JPH09110575A - Crucible for producing single crystal and production of single crystal - Google Patents

Crucible for producing single crystal and production of single crystal

Info

Publication number
JPH09110575A
JPH09110575A JP27135195A JP27135195A JPH09110575A JP H09110575 A JPH09110575 A JP H09110575A JP 27135195 A JP27135195 A JP 27135195A JP 27135195 A JP27135195 A JP 27135195A JP H09110575 A JPH09110575 A JP H09110575A
Authority
JP
Japan
Prior art keywords
crucible
single crystal
crystal
growth
increased diameter
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP27135195A
Other languages
Japanese (ja)
Inventor
Kenji Ishii
顯治 石井
Takayuki Sato
貴幸 佐藤
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Resonac Holdings Corp
Original Assignee
Showa Denko KK
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Showa Denko KK filed Critical Showa Denko KK
Priority to JP27135195A priority Critical patent/JPH09110575A/en
Publication of JPH09110575A publication Critical patent/JPH09110575A/en
Pending legal-status Critical Current

Links

Abstract

PROBLEM TO BE SOLVED: To obtain a single crystal few in crystal defects by specifying the shape of the increased diameter portion of a crucible for single crystal growth by longitudinal boat method to effect single crystal growth in high yield of a compound semiconductar crystal subject to developing twin crystal. SOLUTION: This crucible to be used for single crystal growth by longitudinal boat method is such that the horizontal sectional contours (A-A' section as shown in the figure) of a majority of the increased diameter portion represents three to tow times point symmetry including straight line portion and that of the cylindrical portion is circular. By using this crucible, the formation of supercooled zone in the increased diameter portion can be prevented, enabling stable facet growth of single crystal to be conducted; therefore, twin crystal development is suppressed, thus enabling single crystal growth of crystal seed having been impossible to accomplish so far.

Description

【発明の詳細な説明】Detailed Description of the Invention

【0001】[0001]

【産業上の利用分野】本発明は、GaAs、InPなど
の III−V族化合物半導体単結晶を成長させる方法に係
わり、特に、縦型ボート法と総称される垂直ブリッジマ
ン法や垂直温度勾配凝固法による単結晶の成長に用いる
ルツボ及びそのルツボを用いた単結晶の方法に関する。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a method for growing a III-V group compound semiconductor single crystal such as GaAs or InP, and more particularly to a vertical Bridgman method or a vertical temperature gradient solidification method which is generally called a vertical boat method. The present invention relates to a crucible used for growing a single crystal by the method and a method for a single crystal using the crucible.

【0002】[0002]

【従来の技術】InPやGaAsなどの化合物半導体単
結晶の成長方法の一つに、ルツボ底に種結晶を設置し下
方から上方へ融液を固化させていく縦型ボート法があ
る。この縦型ボート法には、ルツボを所定の温度分布に
調整したホットゾーン内で高温部から低温部へ移動する
ことにより結晶成長がなされる垂直ブリッジマン法と、
温度勾配をほぼ一定に保ったまま徐々に降温することに
より結晶成長がなされる垂直温度勾配凝固法がある。II
I−V族化合物半導体単結晶を縦型ボート法により成長
させる場合、ルツボ底の井戸部に特定の方位を持つ種結
晶をおき、あらかじめ合成しておいた多結晶原料を入
れ、解離蒸気圧を印加するか、液体封止剤(B23
で上方を覆って炉内に不活性ガスを封入するかして多結
晶原料を融解し、さらに種結晶上部を融解して種付けを
行い、結晶成長が行われる。
2. Description of the Related Art As one of the methods for growing a compound semiconductor single crystal such as InP or GaAs, there is a vertical boat method in which a seed crystal is placed on the bottom of a crucible and a melt is solidified from the bottom to the top. In this vertical boat method, a vertical Bridgman method in which crystal growth is performed by moving from a high temperature portion to a low temperature portion in a hot zone where the crucible is adjusted to have a predetermined temperature distribution,
There is a vertical temperature gradient solidification method in which crystals are grown by gradually lowering the temperature while keeping the temperature gradient substantially constant. II
When a group IV compound semiconductor single crystal is grown by the vertical boat method, a seed crystal having a specific orientation is placed in the well portion at the bottom of the crucible, and the polycrystal raw material that has been synthesized in advance is put into Apply or liquid encapsulant (B 2 O 3 )
The polycrystalline raw material is melted by covering the upper part with an inert gas in the furnace, and further the upper part of the seed crystal is melted for seeding to grow crystals.

【0003】この縦型ボート法に用いられるルツボは、
従来図3に示すように、直胴部が円筒形、増径部が円錐
台形(水平断面形状は円形)をなし、種結晶を収容する
井戸部を有する形状のものが用いられている。GaAs
では比較的容易に単結晶成長が得られるものの、InP
では増径部での双晶の発生が避けられず、単結晶成長が
得にくいという欠点がある。縦型ボート法に用いる単結
晶製造用ルツボに関しては、特開平3ー54184 号公報に提
案されている。この結晶製造用ルツボは、ルツボの一部
あるいは全部の内壁水平断面形状が多角形状であること
を特徴とするものである。このルツボはウェーハ形成加
工時の結晶加工損失や加工時間の低減を目的としたもの
であるが、直胴部においてもルツボの水平断面形状の一
部あるいは全部の内壁水平断面形状が多角形状であるこ
とから、ルツボの製作が困難であるとともに、例えルツ
ボを製造し得たとしてもPBNルツボの場合はルツボ角
部に応力が集中し、寿命が短く破損し易い等の欠点があ
った。さらにルツボ角部で成長した結晶部位でも応力が
集中するため結晶欠陥が発生し易く、また結晶の取り出
しも困難であった。
The crucible used in this vertical boat method is
Conventionally, as shown in FIG. 3, a cylindrical body, a diameter-increasing portion having a truncated cone shape (the horizontal cross-sectional shape is circular) and a well portion for accommodating a seed crystal are used. GaAs
Although it is relatively easy to obtain single crystal growth in InP, InP
However, twin crystals are unavoidable in the increased diameter region, and it is difficult to obtain single crystal growth. A crucible for producing a single crystal used in the vertical boat method is proposed in JP-A-3-54184. The crucible for crystal production is characterized in that a part or all of the crucible has an inner wall horizontal sectional shape of a polygon. This crucible is intended to reduce crystal processing loss and processing time during wafer formation processing, but even in the straight body part, some or all of the horizontal cross-sectional shape of the crucible has a polygonal horizontal cross-section. Therefore, it is difficult to manufacture the crucible, and even if the crucible can be manufactured, in the case of the PBN crucible, stress is concentrated on the corners of the crucible, and there are drawbacks such as short life and easy breakage. Further, stress concentrates even in the crystal portion grown at the corners of the crucible, crystal defects are likely to occur, and it is difficult to take out the crystal.

【0004】特開平6ー166588号公報では、結晶欠陥が少
ない単結晶の製造を目的に、種結晶収容部位置が底部と
側壁の境界位置よりも高位置にあることを特徴とする単
結晶製造用ルツボが提案されているが、ルツボ形状が複
雑で製作が困難であり、またその形状のため種結晶収容
部上端と底部の継ぎ目が破損し易いという欠陥があっ
た。
In Japanese Unexamined Patent Publication (Kokai) No. 6-166588, for the purpose of manufacturing a single crystal with few crystal defects, the position of the seed crystal accommodating portion is higher than the boundary position between the bottom and the side wall. Although a crucible for use has been proposed, it has a defect that the crucible has a complicated shape and is difficult to manufacture, and the joint between the upper end and the bottom of the seed crystal storage portion is easily damaged due to the shape.

【0005】[0005]

【発明が解決しようとする課題】上記のように従来の縦
型ボート法では、InPなど双晶が発生し易い化合物半
導体の単結晶を製造する際には増径部において双晶の発
生を避けることは容易ではなく、また上記公報で提案さ
れたルツボは製作が困難でありもしくは製作しても破損
し易いという問題点があった。本発明は、上記問題点に
着目してなされたもので、縦型ボート法で双晶の発生し
やすい化合物半導体結晶を歩留まり良く単結晶成長さ
せ、かつ結晶欠陥の少ない化合物半導体単結晶製造用の
ルツボ及びそれを用いた単結晶の製造方法を提供するこ
とを目的とする。
As described above, in the conventional vertical boat method, when producing a single crystal of a compound semiconductor, such as InP, in which twinning is likely to occur, avoiding twinning in the increased diameter portion. This is not easy, and the crucible proposed in the above publication is difficult to manufacture, or even if it is manufactured, it is easily damaged. The present invention was made in view of the above-mentioned problems, in which a compound semiconductor crystal in which twinning is likely to occur is grown by a vertical boat method with a high yield, and a compound semiconductor single crystal with few crystal defects is produced. It is an object to provide a crucible and a method for producing a single crystal using the crucible.

【0006】[0006]

【課題を解決するための手段】この目的を達成するため
に、本発明者等はルツボ増径部において双晶が発生しや
すい原因を過冷却領域形成による増径部での不安定なフ
ァセット(エッジファセット)の成長にあることに着目
し、その双晶の発生起因となる過冷却による不安定なエ
ッジファセットの成長を抑制しようと考えた。ファセッ
ト成長は固液界面の一部分が特定低指数面方位で平坦な
面となる成長をいい、例えば液体封止チョクラルスキー
法によるInPの[100]結晶では一般に(111)
B面と平行方向にファセット成長が生じ、双晶はファセ
ット成長と平行な方向に発生する。双晶の発生とファセ
ット成長の間には相関があるといわれており、双晶は結
晶肩部に現れるファセット(エッジファセット)の長さ
に乱れがあると発生しやすいといわれている。実際の結
晶成長においてファセット成長面は(111)面の結晶
成長では3回の点対称方向に現れ、(100)面の結晶
成長では4回ないし2回の点対称方向に現れる。
In order to achieve this object, the inventors of the present invention have considered that the cause of twinning in the increased diameter portion of the crucible is that unstable facets in the increased diameter portion due to the formation of the supercooled region ( Focusing on the growth of edge facets), we tried to suppress the unstable growth of edge facets due to supercooling that causes twinning. Facet growth is a growth in which a part of the solid-liquid interface becomes a flat surface with a specific low-index plane orientation. For example, in InP [100] crystals by the liquid sealed Czochralski method, (111) is generally used.
Facet growth occurs in the direction parallel to the B-plane, and twins occur in the direction parallel to the facet growth. It is said that there is a correlation between the generation of twins and facet growth, and it is said that twins are likely to occur when the length of facets (edge facets) appearing on the crystal shoulders is disturbed. In actual crystal growth, the facet growth plane appears three times in the point symmetry direction in the crystal growth of the (111) plane, and appears four or two times in the point symmetry direction in the crystal growth of the (100) plane.

【0007】従来の縦型ボート法での増径部が円錐台形
状のルツボでは、増径部で結晶が本来ファセット成長す
べき面が円形となっているため過冷却領域が形成されて
しまい、そのためエッジファセットの不規則な乱れを生
じ双晶の発生を頻発させると考えた。そこで、本発明者
らはこの増径部での過冷却領域の形成を防ぐため、ファ
セット成長面に平行となる方向に直線部を配置した水平
断面形状となる増径部を有するルツボを着想するに至っ
た。しかる故本発明の方法は、種結晶を収容する井戸部
と、大部分の水平断面形状が直線部を含む3回ないし2
回の点対称形のルツボ増径部と、直胴部が円筒であるこ
とを特徴とする結晶製造用ルツボを用いることにより、
単結晶成長を行う点に特徴がある。
In the conventional vertical boat method, in the crucible having a frustoconical shape in the diameter-increased portion, a supercooled region is formed because the surface where crystals should be facet-grown in the diameter-increased portion is circular, Therefore, it was thought that irregular disorder of the edge facets would occur and twin crystals would frequently occur. Therefore, in order to prevent the formation of the supercooled region in the increased diameter portion, the inventors have conceived a crucible having an increased diameter portion having a horizontal cross-sectional shape in which a straight portion is arranged in a direction parallel to the facet growth surface. Came to. Therefore, the method of the present invention is performed 3 to 2 times with the well portion containing the seed crystal and most of the horizontal cross-sectional shape including the straight portion.
By using the point-symmetrical crucible diameter increasing portion and the crucible for crystal production, wherein the straight body portion is a cylinder,
It is characterized by performing single crystal growth.

【0008】ここで云う3回点対称及び2回点対称とは
水平断面形状の中心点を原点としてそれぞれ120度、
180度回転させたときにもとの形状に重なることを示
す。従って、例えば6回点対称(図6参照)、9回点対
称等は3回点対称形状に含まれ、同様に2回点対称とは
4回、8回(図5参照)の点対称等を含むものである。
直線部を配置した水平断面形状とは、水平断面形状が円
形または曲面のみからは構成されておらず、一部に必ず
直線部を含んで構成されるものを指す。本発明法を実施
するには、例えば図1や図4に示すような増径部の水平
断面形状が2回(4回)点対称のルツボ内に種結晶、多
結晶原料及び液体封止剤(B23 )を装入する。これ
を縦型ボート炉にセットし、不活性ガスを充填後昇温を
行い多結晶と種結晶の一部を溶解する。その後適正な温
度勾配下で、垂直ブリッジマンまたは垂直温度勾配凝固
法により単結晶成長を行う。
The three-fold point symmetry and the two-fold point symmetry referred to here are 120 degrees with respect to the center point of the horizontal cross section as the origin.
It shows that it overlaps with the original shape when rotated 180 degrees. Therefore, for example, 6-fold point symmetry (see FIG. 6), 9-fold point symmetry, etc. are included in the 3-fold point symmetry, and similarly, 2-fold point symmetry is 4 times, 8 times (see FIG. 5) point symmetry, etc. Is included.
The horizontal cross-sectional shape in which the straight line portion is arranged means that the horizontal cross-sectional shape is not composed only of a circular shape or a curved surface, and that a part of the horizontal cross-sectional shape necessarily includes a straight line portion. In order to carry out the method of the present invention, for example, a seed crystal, a polycrystalline raw material, and a liquid sealing agent are placed in a crucible having a point-symmetrical horizontal cross-sectional shape of a diameter-increased portion as shown in FIGS. (B 2 O 3 ) is charged. This is set in a vertical boat furnace, filled with an inert gas and then heated to dissolve some of the polycrystal and the seed crystal. After that, single crystal growth is performed by vertical Bridgman or vertical temperature gradient solidification method under an appropriate temperature gradient.

【0009】[0009]

【作用】本発明の方法によれば、ファセット成長面を形
成する結晶増径部水平断面においてファセット成長面と
平行となるように直線部を配置したルツボを使用するこ
とから、増径部において過冷却領域の形成を防ぐことで
安定したファセット成長を行なわせることが可能となる
ため、双晶の発生を抑制し、単結晶成長を行うことがで
きる。さらに、本発明の方法によれば、従来不可能であ
った結晶種の種結晶からの口径拡大による単結晶成長の
ため、種結晶から育成結晶への結晶欠陥(転位)の伝播
を減少させることができ、直胴部においては円筒である
ことから応力集中部を形成することがないため、高品質
の単結晶基板を得ることができる。
According to the method of the present invention, since the crucible in which the straight portion is arranged so as to be parallel to the facet growth surface in the horizontal section of the crystal diameter increase portion forming the facet growth surface is used, By preventing the formation of the cooling region, it becomes possible to carry out stable facet growth, so that twin crystal formation can be suppressed and single crystal growth can be carried out. Further, according to the method of the present invention, the propagation of crystal defects (dislocations) from the seed crystal to the grown crystal is reduced because of the single crystal growth by enlargement of the diameter of the seed crystal from the seed crystal, which has been impossible in the past. Since the straight body portion is a cylinder and no stress concentration portion is formed, a high quality single crystal substrate can be obtained.

【0010】[0010]

【実施例】【Example】

(実施例1)(100)面のInP結晶を縦型ボート法
で製造する場合、図1に示したルツボ増径部の大部分の
水平断面形状が直線部を含む4回の点対称形であり、直
胴部が円筒であるPBNルツボに、[100]方位のI
nP種結晶,InP多結晶1000g,B23 200
gの順に装入し、垂直ブリッジマン炉にセットした。用
いた種結晶はLEC(液体封止チョクラルスキー)法で
育成した[100]単結晶から切り出し、エッチングし
たものである。これらを所定の温度に昇温し、B2
3 ,InP多結晶を溶解した後、種結晶の上部の一部を
融解し種付けを行い、所定の温度分布下においてルツボ
を移動させ結晶成長を行った。
(Example 1) When manufacturing a (100) plane InP crystal by the vertical boat method, most of the crucible diameter increasing portion shown in FIG. Yes, in the PBN crucible with a straight body, the I in the [100] direction
nP seed crystal, InP polycrystal 1000 g, B 2 O 3 200
It was charged in the order of g and set in a vertical Bridgman furnace. The seed crystal used was one obtained by cutting out and etching a [100] single crystal grown by the LEC (Liquid Sealed Czochralski) method. These are heated to a predetermined temperature and B 2 O is added.
3. After melting the InP polycrystal, part of the upper portion of the seed crystal was melted and seeded, and the crucible was moved under a predetermined temperature distribution to grow the crystal.

【0011】(実施例2)(111)面のInP結晶を
縦型ボート法で製造する場合、図2に示したルツボ増径
部の大部分の水平断面形状が直線部を含む3回の点対称
形であり、直胴部が円筒であるPBNルツボに、[11
1]方位のInP種結晶,InP多結晶1000g,B
23 200gの順に装入し、垂直ブリッジマン炉にセ
ットした。用いた種結晶はLEC(液体封止チョクラル
スキー)法で育成した[111]単結晶から切り出し、
エッチングしたものである。これらを所定の温度に昇温
し、B23 ,InP多結晶を溶解した後、種結晶の上
部の一部を融解し種付けを行い、所定の温度分布下にお
いてルツボを移動させ結晶成長を行った。
(Example 2) When an InP crystal having a (111) plane is manufactured by a vertical boat method, most of the crucible diameter increasing portion shown in FIG. The PBN crucible, which has a symmetrical shape and a straight body, is cylindrical.
1] orientation InP seed crystal, InP polycrystal 1000 g, B
200 g of 2 O 3 was charged in this order and set in a vertical Bridgman furnace. The seed crystal used was cut out from a [111] single crystal grown by the LEC (Liquid Sealed Czochralski) method,
It was etched. After heating these to a predetermined temperature to dissolve the B 2 O 3 and InP polycrystals, a part of the upper part of the seed crystal is melted and seeded, and the crucible is moved under a predetermined temperature distribution to grow crystals. went.

【0012】(比較例1)図3に示した従来の円錐台形
ルツボを用いて、上記実施例1と同一の条件で(10
0)面のInP結晶成長を行った。 (比較例2)図3に示した従来の円錐台形ルツボを用い
て、上記実施例2と同一の条件で(111)面のInP
結晶成長を行った。
Comparative Example 1 Using the conventional frustoconical crucible shown in FIG. 3, under the same conditions as in Example 1 (10)
InP crystal growth of the (0) plane was performed. (Comparative Example 2) Using the conventional frustoconical crucible shown in FIG. 3, the (111) plane InP was formed under the same conditions as in Example 2 above.
Crystal growth was performed.

【0013】以上の実施例1、実施例2、比較例1及び
比較例2において、それぞれ結晶を育成した結果を表1
に示す。また同表には単結晶育成インゴットのシード部
及びテイル部よりサンプルウェーハを採取し、平均転位
密度を測定した結果も付け加えた。
Table 1 shows the results of crystal growth in Example 1, Example 2, Comparative Example 1 and Comparative Example 2 described above.
Shown in Further, in the same table, the result of measuring the average dislocation density by sampling the sample wafer from the seed portion and the tail portion of the single crystal growing ingot was added.

【0014】[0014]

【表1】 [Table 1]

【0015】表1からわかるように、実施例1の(10
0)面のInP結晶成長の場合、比較例1においては単
結晶が得られずその全ての育成結晶に双晶の発生が認め
られ、単結晶が得られなかったが、実施例1では育成1
0本中8本の単結晶が得られた。本実施例1で得られた
単結晶の平均転位密度はLEC法で得られた単結晶の転
位密度の1/10以下となっている。なお、比較例1で
は単結晶が得られなかったため、転位密度の比較ができ
なかった。一方、実施例2の(111)面のInP結晶
成長の場合、実施例2においては10本中9本の単結晶
が得られ、比較例2では10本中7本の単結晶が得られ
た。なお、平均転位密度はほぼ同等であった。本発明の
方法によれば、従来の円錐台形のルツボを用いて製造し
た場合に比較して、単結晶化率が大幅に向上する。
As can be seen from Table 1, (10
In the case of InP crystal growth on the (0) plane, no single crystal was obtained in Comparative Example 1 and twinning was observed in all the grown crystals, and no single crystal was obtained.
Eight single crystals were obtained out of zero. The average dislocation density of the single crystal obtained in Example 1 is 1/10 or less of the dislocation density of the single crystal obtained by the LEC method. In Comparative Example 1, a single crystal was not obtained, so that the dislocation densities could not be compared. On the other hand, in the case of InP crystal growth of the (111) plane of Example 2, 9 out of 10 single crystals were obtained in Example 2, and 7 out of 10 single crystals were obtained in Comparative Example 2. . The average dislocation density was almost the same. According to the method of the present invention, the single crystallization rate is significantly improved as compared with the case of manufacturing using a conventional frustoconical crucible.

【0016】なお、上記実施例では垂直ブリッジマン法
で製造した場合について示したが、他の縦型ボート法で
結晶製造した場合やGaAs結晶,ZnSe結晶など他
の結晶種を縦型ボート法で製造する場合なども得られる
効果は上記実施例の場合と同様であり説明を要しない。
また、ルツボ形状に関して3回点対称とは6回点対称や
9回点対称などその整数倍の点対称形を含んでおり、同
様に2回点対称に関してもその整数倍の点対称形は当然
含まれるものとする。またルツボの材質はPBNの他石
英等を用いても良い。
In the above-mentioned embodiment, the case of manufacturing by the vertical Bridgman method is shown, but the case of crystal manufacturing by another vertical boat method or another crystal seed such as GaAs crystal, ZnSe crystal by the vertical boat method. The effect obtained also in the case of manufacturing is similar to that of the above-mentioned embodiment, and description thereof is not required.
Further, regarding the crucible shape, the 3-fold point symmetry includes a point-symmetrical form of integral multiples such as 6-fold point symmetry and 9-point point symmetry. Shall be included. Further, as the material of the crucible, quartz or the like may be used instead of PBN.

【0017】[0017]

【発明の効果】本発明によれば、増径部で過冷却領域の
形成を防ぐことで安定したファセット成長を行なわせる
ことができ双晶の発生を抑制することができるので、縦
型ボート法において従来不可能であったInP等双晶発
生確率の高い結晶種の単結晶育成が高歩留まりで可能と
なり、また種結晶から育成結晶への結晶欠陥(転位)の
伝播を減少させることができ、高品質の単結晶基板を得
ることができる。
EFFECTS OF THE INVENTION According to the present invention, since the facet growth can be performed stably by preventing the formation of the supercooled region in the increased diameter portion and the generation of twins can be suppressed, the vertical boat method can be used. It is possible to grow a single crystal of a crystal seed having a high occurrence probability of twin crystals such as InP with a high yield, which is impossible in the past, and to reduce the propagation of crystal defects (dislocations) from the seed crystal to the grown crystal. A high-quality single crystal substrate can be obtained.

【図面の簡単な説明】[Brief description of the drawings]

【図1】本発明の実施例1において使用したルツボの断
面略図。
FIG. 1 is a schematic sectional view of a crucible used in Example 1 of the present invention.

【図2】本発明の実施例2において使用したルツボの断
面略図。
FIG. 2 is a schematic sectional view of a crucible used in Example 2 of the present invention.

【図3】従来の円錐型ルツボ。FIG. 3 is a conventional conical crucible.

【図4】2回点対称である増径部水平断面形状の例を示
した図。
FIG. 4 is a view showing an example of a horizontal cross-sectional shape of a diameter-increasing portion that is symmetric with respect to two points.

【図5】8回点対称を含む2回点対称の増径部水平断面
形状の例を示した図。
FIG. 5 is a view showing an example of a horizontal cross-sectional shape of a diameter-increasing portion having 2-fold point symmetry including 8-fold point symmetry.

【図6】6回点対称を含む3回点対称の増径部水平断面
形状の例を示した図。
FIG. 6 is a diagram showing an example of a horizontal cross-sectional shape of a diameter-increasing portion having 3-fold point symmetry including 6-point point symmetry.

Claims (4)

【特許請求の範囲】[Claims] 【請求項1】 縦型ボート法による単結晶成長用のルツ
ボであって、ルツボ増径部の大部分の水平断面形状が直
線部を含む3回ないし2回の点対称形であり、直胴部の
水平断面形状が円形であることを特徴とする単結晶製造
用ルツボ。
1. A crucible for growing a single crystal by means of a vertical boat method, wherein the horizontal cross-sectional shape of most of the increased diameter portion of the crucible is a point-symmetrical shape having three or two times including a straight line portion, A crucible for producing a single crystal, wherein the horizontal cross-sectional shape of the part is circular.
【請求項2】 請求項1に記載のルツボを用いることを
特徴とする化合物半導体単結晶の製造方法。
2. A method for producing a compound semiconductor single crystal, which comprises using the crucible according to claim 1.
【請求項3】 ルツボ増径部の大部分の水平断面形状
が、直線部を含む3回の点対称形であるルツボを用い
て、結晶成長方位が[111]である化合物半導体結晶
を育成することを特徴とする単結晶の製造方法。
3. A compound semiconductor crystal having a [111] crystal growth direction is grown using a crucible having a horizontal cross-sectional shape of most of the increased diameter portion of the crucible that is point-symmetrical three times including a linear portion. A method for producing a single crystal, comprising:
【請求項4】 ルツボ増径部の大部分の水平断面形状
が、直線部を含む2回または4回の点対称形であるルツ
ボを用いて、結晶成長方位が[100]である化合物半
導体結晶を育成することを特徴とする単結晶の製造方
法。
4. A compound semiconductor crystal having a crystal growth orientation of [100] using a crucible in which the horizontal cross-section of the increased diameter portion of the crucible is a point symmetry shape of two or four times including a straight line portion. A method for producing a single crystal, which comprises growing a.
JP27135195A 1995-10-19 1995-10-19 Crucible for producing single crystal and production of single crystal Pending JPH09110575A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP27135195A JPH09110575A (en) 1995-10-19 1995-10-19 Crucible for producing single crystal and production of single crystal

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP27135195A JPH09110575A (en) 1995-10-19 1995-10-19 Crucible for producing single crystal and production of single crystal

Publications (1)

Publication Number Publication Date
JPH09110575A true JPH09110575A (en) 1997-04-28

Family

ID=17498863

Family Applications (1)

Application Number Title Priority Date Filing Date
JP27135195A Pending JPH09110575A (en) 1995-10-19 1995-10-19 Crucible for producing single crystal and production of single crystal

Country Status (1)

Country Link
JP (1) JPH09110575A (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2012236770A (en) * 2003-05-07 2012-12-06 Sumitomo Electric Ind Ltd Indium phosphide substrate, and indium phosphide crystal
DE112011101731T5 (en) 2010-05-21 2013-03-21 Sumitomo Electric Industries, Ltd. A pyrolytic boron nitride container for growing a crystal, and a method for growing a semiconductor crystal using the container

Cited By (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2012236770A (en) * 2003-05-07 2012-12-06 Sumitomo Electric Ind Ltd Indium phosphide substrate, and indium phosphide crystal
JP5233070B2 (en) * 2003-05-07 2013-07-10 住友電気工業株式会社 Indium phosphide substrate, indium phosphide single crystal, and manufacturing method thereof
JP2015129091A (en) * 2003-05-07 2015-07-16 住友電気工業株式会社 indium phosphide substrate and indium phosphide crystal
EP1634981B1 (en) * 2003-05-07 2020-06-24 Sumitomo Electric Industries, Ltd. Indium phosphide substrate, indium phosphide single crystal and process for producing them
DE112011101731T5 (en) 2010-05-21 2013-03-21 Sumitomo Electric Industries, Ltd. A pyrolytic boron nitride container for growing a crystal, and a method for growing a semiconductor crystal using the container
DE112011101731B4 (en) 2010-05-21 2018-03-22 Sumitomo Electric Industries, Ltd. A pyrolytic boron nitride container for growing a crystal and use of the container

Similar Documents

Publication Publication Date Title
JP2003313089A (en) Method for manufacturing single crystal silicon and single crystal silicon wafer, seed crystal for manufacturing single crystal silicon, single crystal silicon ingot, and single crystal silicon wafer
US4944925A (en) Apparatus for producing single crystals
JP2006232570A (en) METHOD FOR PRODUCING GaAs SINGLE CRYSTAL
JPH09110575A (en) Crucible for producing single crystal and production of single crystal
JP3806791B2 (en) Method for producing compound semiconductor single crystal
JP4235711B2 (en) Manufacturing method of GaAs single crystal by vertical boat method
US7361219B2 (en) Method for producing silicon wafer and silicon wafer
TWI281520B (en) InP single crystal, GaAs single crystal, and method for producing thereof
JP4344021B2 (en) Method for producing InP single crystal
JP3787888B2 (en) Crystal growth method and growth crucible
JP2001048692A (en) Vessel for growing crystal and growing of the crystal
JP4529712B2 (en) Method for producing compound semiconductor single crystal
JP2004277266A (en) Method for manufacturing compound semiconductor single crystal
JPH03177400A (en) Manufacture of semiconductor material wafer
JP2005047797A (en) InP SINGLE CRYSTAL, GaAs SINGLE CRYSTAL, AND METHOD FOR PRODUCING THEM
JP2814796B2 (en) Method and apparatus for producing single crystal
KR950007598B1 (en) Method for decreasing dislocation of gaas single crystal by vertical temperature gradient
JPS5938187B2 (en) Method for producing Group 3-5 compound semiconductor single crystal
KR920007340B1 (en) Manufacturing method of 3-4 compound material semiconductor crystal
JP2864808B2 (en) III-V compound semiconductor single crystal
KR950007600B1 (en) Method for decreasing dislocation of gaas single crystal by vertical temperature zone control method
JPH0710680A (en) Production of single crystal of compound semiconductor
JP2005132717A (en) Compound semiconductor single crystal and its manufacturing method
JPH0748196A (en) Production of compound semiconductor single crystal
JPH0524963A (en) Production of compound semiconductor single crystal and apparatus therefor

Legal Events

Date Code Title Description
A977 Report on retrieval

Effective date: 20050201

Free format text: JAPANESE INTERMEDIATE CODE: A971007

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20050222

A02 Decision of refusal

Free format text: JAPANESE INTERMEDIATE CODE: A02

Effective date: 20050628