結晶を切り
出し、研磨加工を施せばよい。またb軸方向に単結晶2
を成長する場合には、種結晶1の長手方向の先端面が
{0,1,0}面となるように、KTP単結晶を切り出
し、研磨加工を施せばよい。
When the single crystal 2 is grown in another crystal axis direction, that is, in the a-axis direction, the KTP single crystal is grown so that the front end face of the seed crystal 1 in the longitudinal direction is a {1,0,0} plane. May be cut out and polished. In addition, single crystal 2
In growing the seed crystal, the KTP single crystal may be cut out and polished so that the front end face of the seed crystal 1 in the longitudinal direction becomes the {0,1,0} plane.

【0023】種結晶1の表面には、図示は省略するが切
り出しおよび研磨加工に伴って発生した加工歪層が極く
薄く全面に、あるいは部分的に存在する。したがって、
本発明においては、融液と接触する部分の種結晶の接触
面の少なくとも一部、すなわち、この部分の加工歪層の
全部または一部を除去した後に単結晶の成長を開始す
る。加工歪層の除去は、Arイオンによるスパッタエッ
チングやウェットエッチング等も可能である。本発明の
好ましい実施態様においては、単結晶の成長に供する融
液の温度を、この単結晶の結晶析出平衡温度より高温に
設定しておき、この融液に種結晶を接触することによ
り、種結晶表面の加工歪層を除去する。この方法によっ
て加工歪層を除去すれば、イオン入射等による新たな結
晶欠陥の発生を防止できる。また加工歪層除去後の清浄
な種結晶表面を大気に曝すことなく、連続的に単結晶の
成長工程に移ることができ、種結晶の表面汚染や変質の
問題を回避することができる。
Although not shown, the surface of the seed crystal 1 has a very thin or partially deformed layer generated by cutting and polishing on the entire surface or partially. Therefore,
In the present invention, the growth of the single crystal is started after removing at least a part of the contact surface of the seed crystal in the portion in contact with the melt, that is, all or a part of the work strain layer in this portion. The removal of the work-strained layer can be performed by sputter etching or wet etching using Ar ions. In a preferred embodiment of the present invention, the temperature of the melt used for growing a single crystal is set to a temperature higher than the crystal precipitation equilibrium temperature of the single crystal, and the seed crystal is brought into contact with the melt to obtain a seed. The work strain layer on the crystal surface is removed. If the processing strain layer is removed by this method, generation of new crystal defects due to ion incidence or the like can be prevented. Further, the surface of the seed crystal can be continuously moved to the single crystal growth step without exposing the clean seed crystal surface after removing the processing strain layer to the atmosphere, and the problem of surface contamination and alteration of the seed crystal can be avoided.

【0024】種結晶表面の加工歪層の除去は、融液から
の単結晶の結晶析出平衡温度より若干高い温度、例えば
5℃程度高い温度に保持した融液中に種結晶を接触させ
る。種結晶全体を融液中に浸漬してもよいが、単結晶が
成長する、種結晶の先端部分だけを接触させればよい。
接触時間は、極く薄い加工歪層を除去できればよいの
で、例えば10分程度で十分である。
In order to remove the strained layer on the surface of the seed crystal, the seed crystal is brought into contact with the melt maintained at a temperature slightly higher than the crystal precipitation equilibrium temperature of the single crystal from the melt, for example, about 5 ° C. higher. The entire seed crystal may be immersed in the melt, but only the tip of the seed crystal where the single crystal grows may be brought into contact.
The contact time only needs to be able to remove an extremely thin strained layer, and for example, about 10 minutes is sufficient.

【0025】加工歪層を除去後は、種結晶を融液中に接
触させたまま、融液を徐冷し、単結晶の成長を開始する
ことが望ましい。単結晶の成長工程は、融液成長法の常
法に準じた工程によればよい。種結晶のc軸方向が長手
方向となる、図2に示した正角柱状の種結晶を用いてK
TPを成長して得た単結晶の下方斜視図を図3に示す。
図3の例は、種結晶1の加工歪層を除去した状態で単結
晶2を成長したものである。KTPの単結晶2は、小傾
角粒界の発生もなく、大口径の単結晶として得られる。
一方、KTPは格子定数がa=1.2840nm、b=
0.6396nm、c=1.0584nmの斜方晶系に
属する結晶であり、単結晶2の成長面はその晶癖に由来
して{1,0,0}面、{1,1,0}面、{2,0,
1}面および{0,1,1}面の各結晶面 (Facet)が出
現しており、特に単結晶2先端は{2,0,1}面およ
び{0,1,1}面により構成される。
After removing the strained layer, it is preferable that the melt is gradually cooled while the seed crystal is kept in contact with the melt to start the growth of the single crystal. The single crystal growth step may be a step according to a conventional melt growth method. Using the regular prismatic seed crystal shown in FIG. 2 where the c-axis direction of the seed crystal is the longitudinal direction,
FIG. 3 shows a lower perspective view of a single crystal obtained by growing TP.
In the example of FIG. 3, the single crystal 2 is grown with the strained layer of the seed crystal 1 removed. The single crystal 2 of KTP is obtained as a single crystal having a large diameter without generation of small-angle grain boundaries.
On the other hand, KTP has a lattice constant of a = 1.2840 nm and b =
It is a crystal belonging to the orthorhombic system of 0.6396 nm and c = 1.0584 nm, and the growth plane of the single crystal 2 is {1,0,0} plane, {1,1,0} due to its crystal habit. Face, $ 2,0,
Each crystal face (Facet) of 1} plane and {0,1,1} plane has appeared, especially the tip of single crystal 2 is composed of {2,0,1} plane and {0,1,1} plane Is done.

【0026】種結晶の先端面、すなわち融液との接触面
を、単結晶の晶癖により出現する結晶面に一致するよう
に加工した例を図4に示す。図4の例は、KTPのc軸
方向に単結晶を成長させるため、種結晶1の長手方向の
先端断面が{2,0,1}面および{0,1,1}面と
なるように母材となるKTP単結晶を切り出し、研磨加
工を施したものである。
FIG. 4 shows an example in which the tip surface of the seed crystal, that is, the contact surface with the melt is processed so as to coincide with the crystal surface appearing due to the crystal habit of the single crystal. In the example of FIG. 4, since a single crystal is grown in the c-axis direction of KTP, the tip cross sections of the seed crystal 1 in the longitudinal direction are {2, 0, 1} plane and {0, 1, 1} plane. A KTP single crystal serving as a base material is cut out and polished.

【0027】図4に示す種結晶1を用いて融液成長法を
施すことにより、先述した図3に準じるKTPの単結晶
を得ることができる。ただし図4に示す種結晶1を使用
した場合は、種結晶1の先端面が単結晶2の晶癖により
出現する結晶面に加工されているので、特に成長初期に
おける結晶成長速度が均一となり、空洞等の巨視的欠陥
を防止する効果が、小傾角粒界の防止効果と併せて得ら
れる。
By performing a melt growth method using the seed crystal 1 shown in FIG. 4, a KTP single crystal according to FIG. 3 described above can be obtained. However, when the seed crystal 1 shown in FIG. 4 is used, since the tip face of the seed crystal 1 is processed into a crystal plane that appears due to the crystal habit of the single crystal 2, the crystal growth rate particularly at the initial stage of growth becomes uniform, The effect of preventing macroscopic defects such as cavities can be obtained together with the effect of preventing small-angle grain boundaries.

【0028】図4に示す種結晶1はc軸成長を施すため
のものであるが、他の結晶軸方向に単結晶を成長する場
合にも、種結晶先端を単結晶の晶癖により出現する結晶
面に一致するように加工すればよい。例えば、b軸方向
に単結晶を成長する場合には、種結晶先端面を{0,
1,1}面および{1,1,0}面が現れるように加工
する。またa軸方向に単結晶を成長する場合には、種結
晶先端面を{1,0,0}面が現れるように加工すれば
よい。ただし、c軸方向の成長に比較すると、特にa軸
方向の成長速度は小さいので、c軸方向の成長が最も利
用価値が高い。
The seed crystal 1 shown in FIG. 4 is for growing the c-axis, but when growing a single crystal in another crystal axis direction, the seed crystal tip appears due to the crystal habit of the single crystal. What is necessary is just to process so that it may correspond to a crystal plane. For example, when growing a single crystal in the b-axis direction, the seed crystal tip face is set to {0,
Processing is performed so that the {1,1} plane and {1,1,0} plane appear. When a single crystal is grown in the a-axis direction, the seed crystal tip surface may be processed so that the {1, 0, 0} plane appears. However, the growth rate in the a-axis direction is lower than that in the c-axis direction, so that the growth in the c-axis direction is the most useful.

【0029】[0029]

【実施例】以下、本発明をさらに詳しく具体的な実施例
により説明する。しかしながら、本発明は以下の実施例
により何ら限定を受けるものではない。
EXAMPLES Hereinafter, the present invention will be described in more detail with reference to specific examples. However, the present invention is not limited at all by the following examples.

【0030】実施例1 本実施例は、TSSG法によりKTP単結晶をc軸成長
する場合に本発明を適用したものである。また種結晶と
しては、母材となるKTP単結晶をそのc軸方向が長手
方向となるように切り出した正角柱状のものを用いた。
種結晶は、断面が3×3mm、長さが15mmの形状と
し、切り出し加工後、表面を#4000のアルミナ研磨
材により鏡面研磨した。種結晶の形状は、先に図2の下
方斜視図で示したものに準じる。
Embodiment 1 In this embodiment, the present invention is applied to a case where a KTP single crystal is grown along the c-axis by the TSSG method. Further, as the seed crystal, a regular prism-shaped one obtained by cutting a KTP single crystal serving as a base material so that the c-axis direction thereof is the longitudinal direction was used.
The seed crystal had a cross section of 3 × 3 mm and a length of 15 mm. After cutting out, the surface was mirror-polished with a # 4000 alumina abrasive. The shape of the seed crystal conforms to that shown in the lower perspective view of FIG.

【0031】KTP単結晶の原料組成物として次の組成
のものを用いた。 KH2 PO4 50.0 mol% K2 HPO4 24.2 mol% TiO2 25.8 mol% また、融剤(フラックス)としてはK6 2 8 を用い
た。原料組成物と融剤とを、68.0mol%対32.
0mol%となるように混合し、先に図1に示した単結
晶成長装置のルツボ4内で1150℃で12時間加熱し
て溶解し、融液3とした。このルツボ4は直径120m
m、高さ120mmの白金製のものを用いた。
The following composition was used as the raw material composition for the KTP single crystal. KH 2 PO 4 50.0 mol% K 2 HPO 4 24.2 mol% TiO 2 25.8 mol% Further, K 6 P 2 O 8 was used as a flux (flux). The raw material composition and the flux were mixed at 68.0 mol% to 32.0 mol%.
The mixture was mixed at 0 mol% and heated and melted at 1150 ° C. for 12 hours in the crucible 4 of the single crystal growth apparatus shown in FIG. This crucible 4 has a diameter of 120 m
m and a height of 120 mm made of platinum were used.

【0032】この後、この融液3組成における結晶析出
平衡温度、すなわち種結晶への析出も種結晶の溶解も起
こらない温度である988℃より数℃高い温度、例えば
993℃に融液3の温度を設定する。
Thereafter, the temperature of the crystal precipitation equilibrium in the composition of the melt 3, that is, a temperature several degrees higher than 988 ° C., which is a temperature at which neither precipitation to the seed crystal nor dissolution of the seed crystal occurs, for example, 993 ° C. Set the temperature.

【0033】先の種結晶1を、白金製の回転棒5の先端
に同じく白金線を用いて固定する。種結晶1はその長手
方向が回転棒5の軸方向に一致するように、また回転に
伴う軸振れや公転運動等が発生しないように固定する。
The seed crystal 1 is fixed to the tip of a rotating rod 5 made of platinum using the same platinum wire. The seed crystal 1 is fixed so that the longitudinal direction thereof coincides with the axial direction of the rotating rod 5, and so that the shaft does not swing or revolve with the rotation.

【0034】次に種結晶1の先端を、993℃に保持し
た融液3に接触させ、表面の加工歪層を除去する。接触
時間は10分とする。このとき、種結晶1は静止したま
までも、100rpm程度で回転させてもよいが、加工
歪層を均一に除去するには回転させることが望ましい。
Next, the tip of the seed crystal 1 is brought into contact with the melt 3 kept at 993 ° C. to remove the strained layer on the surface. The contact time is 10 minutes. At this time, the seed crystal 1 may be kept stationary or rotated at about 100 rpm. However, it is desirable to rotate the seed crystal 1 in order to uniformly remove the strained layer.

【0035】続けて、回転棒5を100rpmの回転速
度で回転させながら、100時間で2.5℃(0.02
5℃/hr)の冷却速度で融液3を徐冷して単結晶を成
長させる。成長はこの条件で400時間継続した。
Subsequently, while rotating the rotary rod 5 at a rotation speed of 100 rpm, the temperature was changed to 2.5 ° C. (0.02
The melt 3 is gradually cooled at a cooling rate of 5 ° C./hr) to grow a single crystal. Growth continued for 400 hours under these conditions.

【0036】このようにして得られたKTPの単結晶2
を図6(a)〜(b)に示す。このうち図6(a)は単
結晶2の概略側面形状、図6(b)は単結晶2をc軸の
成長方向側からみた概略平面形状を示す図である。従
来、種結晶表面の加工歪層が存在したまま単結晶を成長
した場合には、複数の結晶核生成により小傾角粒界が発
生して、大口径の単結晶が得られなかった。しかしなが
ら本実施例によれば、図6(a)〜(b)に示すように
かかる小傾角粒界の存在しない大口径の単結晶2が得ら
れる。
The KTP single crystal 2 thus obtained
Are shown in FIGS. 6 (a) and 6 (b). 6A is a schematic side view of the single crystal 2, and FIG. 6B is a schematic plan view of the single crystal 2 as viewed from the c-axis growth direction. Conventionally, when a single crystal was grown with a strained layer on the surface of a seed crystal, a small-angle grain boundary was generated due to generation of a plurality of crystal nuclei, and a single crystal having a large diameter could not be obtained. However, according to the present embodiment, as shown in FIGS. 6A and 6B, a large-diameter single crystal 2 having no such small-angle grain boundaries is obtained.

【0037】比較例 種結晶1表面の加工歪層を除去せず、種結晶1を結晶析
出平衡温度にある融液3に接触後直ちに単結晶2の成長
を開始した以外は、前実施例1に準じてKTP単結晶を
製造した。得られたKTPの単結晶2を図7(a)〜
(b)に示す。このうち図7(a)は単結晶2の概略側
面形状、図7(b)は単結晶2をc軸の成長方向側から
みた概略平面形状を示す図である。この比較例において
は、種結晶表面に加工歪層が存在し、結晶配列が不規則
に乱れているので、一定の格子定数をもって成長すべき
単結晶の結晶配列との不整合が発生する。このため、成
長の初期に種結晶の表面付近から複数の単結晶が同時に
成長を開始し、複数の核形成による小傾角粒界が発生し
ていることが図7(a)〜(b)によって明らかであ
る。
COMPARATIVE EXAMPLE Example 1 was repeated except that the strained layer on the surface of the seed crystal 1 was not removed, and the single crystal 2 was grown immediately after the seed crystal 1 was brought into contact with the melt 3 at the crystal precipitation equilibrium temperature. A KTP single crystal was produced according to The obtained KTP single crystal 2 is shown in FIG.
(B). 7A is a schematic side view of the single crystal 2, and FIG. 7B is a schematic plan view of the single crystal 2 as viewed from the growth direction side of the c-axis. In this comparative example, a strained layer exists on the surface of the seed crystal, and the crystal arrangement is irregularly disordered. Therefore, a mismatch occurs with the crystal arrangement of a single crystal to be grown with a constant lattice constant. 7A and 7B show that a plurality of single crystals start growing simultaneously from near the surface of the seed crystal in the early stage of growth, and a plurality of small-angle grain boundaries are formed by nucleation. it is obvious.

【0038】実施例2 本実施例は、同じくTSSG法によりKTP単結晶をc
軸成長する場合に本発明を適用したものである。また種
結晶としては、母材となるKTP単結晶をそのc軸方向
が長手方向となるように正角柱状に切り出し、さらにそ
の先端を、成長する単結晶の晶癖により出現する結晶面
に加工したものを用いた。種結晶は、断面が3×3m
m、長さが15mmにc軸方向に切り出し、さらにその
先端面が{2,0,1}面および{0,1,1}面とな
るように加工して鏡面研磨したものであり、先の図4で
説明したものに準じる。
Example 2 In this example, a KTP single crystal was produced by the same method using the TSSG method.
The present invention is applied to the case of axial growth. As a seed crystal, a KTP single crystal serving as a base material is cut into a regular prism shape so that the c-axis direction is the longitudinal direction, and the tip is processed into a crystal plane that appears due to the crystal habit of the growing single crystal. What was done was used. The seed crystal has a cross section of 3 × 3 m
m, a length of 15 mm, cut out in the c-axis direction, and further processed so that the tip surface becomes a {2,0,1} surface and a {0,1,1} surface and mirror-polished. 4 according to FIG.

【0039】KTPはその格子定数がa=1.2840
nm、b=0.6396nm、c=1.0584nmの
斜方晶系に属する結晶であるので、種結晶1のc軸の先
端面である{0,0,1}面と{2,0,1}面とのな
す面角度は58.8°の値が得られる。また{0,0,
1}面と{0,1,1}面とのなす面角度は58.9°
の値が得られる。したがって、c軸方向が長手方向とな
るように正角柱状に切り出した種結晶の先端を、この角
度に加工し、鏡面研磨すればよい。
KTP has a lattice constant a = 1.2840.
Since the crystal belongs to the orthorhombic system with nm, b = 0.6396 nm and c = 1.0584 nm, the {0,0,1} plane, which is the tip plane of the c-axis of the seed crystal 1, and the {2,0, A value of 58.8 ° is obtained as the plane angle with the 1 ° plane. $ 0,0,
The surface angle between the {1} plane and the {0,1,1} plane is 58.9 °
Is obtained. Therefore, the tip of a seed crystal cut into a regular prism so that the c-axis direction is the longitudinal direction may be processed to this angle and mirror-polished.

【0040】この後の工程は、前実施例1に準じて単結
晶の成長をおこなった。その結果、本実施例においても
図6(a)〜(b)に示すように小傾角粒界のない大口
径の単結晶2が得られた。特に本実施例においては、種
結晶1の先端面、すなわち融液との接触面は、成長する
単結晶2の晶癖により出現する結晶面に加工されている
ので、成長初期に種結晶1表面近傍に発生し易い空洞等
の巨視的欠陥が発生せず、極めて良質の単結晶2を得る
ことが可能である。なお種結晶1の先端の面角度の加工
は、厳密に計算値通りが望ましいが、±2〜3°以内の
誤差であれば巨視的欠陥の防止効果が得られる。
In the subsequent steps, a single crystal was grown according to the first embodiment. As a result, also in this example, as shown in FIGS. 6A and 6B, a large-diameter single crystal 2 having no small-angle grain boundaries was obtained. In particular, in this embodiment, the tip surface of the seed crystal 1, that is, the contact surface with the melt is processed into a crystal surface that appears due to the crystal habit of the growing single crystal 2. It is possible to obtain a single crystal 2 of extremely high quality without generating macroscopic defects such as cavities that are likely to be generated in the vicinity. Processing of the plane angle of the tip of the seed crystal 1 is desirably strictly in accordance with the calculated value. However, if the error is within ± 2 to 3 °, the effect of preventing macroscopic defects can be obtained.

【0041】実施例3 本実施例は、同じくTSSG法によりKTP単結晶をa
軸成長する場合につき述べる。種結晶としては、母材と
なるKTP単結晶をそのa軸方向が長手方向となるよう
に正角柱状に切り出し鏡面加工したものをそのまま用い
た。この場合、種結晶の先端面は{1,0,0}面であ
り、他の面は{0,1,0}面および{0,0,1}面
である。このうち、先端面の{1,0,0}面は、成長
する単結晶の晶癖により出現する結晶面と一致する。し
たがって、本実施例では正角柱状の種結晶先端をさらに
加工することなく、そのまま加工歪層の除去工程および
単結晶の成長工程に入ることができる。
Example 3 In this example, a KTP single crystal was a
The case of axial growth will be described. As a seed crystal, a KTP single crystal serving as a base material, which was cut into a regular prism shape so that the a-axis direction thereof became a longitudinal direction and mirror-processed, was used as it was. In this case, the tip face of the seed crystal is a {1,0,0} plane, and the other faces are a {0,1,0} plane and a {0,0,1} plane. Among them, the {1, 0, 0} plane at the tip coincides with the crystal plane that appears due to the crystal habit of the growing single crystal. Therefore, in the present embodiment, the process of removing the strained layer and the process of growing the single crystal can be performed as they are without further processing the tip of the regular prismatic seed crystal.

【0042】加工歪層の除去工程および単結晶の成長工
程は、前実施例1に準じた条件を用いてよい。本実施例
においても、得られた単結晶は小傾角粒界や巨視的欠陥
のない良質のものであった。ただしKTPのa軸方向の
成長速度は小さく、得られる単結晶はc軸成長やb軸成
長と比較しても薄いので、特殊な用途の素子を作成する
場合に本実施例は有効である。
In the step of removing the work-strained layer and the step of growing the single crystal, the same conditions as in the first embodiment may be used. Also in this example, the obtained single crystal was of good quality without small-angle grain boundaries or macroscopic defects. However, since the growth rate of KTP in the a-axis direction is low, and the obtained single crystal is thin compared to c-axis growth and b-axis growth, this embodiment is effective for producing a device for special use.

【0043】実施例4 本実施例は、同じくTSSG法によりKTP単結晶をb
軸成長する場合につき述べる。種結晶は母材となるKT
P単結晶をそのb軸方向が長手方向となるように切り出
し、その先端面をさらに加工したものを使用した。KT
P単結晶をb軸成長すると、単結晶先端には{0,1,
1}面および{1,1,0}面が出現する。したがっ
て、種結晶の先端面、すなわち融液と接する部分を、図
5に示すように{0,1,1}面および{1,1,0}
面により構成されるように加工した。先に示したKTP
の格子定数から計算すると、種結晶1のb軸の先端面を
構成する{0,1,0}面と{1,1,0}面とのなす
面角度は31.1°の値が得られる。また{0,1,
0}面と{0,1,1}面とのなす面角度は26.5°
の値が得られる。したがって、b軸方向が長手方向とな
るように正角柱状に切り出した種結晶の先端を、この角
度に加工し、鏡面研磨すればよい。
Example 4 In this example, a KTP single crystal was formed by the TSSG method.
The case of axial growth will be described. Seed crystal is the base material KT
A P single crystal was cut out so that its b-axis direction was the longitudinal direction, and the tip surface thereof was further processed. KT
When the P single crystal is grown on the b-axis, the tip of the single crystal becomes {0, 1,
The {1} plane and {1,1,0} plane appear. Therefore, the tip surface of the seed crystal, that is, the portion in contact with the melt is defined as {0,1,1} plane and {1,1,0} as shown in FIG.
It was processed so as to be composed of surfaces. KTP shown earlier
From the lattice constant of the seed crystal 1, the angle of the plane formed by the {0,1,0} plane and the {1,1,0} plane that constitute the tip plane of the b-axis of the seed crystal 1 is 31.1 °. Can be $ 0,1,
The plane angle between the {0} plane and the {0,1,1} plane is 26.5 °
Is obtained. Therefore, the tip of the seed crystal cut into a regular prism so that the b-axis direction is the longitudinal direction may be processed to this angle and mirror-polished.

【0044】この後の加工歪層の除去工程および単結晶
の成長工程は、前実施例1に準じた条件を用いてよい。
本実施例においても、得られた単結晶は小傾角粒界や巨
視的欠陥のない良質のものであった。
In the subsequent steps of removing the work-strained layer and growing the single crystal, the same conditions as in the first embodiment may be used.
Also in this example, the obtained single crystal was of good quality without small-angle grain boundaries or macroscopic defects.

【0045】以上、本発明を4例の実施例により詳細に
説明したが、本発明はこれら実施例に何ら限定されるも
のではない。
As described above, the present invention has been described in detail with reference to the four examples, but the present invention is not limited to these examples.

【0046】例えば、種結晶およびここに成長する単結
晶の例としてKTPを例示したが、一般式MTiOXO
4 (MはK,Rb,Cs等のIa族金属を、XはP,A
s等のVa族元素をそれぞれ表す)で表される非線型光
学材料結晶や、チタン酸バリウム等の強誘電体材料結
晶、フェライトやガーネット等の磁性材料結晶、その他
各種の単結晶を成長するに際して本発明を適用すること
が可能である。またその融剤や成長条件等は、成長すべ
き個別の単結晶材料に応じて各種変更が可能である。
For example, KTP has been described as an example of a seed crystal and a single crystal grown thereon, but the general formula MTiOXO
4 (M is group Ia metal such as K, Rb, Cs, etc., X is P, A
In the case of growing a non-linear optical material crystal represented by Va group elements such as s, a ferroelectric material crystal such as barium titanate, a magnetic material crystal such as ferrite or garnet, and various other single crystals. The present invention can be applied. The flux, growth conditions, and the like can be variously changed according to the individual single crystal material to be grown.

【0047】また結晶析出平衡温度は、種結晶の材料、
融剤の材料やそれらの配合比等により個別に決定される
値であるので、あらかじめ実験により、種結晶の溶解
も、種結晶上への成長もおこらない温度を求めておけば
よい。
The crystal precipitation equilibrium temperature is determined by the material of the seed crystal,
Since the value is determined individually depending on the material of the flux and the mixing ratio thereof, the temperature at which neither dissolution of the seed crystal nor growth on the seed crystal occurs may be determined in advance by an experiment.

【0048】[0048]

【発明の効果】以上の説明から明らかなように、本発明
の単結晶の製造方法によれば、加工後の種結晶が融液と
接触する接触面の少なくとも一部を除去することによ
り、小傾角粒界のない、大口径の単結晶を得ることがで
きる。また種結晶の先端面、すなわち融液との接触面
を、成長する単結晶の晶癖により出現する結晶面に加工
し、さらにこの種結晶の結晶面が融液と接触する接触面
の少なくとも一部を除去することにより、成長初期に種
結晶表面近傍に発生する空洞等の巨視的欠陥の防止効果
が併せて得られ、極めて良質の単結晶を得ることが可能
となる。
As is apparent from the above description, according to the method for producing a single crystal of the present invention, at least a part of the contact surface where the processed seed crystal comes into contact with the melt is removed. A large-diameter single crystal without tilt boundaries can be obtained. The tip surface of the seed crystal, that is, the contact surface with the melt is processed into a crystal surface that appears due to the crystal habit of the growing single crystal, and the crystal surface of the seed crystal is at least one of the contact surfaces that contact the melt. By removing the portions, the effect of preventing macroscopic defects such as cavities generated near the seed crystal surface in the initial stage of growth can be obtained, and a very good single crystal can be obtained.

【図面の簡単な説明】[Brief description of the drawings]

【図1】本発明の単結晶の製造方法に使用した単結晶成
長装置の概略構成を示す断面図である。
FIG. 1 is a cross-sectional view showing a schematic configuration of a single crystal growing apparatus used in a method for producing a single crystal of the present invention.

【図2】実施例1で採用した種結晶の下方斜視図であ
る。
FIG. 2 is a lower perspective view of a seed crystal employed in Example 1.

【図3】実施例1で得られた単結晶の下方斜視図であ
る。
FIG. 3 is a lower perspective view of the single crystal obtained in Example 1.

【図4】実施例2で採用した種結晶の下方斜視図であ
る。
FIG. 4 is a lower perspective view of a seed crystal employed in Example 2.

【図5】実施例4で採用した種結晶の下方斜視図であ
る。
FIG. 5 is a lower perspective view of a seed crystal employed in Example 4.

【図6】実施例1で得られた単結晶の形状を示し、
(a)は概略側面形状、(b)はc軸の成長方向側から
みた概略平面形状である。
FIG. 6 shows the shape of the single crystal obtained in Example 1,
(A) is a schematic side view, and (b) is a schematic plan view viewed from the growth direction side of the c-axis.

【図7】比較例により得られた単結晶の形状を示し、
(a)は概略側面形状、(b)はc軸の成長方向側から
みた概略平面形状である。
FIG. 7 shows the shape of a single crystal obtained in a comparative example,
(A) is a schematic side view, and (b) is a schematic plan view viewed from the growth direction side of the c-axis.

【符号の説明】[Explanation of symbols]

1…種結晶、2…単結晶、3…融液、4…ルツボ、5…
回転棒、6…加熱炉
1: seed crystal, 2: single crystal, 3: melt, 4: crucible, 5:
Rotating rod, 6 ... heating furnace

Claims (4)

【特許請求の範囲】[Claims] 【請求項1】 原料組成物と融剤とを含む融液に種結晶
を接触せしめ、前記融液を徐冷するとともに前記種結晶
を回転しつつ、前記種結晶上に単結晶を成長させる工程
を有する単結晶の製造方法であって、 前記種結晶上に前記単結晶を成長させる工程に先立ち、 前記種結晶の、前記融液との接触面の少なくとも一部を
除去する工程を挿入することを特徴とする単結晶の製造
方法。
1. A step of bringing a seed crystal into contact with a melt containing a raw material composition and a flux, and slowly cooling the melt and growing a single crystal on the seed crystal while rotating the seed crystal. A step of removing at least a part of a contact surface of the seed crystal with the melt prior to the step of growing the single crystal on the seed crystal. The manufacturing method of the single crystal characterized by the above-mentioned.
【請求項2】 前記種結晶の、前記融液との接触面の少
なくとも一部を除去する工程は、 前記融液の温度を、前記単結晶の結晶析出平衡温度より
高温に設定しつつ、前記種結晶の前記融液との接触面の
少なくとも一部を前記融液中に溶解する工程であること
を特徴とする請求項1記載の単結晶の製造方法。
2. The step of removing at least a part of a contact surface of the seed crystal with the melt, wherein the step of setting a temperature of the melt to a temperature higher than a crystal precipitation equilibrium temperature of the single crystal. The method for producing a single crystal according to claim 1, wherein at least a part of a contact surface of the seed crystal with the melt is dissolved in the melt.
【請求項3】 前記種結晶の、前記融液との接触面の少
なくとも一部を除去する工程は、 前記種結晶表面の加工変質層を除去する工程であること
を特徴とする請求項1記載の単結晶の製造方法。
3. The method according to claim 1, wherein the step of removing at least a part of the contact surface of the seed crystal with the melt is a step of removing an affected layer on the surface of the seed crystal. Method for producing a single crystal.
【請求項4】 前記種結晶の、前記融液との接触面は、 成長する前記単結晶の晶癖により出現する結晶面に準じ
る面に加工されていることを特徴とする請求項1記載の
単結晶の製造方法。
4. The method according to claim 1, wherein a contact surface of the seed crystal with the melt is processed to a surface similar to a crystal surface appearing due to a crystal habit of the growing single crystal. Single crystal production method.
JP27001197A 1997-10-02 1997-10-02 Production of single crystal Pending JPH11106284A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP27001197A JPH11106284A (en) 1997-10-02 1997-10-02 Production of single crystal

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP27001197A JPH11106284A (en) 1997-10-02 1997-10-02 Production of single crystal

Publications (1)

Publication Number Publication Date
JPH11106284A true JPH11106284A (en) 1999-04-20

Family

ID=17480314

Family Applications (1)

Application Number Title Priority Date Filing Date
JP27001197A Pending JPH11106284A (en) 1997-10-02 1997-10-02 Production of single crystal

Country Status (1)

Country Link
JP (1) JPH11106284A (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2009084154A (en) * 2009-01-09 2009-04-23 Sumitomo Electric Ind Ltd Method for etching surface of seed crystal
WO2013067502A1 (en) * 2011-11-04 2013-05-10 University Of Houston System System and method for monolithic crystal growth

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2009084154A (en) * 2009-01-09 2009-04-23 Sumitomo Electric Ind Ltd Method for etching surface of seed crystal
WO2013067502A1 (en) * 2011-11-04 2013-05-10 University Of Houston System System and method for monolithic crystal growth
US10047456B2 (en) 2011-11-04 2018-08-14 University Of Houston System Method of producing a monolithic crystal by top-seeded solution growth from a liquid crystal flux comprising a mixture of solid precursors

Similar Documents

Publication Publication Date Title
JPH11106284A (en) Production of single crystal
Kouta et al. β-BaB2O4 phase-matching-direction growth by the Czochralski method
EP0569968B1 (en) Method of producing single crystal of KTiOPO4
JPWO2004070091A1 (en) Magnetic garnet single crystal film forming substrate, manufacturing method thereof, optical element and manufacturing method thereof
KR0143799B1 (en) Single crystal growth method for bariumtitanikm oxide using noncrystalline solio growth
JPH0329037B2 (en)
JP3010881B2 (en) Single crystal growth method
JP3037829B2 (en) Single crystal growing method and single crystal
JPH08133884A (en) Production of single crystal
JP2959097B2 (en) Single crystal growth method
JP2004269283A (en) Substrate for forming magnetic garnet single crystal film, its manufacturing method, optical element, and its manufacturing method
JPH09227268A (en) Production of solid solution single crystal
JP2961115B2 (en) Method for manufacturing piezoelectric crystal
JP2647052B2 (en) Method for producing rare earth vanadate single crystal
JP2003226599A (en) Method of manufacturing single crystal
JPH06305887A (en) Mgo single crystal substrate
JPH0850312A (en) Production of organic nonlinear optical crystal
JPH06333771A (en) Manufacture of garnet single crystal film
JPH04325496A (en) Manufacture of magnesium added lithium niobade single crystal
JP2738642B2 (en) X-axis orientation lithium niobate single crystal growing method
JP3479112B2 (en) Method for treating lithium niobate single crystal substrate and method for producing electro-optical article
JPH0585897A (en) Method for forming lithium niobate single crystal into single domain
Okamoto et al. Method of producing single crystal of KTiOPO 4
JPH04260689A (en) Method of forming thin film of single crystal on substrate
JPH06219891A (en) Production of lithium niobate single crystal film