KR950007600B1 - Method for decreasing dislocation of gaas single crystal by vertical temperature zone control method - Google Patents

Method for decreasing dislocation of gaas single crystal by vertical temperature zone control method Download PDF

Info

Publication number
KR950007600B1
KR950007600B1 KR1019920001499A KR920001499A KR950007600B1 KR 950007600 B1 KR950007600 B1 KR 950007600B1 KR 1019920001499 A KR1019920001499 A KR 1019920001499A KR 920001499 A KR920001499 A KR 920001499A KR 950007600 B1 KR950007600 B1 KR 950007600B1
Authority
KR
South Korea
Prior art keywords
single crystal
gaas
dislocation
gaas single
vertical temperature
Prior art date
Application number
KR1019920001499A
Other languages
Korean (ko)
Other versions
KR930016572A (en
Inventor
고한준
Original Assignee
Lg전선주식회사
박원근
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Lg전선주식회사, 박원근 filed Critical Lg전선주식회사
Priority to KR1019920001499A priority Critical patent/KR950007600B1/en
Publication of KR930016572A publication Critical patent/KR930016572A/en
Application granted granted Critical
Publication of KR950007600B1 publication Critical patent/KR950007600B1/en

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C30CRYSTAL GROWTH
    • C30BSINGLE-CRYSTAL GROWTH; UNIDIRECTIONAL SOLIDIFICATION OF EUTECTIC MATERIAL OR UNIDIRECTIONAL DEMIXING OF EUTECTOID MATERIAL; REFINING BY ZONE-MELTING OF MATERIAL; PRODUCTION OF A HOMOGENEOUS POLYCRYSTALLINE MATERIAL WITH DEFINED STRUCTURE; SINGLE CRYSTALS OR HOMOGENEOUS POLYCRYSTALLINE MATERIAL WITH DEFINED STRUCTURE; AFTER-TREATMENT OF SINGLE CRYSTALS OR A HOMOGENEOUS POLYCRYSTALLINE MATERIAL WITH DEFINED STRUCTURE; APPARATUS THEREFOR
    • C30B29/00Single crystals or homogeneous polycrystalline material with defined structure characterised by the material or by their shape
    • C30B29/10Inorganic compounds or compositions
    • C30B29/40AIIIBV compounds wherein A is B, Al, Ga, In or Tl and B is N, P, As, Sb or Bi
    • C30B29/42Gallium arsenide

Landscapes

  • Chemical & Material Sciences (AREA)
  • Inorganic Chemistry (AREA)
  • Engineering & Computer Science (AREA)
  • Crystallography & Structural Chemistry (AREA)
  • Materials Engineering (AREA)
  • Metallurgy (AREA)
  • Organic Chemistry (AREA)
  • Crystals, And After-Treatments Of Crystals (AREA)

Abstract

The decreasing method of a dislocation of a GaAs single crystal by the vertical temperature gradient method is characterized by (a) inserting 600g undopped polycrystal GaAs into the quartz boat of the modified vertical gradient furnace, (b) maintaining the high temp. part and the low temp. part of the furnace to be at most 1250≰C and at least 1215≰C respectively, and stabilizing it, and (c) maintaining 2 mm/hr back melting speed and 2 mm back melting distance, 5 ≰C/cm temp. slope of the solid part and 1≰C/cm temp. slope of the molten part, and 2 mm/hr growth speed.

Description

수직온도 감소법에 의한 GaAs 단결정의 전위 감소방법Potential Reduction Method of GaAs Single Crystal by Vertical Temperature Reduction Method

제1도는 본 발명의 수직온도 감소법에 의한 GaAs 단결정 성장시, 초기의 GaAs 다결정과 시이드 크기를 나타내는 개략도.1 is a schematic diagram showing the initial GaAs polycrystal and seed size during GaAs single crystal growth by the vertical temperature reduction method of the present invention.

제2도는 본 발명의 수직온도 감소법에 의한 GaAs 단결정 성장시, GaAs 용융점인 1238℃에서 시이딩되어, 열역학적인 평형을 유지하여, 안정화 된 상태를 나타내는 개략도.FIG. 2 is a schematic diagram showing a stabilized state of a GaAs single crystal grown by the vertical temperature reduction method of the present invention, seeded at 1238 ° C, which is a melting point of GaAs, to maintain thermodynamic equilibrium.

제3도는 본 발명의 수직온도 감소법에 의한 GaAs 단결정 성장시, 시이드의 열충격을 받은 부분이 2mm/hr의 속도로 2mm만큼 백멜팅 된 상태를 나타내는 개략도.3 is a schematic diagram showing a state in which the thermally impacted portion of the seed is backmelted by 2 mm at a speed of 2 mm / hr during the growth of GaAs single crystal by the vertical temperature reduction method of the present invention.

제4도는 종래의 수직온도 감소법에 의한 GaAs 단결정 성장시, 쇼울더 부분에서 발생하는 선상결함(lineage)을 나타내는 현미경 사진.FIG. 4 is a micrograph showing lineage defects occurring in the shoulder portion during GaAs single crystal growth by a conventional vertical temperature reduction method.

제5도는 수직온도 감소법에 의한 GaAs 단결정 성장시의 에지콘캐비티를 나타내는 현미경 상진.5 is a microscope top view showing the edge cone cavity during GaAs single crystal growth by the vertical temperature reduction method.

* 도면의 주요부분에 대한 부호의 설명* Explanation of symbols for main parts of the drawings

1 : 석영보우트 2 : 다결정 GaAs1: Quartz Boat 2: Polycrystalline GaAs

3 : GaAs 용융물 4 : 시이드3: GaAs melt 4: seed

5 : 선상결함(리니이지) 6 : 에니콘캐비티5: Line defect (Lineage) 6: Enicon cavity

본 발명은 수직온도 감소법에 의한 GaAs 단결정의 전위 감소방법에 관한 것으로, 보다 구체적으로는 수직온도 감소법으로 성장된 GaAs 단결정을 광소자용으로 사용하기 위하여, 최우선으로 개선해야 하는 전위의 수를 500㎝-2이하로 감소하는 방법에 관한 것이다.The present invention relates to a method for reducing the potential of a GaAs single crystal by the vertical temperature reduction method. More specifically, in order to use a GaAs single crystal grown by the vertical temperature reduction method for an optical device, the number of potentials to be improved first is 500. It relates to a method of decreasing to cm -2 or less.

종래의 액체 캡슈울법(liquid encapsulated Czochralski method)에서 전위는 GaAs 용융물이 응고한 직후, 고체부분에서의 온도구배가 200℃/㎝ 정도로 매우 크기 때문에, 열응력에 의하여 주로 발생하며, 전위감소를 위하여, 시이드 네킹, Si의 고농도도핑, 고-액 계면형상조절, 냉각률조절 등의 방법을 사용하지만, 대부분의 경우, 전위밀도(EPD)가 10,000㎝-2이상으로 매우 높아서 낮은 전위밀도를 요구하는 광소자용에는 적합하지 못하다.In the conventional liquid encapsulated Czochralski method, the dislocation is mainly generated by thermal stress because the temperature gradient in the solid portion is very high, such as 200 ° C./cm, immediately after the GaAs melt solidifies. Seed necking, high concentration doping of Si, solid-liquid interfacial shape control, cooling rate control, etc. are used, but in most cases, the dislocation density (EPD) is very high above 10,000 cm -2 , requiring low dislocation density. It is not suitable for optical devices.

또한, 기존의 수평형 브리지만법(Horizontal Bridgman method)에서 전위의 생성원인인 시이딩점(seeding point)으로부터의 전위전파, 국부융착점(local wlettin g point)으로부터의 전위전파, 고상-액체 계면형상유도 발생전위(solid-liquid inter face shape induced grown-in dislocation), 후냉각 과정에서의 결함붕괴전위(defe ct collapsed dislocation), 도펀트 편석에 의한 부정합 전위(misfit dislocation), 열탄성 변형유도가동전위(thermoelastic deformation induced moving dislocation) 등으로 알려져 있으며, 전위밀도가 제로인 단결정을 간혹 판매하고 있으나, 자세한 감소방법은 공개되어 있지 않다.In addition, in the conventional horizontal Bridgman method, dislocation propagation from seeding point, which is the cause of dislocation generation, dislocation propagation from local wlettin g point, solid-liquid interface shape Solid-liquid inter face shape induced grown-in dislocation, defect collapse dislocation during post-cooling process, misfit dislocation by dopant segregation, thermoelastic strain induction It is known as thermoelastic deformation induced moving dislocation and sometimes sells single crystal with zero dislocation density, but no detailed reduction method is disclosed.

최근에 액체 캡슈울법과 수평형 브리지만법의 장점을 혼합한 수직형 브리지만( Vertical Bridgman)법은, 고유성장효과(intrinsic growth effect)에 의해서 근본적으로 고체-액체 계면형상이 평평하고, 고상부분의 온도구배가 작으므로, 낮은 결함밀도의 결정을 제조할 수 있으나, 고품위 GaAs 웨이퍼 즉, 전위밀도가 5000㎝-2이하(EPD ≤500㎝-2)인 GaAs 웨이퍼를 제조하기 위하여는 더욱 고난도의 전위감소 방법을 사용하여야 하는 문제점이 있다.In recent years, the Vertical Bridgman method, which combines the advantages of the liquid cap shoul method and the horizontal Bridman method, is essentially flat in the solid-liquid interface shape due to the intrinsic growth effect, and has a solid phase portion. Since the temperature gradient of is small, crystals of low defect density can be produced. However, in order to manufacture high-quality GaAs wafers, that is, GaAs wafers having a dislocation density of 5000 cm -2 or less (EPD ≤ 500 cm -2 ), There is a problem that a potential reduction method should be used.

본 발명은 시이딩시 전위를 감소시키거나, 부분적인 화학적 융착반응을 제거함으로써 전위를 감소시키거나, 또는 에지콘캐비티(edge concavity) 감소에 의해 전위를 감소시켜 고품위의 GaAs 웨이퍼를 제조하는 방법을 제공하고자 한다.The present invention provides a method for fabricating high quality GaAs wafers by reducing the potential during seeding, by reducing the potential by eliminating partial chemical fusion, or by reducing the potential by reducing edge concavity. To provide.

이제 본 발명은 상세히 설명하면, 다음과 같다.Now, the present invention will be described in detail.

본 발명은 전위밀가 500㎝-2이하인 고품위 GaAs 결정을 제조하기 위하여 수직형 브리지만법을 사용하여, GaAs 단결정을 성장시키는 도중에 하기의 방법을 사용한다.The present invention uses the following method during the growth of GaAs single crystals using the vertical Bridgman method to produce high quality GaAs crystals having a dislocation density of 500 cm -2 or less.

첫째 방법에 대하여 설명하면, 초기에 GaAs 용융물이 시이드와 접촉할 때 시이드 부분의 직경이 작고, GaAs 용융물의 표면장력이 크므로, 이러한 큰 계면에너지는 과냉을 유발하여, 성장속도를 빠르게 하여 전위의 증가를 초래한다.In the first method, since the diameter of the seed portion is small and the surface tension of the GaAs melt is large when the GaAs melt is initially in contact with the seed, such a large interfacial energy causes supercooling to increase the growth rate. Results in an increase in dislocation.

또한 윗부분 용융물의 영향을 받아서, 응고점 이하의 부분도 순간적으로 용융물이 형성되는 열충격을 받게 되며, 고상-액상 계면형상이 매우 오목한 양상을 하고, 국부적인 융착도 심하게 일어나서, 전위밀도가 매우 높게 된다.In addition, under the influence of the upper melt, the portion below the freezing point is instantaneously subjected to thermal shock in which the melt is formed, the solid-liquid interfacial shape is very concave, and local fusion is also severely caused, resulting in a very high dislocation density.

통상은 GaAs 결정을 일단 1260℃ 이상으로 높인 후에 1250℃로 냉각시키므로 열충격을 받게 되지만, 본 발명은 시이딩시에, 전위밀도를 감소시키기 위하여, 우선 제1도에 도시된 바와 같이, GaAs 결정의 온도를 서서히 상승시켜 완전히 GaAs 용융물을 형성하지 않도록 1250℃ 이하로 용융물의 온도를 유지시킨다.Usually, the GaAs crystals are subjected to thermal shock because they are once cooled to 1250 ° C after being raised to 1260 ° C or more. However, the present invention, in order to reduce dislocation density during seeding, first of all, as shown in FIG. The temperature of the melt is maintained at 1250 ° C. or less so that the temperature is gradually raised to not fully form the GaAs melt.

이어서 제2도에 도시된 바와같이, 시이딩이 된 후, 과냉이 일어난 부분이 평형을 유지하도록 충분한 안정화시간을 유지하고 나서 제3도에 도시된 바와 같이, 충분한 안정화 시간이 지난 후에 약 2mm/hr의 속도로 2mm 정도 시이드쪽으로 백멜팅(back melting) 작업을 하여 열충격을 받는 부분을 용융물로 만든 후 다시 성장시키는 방법을 사용한다.Subsequently, as shown in FIG. 2, after seeding, a sufficient stabilization time is maintained so that the portion where subcooling has occurred remains in equilibrium, and then, after sufficient stabilization time has passed, as shown in FIG. Back melting is applied to the side about 2mm at the speed of hr, and the part subjected to thermal shock is made into a melt and then grown again.

둘째 방법에 있어서, 설명하면, 특히 쇼울더부분(shoulder)에서 주로 발생하는 국부적인 융착은 석영 부우트와 GaAs 용융물과의 화학적 반응에 의해서 생성되는데, 이 쇼울더 부분에서 제4도에 도시된 바와 같은 선상결함(線狀缺陷, lineage)(5)와 저경각 경계(low angle boundary)가 발생하며 전위밀도도 부분적으로 20,000㎝-2정도로 높으며, 이러한 전위는 결정내부로 전파하며, 점점 감소하는 양상을 띄고 있다.In the second method, in particular, local fusion, which occurs mainly in the shoulder section, is produced by the chemical reaction between the quartz bout and the GaAs melt, in which the line as shown in FIG. Defects (lineage) 5 and low angle boundary occur, and the dislocation density is also partly high, such as 20,000 cm -2 , and these dislocations propagate into the crystal and gradually decrease. have.

그러므로 국부적인 융착을 제거하기 위해서 1) 보우트 내벽을 샌드블라스트 처리함으로써 균일한 α-크리스토빌라이트(α-crystobilite) 생성에 의한 국부적인 융착을 방지하고 2) 쇼울더 부분에서 성장속도를 낮춤으로써 국부적인 융착을 제거함으로써 전위밀도를 감소시키는 발법이다.Therefore, in order to eliminate local fusion, 1) sandblasting the inner wall of the boat prevents local fusion by uniform α-crystobilite production and 2) lowers the growth rate in the shoulder area. It is a method to reduce dislocation density by removing fusion.

세째 방법에 대하여 설명하는 GaAs 용융물과 고상이 보우트 내벽과 만나는 주위에서는 GaAs의 커다란 특징인 패시트(facet)가 생성되는데, 패시트는 층성장(layer growth)을 하며, 성장속도가 매우 빠르기 때문에 패시트 크기가 불균일하게 된다.The GaAs melt, which explains the third method, and the solid phase meet the inner wall of the boat, creating a facet, which is a big feature of GaAs. The facet is layered and grows very fast. The sheet size becomes uneven.

이러한 패시트와 전체적인 고상-액상 계면이 만나는 부분에서의 부분적인 고상 -액상 계면 형상을 에지콘캐비티라고 정의하며 제5도에 도시되는데, 이러한 에지 콘캐비(6)가 심할 때에 용융물이 응고한 직후, 고상의 팽창을 저지하여 응력이 발생하고, 이러한 팽창저지에 의한 응력이 임계응력 값을 초과할 때에, 전위의 발생이 초래되며, 발생전위는 결정내부로 전파한다.The partial solid-liquid interface shape at the point where this facet and the overall solid-liquid interface meet is defined as an edge cone cavity and is shown in FIG. 5, immediately after the melt solidifies when this edge cone cavity 6 is severe. When the stress caused by the expansion stop is exceeded and the stress caused by the expansion stop exceeds the critical stress value, the generation of dislocation is caused, and the dislocation propagates inside the crystal.

그러므로 1) 에지 콘캐비티를 감소시키고, 2) 패시트 크기를 작고 균일하게 유지함으로써 전위의 발생을 억제시키는 방법이다.Therefore, 1) the edge cavity is reduced, and 2) the facet size is kept small and uniform to suppress the generation of dislocations.

본 발명의 수직형 브리지만법에 의하면, HB법에 중요시 여기는 후냉각시에 공공 붕괴에 의한 전위증감효과는 커다란 영향을 미치지 못하며, 액체 캡슈울법에서 중요시 여기는 열탄성전위는 DSL(dilute sirtlewith light) 포토 에칭에 의해서 관찰할 때 발견되었으나, 그 수가 매우 작았고, 전체적인 고상-액상 계면 형상에 의한 전위발생 효과도 큰 영향을 미치지 못한다.According to the vertical Bridgman method of the present invention, the potential increase / decrease effect due to public collapse during post-cooling, which is important for the HB method, does not have a significant effect, and the thermoelastic potential, which is important for the liquid cap shoal method, is a DSL (dilute sirtlewith light). It was found when observing by photo etching, but the number was very small, and the effect of dislocation generation due to the overall solid-liquid interface shape also had little effect.

[실시예]EXAMPLE

개별적인 12온도대역 조절방식(12 temperature zone control method)을 사용하는 개량형 수직온도 감소로(modified vertical gradient furnace)의 2직경의 석영 보우트에 도핑되지 않은 다결정 GaAs 600g을 장입하고, 로의 온도를 고온부는 1250℃ 이하로 하고, 저온부를 1215℃ 이상으로 유지하고, 온도구배를 고상부분은 5℃/㎝로 하고, 용융물부분은 1℃/㎝로 유지하고, 8시간 안정화시키고, 백멜팅 속도를 2mm/hr로 하고, 백멜팅 거리를 2mm로 하고 나서, 온도구배는 고상부분을 5℃/㎝로 하고 용융물 부분을 1℃/㎝로 하여, 성장속도를 2mm/hr로 하여 GaAs 단결정을 제조하였다. GaAs 단결정의 전위밀도는 5000㎝-2이하이었다.Charge 600 g of undoped polycrystalline GaAs into a two-diameter quartz boat in a modified vertical gradient furnace using a separate 12 temperature zone control method, and the furnace temperature is 1250. The temperature is kept below 1215 ° C., the temperature gradient is 5 ° C./cm for the solid phase, the melt part is kept at 1 ° C./cm, stabilized for 8 hours, and the backmelting speed is 2 mm / hr. The GaAs single crystal was prepared by setting the back melting distance to 2 mm, the temperature gradient of 5 ° C./cm for the solid phase part, and the melting part of 1 ° C./cm for the growth rate of 2 mm / hr. The dislocation density of the GaAs single crystal was 5000 cm -2 or less.

본 발명은 시이딩시, 용융물의 온도를 1250℃ 이하고 하고, 안정화 시간을 조절하고, 백멜팅을 함으로써, 시이드에서의 전위 발생을 억제하는 효과를 얻는다.The present invention achieves the effect of suppressing the generation of dislocations in the seed by seeding at a temperature of 1250 ° C. or less, adjusting the stabilization time, and performing back melting.

Claims (1)

수직온도 감소법에 의한 GaAs 단결정의 전위감소방법에 있어서, 시이딩시 로의온도를 고온부는 1250℃ 이하로 하고 저온부를 1215℃ 이상으로 유지하며 안정화시키고 백멜팅 속도를 2mm/hr로 하고 백멜팅 거리를 2mm로 하며 온도구배를 고상부분은 5℃/㎝로 하고 용융물 부분은 1℃/㎝로 유지하고 성장속도는 2mm/hr로 유지하는 것을 특징으로 하는 수직온도 감소법에 의한 GaAs 단결정의 전위 감소방법.In the method of decreasing the potential of GaAs single crystal by the vertical temperature reduction method, the temperature of the furnace at the time of seeding is maintained at 1250 ° C. or less at the high temperature part and maintained at 1215 ° C. or more at the low temperature part. The potential reduction of GaAs single crystal by the vertical temperature reduction method is characterized in that the temperature gradient is 5 ℃ / ㎝ and the melt portion is maintained at 1 ℃ / ㎝ and the growth rate is 2 mm / hr. Way.
KR1019920001499A 1992-01-31 1992-01-31 Method for decreasing dislocation of gaas single crystal by vertical temperature zone control method KR950007600B1 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
KR1019920001499A KR950007600B1 (en) 1992-01-31 1992-01-31 Method for decreasing dislocation of gaas single crystal by vertical temperature zone control method

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
KR1019920001499A KR950007600B1 (en) 1992-01-31 1992-01-31 Method for decreasing dislocation of gaas single crystal by vertical temperature zone control method

Publications (2)

Publication Number Publication Date
KR930016572A KR930016572A (en) 1993-08-26
KR950007600B1 true KR950007600B1 (en) 1995-07-12

Family

ID=19328547

Family Applications (1)

Application Number Title Priority Date Filing Date
KR1019920001499A KR950007600B1 (en) 1992-01-31 1992-01-31 Method for decreasing dislocation of gaas single crystal by vertical temperature zone control method

Country Status (1)

Country Link
KR (1) KR950007600B1 (en)

Also Published As

Publication number Publication date
KR930016572A (en) 1993-08-26

Similar Documents

Publication Publication Date Title
WO1999050481A1 (en) Method of manufacturing compound semiconductor single crystal
US4944925A (en) Apparatus for producing single crystals
KR950007600B1 (en) Method for decreasing dislocation of gaas single crystal by vertical temperature zone control method
JP3806791B2 (en) Method for producing compound semiconductor single crystal
JP2005298254A (en) Compound semiconductor single crystal growth vessel and method for producing compound semiconductor single crystal by using the same
Reijnen et al. GaSb single-crystal growth by vertical gradient freeze
US6267815B1 (en) Method for pulling a single crystal
JP4344021B2 (en) Method for producing InP single crystal
JP2814796B2 (en) Method and apparatus for producing single crystal
KR950007598B1 (en) Method for decreasing dislocation of gaas single crystal by vertical temperature gradient
JP3831913B2 (en) Method for producing compound semiconductor single crystal
CN111876821B (en) Cast monocrystalline silicon ingot and preparation method thereof, cast monocrystalline silicon piece and preparation method thereof
KR20230151794A (en) GaAs SINGLE CRYSTAL GROWTH APPARATUS AND GROWTH METHOD
JP2855408B2 (en) Single crystal growth equipment
JP2781857B2 (en) Single crystal manufacturing method
JPH01179796A (en) Seed crystal for producing non-dislocation gaas single crystal
JPH09309791A (en) Method for producing semiconducting single crystal
JP2773441B2 (en) Method for producing GaAs single crystal
KR940009282B1 (en) P-type gaas single crystal growing method by zn doping
JP3806793B2 (en) Method for producing compound semiconductor single crystal
JPH09110575A (en) Crucible for producing single crystal and production of single crystal
JP2003342096A (en) Method for producing compound semiconductor single crystal
JP2005047797A (en) InP SINGLE CRYSTAL, GaAs SINGLE CRYSTAL, AND METHOD FOR PRODUCING THEM
JP2004010467A (en) Method for growing compound semiconductor single crystal
JPH05178684A (en) Production of semiconductor single crystal

Legal Events

Date Code Title Description
A201 Request for examination
E902 Notification of reason for refusal
G160 Decision to publish patent application
E701 Decision to grant or registration of patent right
GRNT Written decision to grant
FPAY Annual fee payment

Payment date: 19980701

Year of fee payment: 6

LAPS Lapse due to unpaid annual fee