JPH01179796A - Seed crystal for producing non-dislocation gaas single crystal - Google Patents

Seed crystal for producing non-dislocation gaas single crystal

Info

Publication number
JPH01179796A
JPH01179796A JP125388A JP125388A JPH01179796A JP H01179796 A JPH01179796 A JP H01179796A JP 125388 A JP125388 A JP 125388A JP 125388 A JP125388 A JP 125388A JP H01179796 A JPH01179796 A JP H01179796A
Authority
JP
Japan
Prior art keywords
seed crystal
crystal
raw material
dislocation
material melt
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP125388A
Other languages
Japanese (ja)
Inventor
Atsushi Shimizu
敦 清水
Tatsuya Tanabe
達也 田辺
Kazuhisa Matsumoto
和久 松本
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Sumitomo Electric Industries Ltd
Original Assignee
Sumitomo Electric Industries Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Sumitomo Electric Industries Ltd filed Critical Sumitomo Electric Industries Ltd
Priority to JP125388A priority Critical patent/JPH01179796A/en
Publication of JPH01179796A publication Critical patent/JPH01179796A/en
Pending legal-status Critical Current

Links

Landscapes

  • Crystals, And After-Treatments Of Crystals (AREA)

Abstract

PURPOSE:To obviate deterioration in melting of a seed crystal and deposition of a polycrystal to the front end of the seed crystal even if the temp. of a raw material melt deviates slightly from the m.p. and to prevent generation of a propagation-dislocation by providing an In concn. gradient to the seed crystal at the time of producing the non-dislocation Ga As single crystal added with In by an LEC method. CONSTITUTION:The concn. gradient of In is provided as follows to the seed crystal 1 for producing the non-dislocation Ga-As single crystal add with In by the LEC method: The concn. of the In at the end part is so set that the m.p. at the end part of the seed crystal first coming into contact with the raw material melt 4 is slightly lower then the temp. on the surface 3 of the raw material melt, then the concn. of the In is so set as to be lowered toward the other end part of the seed crystal. The concn. of the In at the bottom end of the seed crystal 1 is preferably set at the value obtd. by multiplying the concn. of the In of the raw material melt by a segrefaction coefft. or larger.

Description

【発明の詳細な説明】 (産業上の利用分野) 本発明は、In添加の無転位GaAs単結晶をLEC法
により製造するときに用いる種結晶に関する。
DETAILED DESCRIPTION OF THE INVENTION (Industrial Application Field) The present invention relates to a seed crystal used when producing an In-doped dislocation-free GaAs single crystal by the LEC method.

(従来の技術) LEC法によりアンドープGaAs単結晶には、通常1
0.000〜50. OQOcm −2の転位が存在す
る。このような結晶より切り出したウェハを基板として
、FET、レーザー等を作製すると、上記転位によりデ
バイスの特性が大きく低下する。転位密度を低減するた
めには、Inを添加する方法が提案された(Jacob
(Prior art) Undoped GaAs single crystal by LEC method usually has 1
0.000~50. There are OQOcm −2 dislocations. When FETs, lasers, etc. are manufactured using a wafer cut from such a crystal as a substrate, the characteristics of the device are greatly deteriorated due to the above-mentioned dislocations. In order to reduce the dislocation density, a method of adding In was proposed (Jacob
.

SSem1−In5ulatin m −V M at
erials Evian(1982) 5hiva 
Publishing U K 、 p 、 2 ) 
。その後In添加法で得たウェハも、その周辺部には5
lipと呼ぶ線状転位が存在し、中心部にも転位密度の
高い領域が存在することが指摘された(Jordan、
J、Crystal Growth 76 (1986
)p、243〜262)。この中心部の転位は、種結晶
からの伝播転位とその転位から増殖したものとが考えら
れる。これらの転位を無くすために、種付は後に成長結
晶を一度細長く絞るネッキング法を用いたり、無転位の
種結晶を用いたりする。しかし、無転位の種結晶を用い
ても、伝播転位を十分低下させる事はできない。何故な
らば、種結晶を棒状に切り出すときの加工歪や、種結晶
か高温雰囲気にさらされることにより、融液に接触する
までに種結晶の下端表面が劣化し、転位の源となる。
SSem1-In5ulatin m-V M at
erials Evian (1982) 5hiva
Publishing UK, p. 2)
. Later, wafers obtained by the In addition method also had 5
It was pointed out that there are linear dislocations called lips, and that there is also a region with high dislocation density in the center (Jordan,
J.Crystal Growth 76 (1986
) p, 243-262). The dislocations in the center are thought to be propagated dislocations from the seed crystal and propagated from the dislocations. In order to eliminate these dislocations, seeding is performed by using a necking method in which the grown crystal is narrowed once, or by using a dislocation-free seed crystal. However, even if a dislocation-free seed crystal is used, propagating dislocations cannot be sufficiently reduced. This is because the lower end surface of the seed crystal deteriorates by the time it comes into contact with the melt due to processing strain when cutting the seed crystal into a rod shape and exposure of the seed crystal to a high temperature atmosphere, which becomes a source of dislocations.

そこで、種結晶の下端表面を僅かに融解して清浄な表面
を露出させた後、結晶成長を開始した。この場合も、原
料融液の温度が種結晶の融点より高すぎると、種結晶は
融解劣化して転位は逆に増加する。
Therefore, after slightly melting the lower end surface of the seed crystal to expose a clean surface, crystal growth was started. Also in this case, if the temperature of the raw material melt is too high than the melting point of the seed crystal, the seed crystal will melt and deteriorate, and the number of dislocations will increase.

ところで、LEC法により結晶成長を開始する時の原料
融液の温度調節は、通常、多結晶原料を融解した後、−
度徐冷して樹枝状結晶を生じさせ、再び温度を徐々に上
昇させて、樹枝状結晶が融解するときに、原料融液温度
が樹枝状結晶の融点にあるとみなし、この温度を原料融
液の制御温度とした。しかし、このような方法では融液
の温度を精確に制御することができず、種結晶を融液に
接触するときに、原料融液温度が高いと種結晶を融解劣
化するし、逆に、過冷却状態となると種結晶の先端に多
結晶が析出することを避けることができなかった。
By the way, when starting crystal growth by the LEC method, the temperature of the raw material melt is usually adjusted after melting the polycrystalline raw material.
The temperature is gradually increased again to form dendrites, and when the dendrites melt, the temperature of the raw material melt is considered to be at the melting point of the dendrites, and this temperature is set as the melting point of the raw material melt. The temperature was set as the control temperature of the liquid. However, with this method, it is not possible to precisely control the temperature of the melt, and when the seed crystal is brought into contact with the melt, if the temperature of the raw material melt is high, the seed crystal will melt and deteriorate; When supercooled, it was impossible to avoid the precipitation of polycrystals at the tips of the seed crystals.

(発明が解決しようとする問題点) 本発明は、上記の問題点を解消し、原料融液温度が融点
からずれても、種結晶を融解劣化したり、多結晶を析出
させることもなく、伝播転位の発生を防止することので
きる無転位GaAs単結晶製造用の種結晶を提供しよう
とするものである。
(Problems to be Solved by the Invention) The present invention solves the above problems, and even if the raw material melt temperature deviates from the melting point, the seed crystal will not melt and deteriorate or polycrystals will not precipitate. The present invention aims to provide a seed crystal for producing a dislocation-free GaAs single crystal that can prevent the occurrence of propagating dislocations.

(問題点を解決するための手段) 本発明は、In添加の無転位GaAs単結晶をLEC法
により製造するための種結晶において、原料融液と初め
に接触する種結晶の端部の融点を原料融液の表面温度よ
り僅かに低くなるように、該端部のIn濃度を設定し、
種結晶の他端部に向かってIn濃度が低下するようにI
n濃度勾配を設けたことを特徴とする無転位GaAs単
結晶製造用の種結晶である。
(Means for Solving the Problems) The present invention aims to reduce the melting point of the end of the seed crystal that first comes into contact with the raw material melt in a seed crystal for producing an In-doped dislocation-free GaAs single crystal by the LEC method. Set the In concentration at the end so that it is slightly lower than the surface temperature of the raw material melt,
I so that the In concentration decreases toward the other end of the seed crystal.
This is a seed crystal for producing a dislocation-free GaAs single crystal, which is characterized by having an n concentration gradient.

(作用) 純粋なGaAs結晶の融点は1237℃であり、Inを
添加することにより、第2図のように低下する(長村光
造他、日本金属学会誌VoL36 (1972)])、
746) 、一方、無転位GaAs単結晶を製造すると
きには、通常、GaAs原料に対して3〜lQwt%の
Inを添加する。このようなIn濃度Coである原料融
液からGaAs単結晶を育成するときに偏析係数にはお
よそ01てあり、固化率gの位置における育成結晶中の
In濃度C(g)は、次の式で求めることができる。
(Function) The melting point of pure GaAs crystal is 1237°C, and by adding In, it decreases as shown in Figure 2 (Mitsuzo Nagamura et al., Journal of the Japan Institute of Metals VoL 36 (1972)).
746) On the other hand, when manufacturing a dislocation-free GaAs single crystal, 3 to 1Qwt% of In is usually added to the GaAs raw material. When growing a GaAs single crystal from a raw material melt with such an In concentration Co, the segregation coefficient is approximately 01, and the In concentration C (g) in the grown crystal at the solidification rate g is calculated using the following formula: It can be found by

C(g)=CoK(]  g)K−’ 即ち、結晶成長開始時における成長結晶のIn濃度は、
原料融液のIn濃度のおよそ十分の−であり、上記の場
合は約03〜1wt%となる。このIn濃度の結晶の融
点は、純粋なGaAs結晶の融点1237°Cよりも4
〜9℃低くなる。
C(g)=CoK(] g)K-' That is, the In concentration of the growing crystal at the start of crystal growth is
It is about tenths of the In concentration of the raw material melt, and in the above case is about 0.3 to 1 wt%. The melting point of the crystal with this In concentration is 4
~9℃ lower.

仮に、無添加のGaAs単結晶から種結晶を切り出して
、3〜lQwt%のTnを添加したGaAs融液から単
結晶をLEC法で育成することを想定すると、該融液は
、前記のように樹枝状結晶が融解する時の温度である、
上記の融点1237℃より4〜9℃低 い温度に制御す
ることになり、純粋なGaAs単結晶である種結晶を該
融液に接触させても、種結晶の融点の方が高いため融解
することはない。
Assuming that a seed crystal is cut out from an additive-free GaAs single crystal and a single crystal is grown by the LEC method from a GaAs melt to which 3 to 1Qwt% of Tn is added, the melt will be grown as described above. is the temperature at which the dendrites melt,
The temperature is controlled to be 4 to 9 degrees Celsius lower than the above melting point of 1237 degrees Celsius, and even if a seed crystal, which is a pure GaAs single crystal, is brought into contact with the melt, it will melt because the seed crystal has a higher melting point. Never.

また、該融液の制御温度が、種結晶の融点に近い温度ま
で上昇するときにも、種結晶は融解しないので、該融液
の温度制御が極めて容易になる。しかし、無添加のGa
As単結晶は転位密度が高いので、無転位GaAs単結
晶製造用の種結晶としては、そのまま用いることができ
ない。
Furthermore, even when the controlled temperature of the melt increases to a temperature close to the melting point of the seed crystal, the seed crystal does not melt, making temperature control of the melt extremely easy. However, additive-free Ga
Since the As single crystal has a high dislocation density, it cannot be used as is as a seed crystal for producing a dislocation-free GaAs single crystal.

そこで、本発明では、上記のように種結晶にIn濃度勾
配を設けることにより、転位密度を相当に低くし、高温
雰囲気で劣化した種結晶下端面を原料融液との接触によ
り、融解して除くことができ、かつ、上記の融解を一定
の範囲で止め、安定した固液界面を形成することにより
、種結晶の融解劣化が防止されるようになった。 第1
図(a)は種結晶のIna度勾配を模式的に示したもの
であり、第1図(b)は第1図(a)の種結晶の融点分
布を示したもので、種結晶の高さ位置は第1図(C)に
対応させている。第1図(C)は種付は時の説明図であ
り、種結晶1を原料融液4の表面3に接触した状態を点
線で示した。種結晶1の下方点線の領域は第1図(a)
に示すようにIn濃度が高く、その融点は第1図(b)
に示すように原料融液の温度より低(なるために融解す
る。そして、固液界面2の位置における種結晶の融点は
原料融液の制御温度と一致する。
Therefore, in the present invention, by providing an In concentration gradient in the seed crystal as described above, the dislocation density is considerably lowered, and the lower end surface of the seed crystal, which has deteriorated in a high-temperature atmosphere, is melted by contact with the raw material melt. By stopping the above-mentioned melting within a certain range and forming a stable solid-liquid interface, deterioration of the seed crystal due to melting can be prevented. 1st
Figure 1(a) schematically shows the Ina degree gradient of the seed crystal, and Figure 1(b) shows the melting point distribution of the seed crystal in Figure 1(a). The position corresponds to FIG. 1(C). FIG. 1(C) is an explanatory view of seeding, and the state in which the seed crystal 1 is in contact with the surface 3 of the raw material melt 4 is shown by dotted lines. The area indicated by the dotted line below the seed crystal 1 is shown in Fig. 1(a).
As shown in Figure 1(b), the In concentration is high, and its melting point is as shown in Figure 1(b).
As shown in , the seed crystal melts because it is lower than the temperature of the raw material melt.Then, the melting point of the seed crystal at the solid-liquid interface 2 coincides with the control temperature of the raw material melt.

このように種結晶を原料融液に接触することにより、原
料融液の温度に見合う位置まで種結晶を融解して、種結
晶の表面劣化層を除き、清浄な種付は面を確保するとと
もに、種結晶の上記位置より上方に融解が進むことを抑
制して安定した固液界面で種付けを行うことができ、種
結晶からの転位の伝播を防止することができるので、引
き」−げ結晶の中心部の転移密度を大幅に低減する。
By bringing the seed crystal into contact with the raw material melt in this way, the seed crystal is melted to a position that matches the temperature of the raw material melt, removing the surface deterioration layer of the seed crystal and ensuring a clean seeding surface. , it is possible to suppress the melting from proceeding above the above-mentioned position of the seed crystal and perform seeding at a stable solid-liquid interface, and it is possible to prevent the propagation of dislocations from the seed crystal. significantly reduces the dislocation density in the center.

また、この種結晶の使用により、原料融液の温度が僅か
に上昇するときにも、固液界面の位置を若干変動させる
だけで、上記のような良質な結晶を製造することができ
、原料融液の温度制御を容易にした。
In addition, by using this seed crystal, even when the temperature of the raw material melt rises slightly, it is possible to produce high-quality crystals as described above by simply changing the position of the solid-liquid interface slightly. This makes it easier to control the temperature of the melt.

なお、種結晶は下端から固液界面に至る間のIn濃度勾
配が、上記の目的に沿っていればよく、厳密な温度勾配
を設ける必要もない。
Note that it is sufficient that the In concentration gradient of the seed crystal from the lower end to the solid-liquid interface meets the above objective, and there is no need to provide a strict temperature gradient.

(実施例) 〈種結晶の作成〉 ]、5kgのGaAs多結晶と10.5gの金属Inと
200gのB、03を直径10cmのpBN製るつぼに
いれて、LEC法で<100>方向に引き上げることに
より、直径60mmの単結晶を得た。この単結晶から頭
部と尾部を切り落として高さ6cmの円柱状結晶とし、
その両端部のIn濃度を測定すると、下端はQ、3wt
%、上端は0.09 w t%てあった。この両端部か
らウェハを切り出して研磨し、K OH融液中でエツチ
ングしたところ、端から約5〜7mmの周辺部と中心部
のエッチピット密度(EPD)はいずれも5.000 
c +ff′□2を越えるが、その中間の環状部分は2
00cm−”以下であって実質的に無転位単結晶と言え
る。この環状部分下方より軸に沿って5mm角で55m
mの長さの棒状結晶を切り出して種結晶とした。種結晶
のIn濃度は下端がQ、3wt%である。
(Example) <Creation of seed crystal>] 5 kg of GaAs polycrystal, 10.5 g of metal In, 200 g of B, 03 are placed in a PBN crucible with a diameter of 10 cm, and pulled in the <100> direction by the LEC method. As a result, a single crystal with a diameter of 60 mm was obtained. Cut off the head and tail from this single crystal to obtain a cylindrical crystal with a height of 6 cm.
When the In concentration at both ends is measured, the lower end is Q, 3wt.
%, the upper limit was 0.09 wt%. When a wafer was cut out from both ends, polished, and etched in a KOH melt, the etch pit density (EPD) at the periphery about 5 to 7 mm from the edge and at the center were both 5.000.
c +ff'□2, but the annular part in the middle is 2
00 cm-" or less, and it can be said to be a substantially dislocation-free single crystal. From the bottom of this annular part, along the axis, 55 m square 5 mm.
A rod-shaped crystal with a length of m was cut out and used as a seed crystal. The lower end of the In concentration of the seed crystal is Q, which is 3 wt%.

〈引き上げ結晶の育成〉 4kgのGaAs多結晶と120gの金属Inと十分脱
水した500gの8203(水分含量150ppm以下
)を直径6インチのpBN製るつぼに入れてLEC炉の
中にセットした。種結晶としは、上記の棒状結晶を硫酸
系のエツチング液で処理したものを用いて、In濃度の
高い方を下に向けて引き上げ軸に固定した。次いで、L
 E C炉内を真空排気した後、窒素ガスで加圧し、原
料を融解した。
<Growth of pulled crystal> 4 kg of GaAs polycrystal, 120 g of In metal, and 500 g of sufficiently dehydrated 8203 (water content 150 ppm or less) were placed in a pBN crucible with a diameter of 6 inches and set in an LEC furnace. The above-mentioned rod-shaped crystal treated with a sulfuric acid-based etching solution was used as a seed crystal, and was fixed on a pulling shaft with the side with a higher In concentration facing downward. Then L
After the inside of the EC furnace was evacuated, it was pressurized with nitrogen gas to melt the raw materials.

原料融液の温度を徐々に下げて樹枝状結晶を一度発生さ
せてから、再び、温度を上昇させて結晶を融解し、融解
時の温度即ち原料融液から結晶が析出する温度に維持し
た。それから、引き上げ軸を下げて種結晶を原料融液に
接触させ、十分になじませた後、引き上げ速度5mm/
hr、引き上げ軸の回転速度3rpmで引き上げた。引
き上げ結晶の直径制御は、引き上げ軸上部に取り付けた
ロードセルの結晶重量測定値をもとに行った。
After the temperature of the raw material melt was gradually lowered to once generate dendrites, the temperature was raised again to melt the crystals and maintained at the melting temperature, that is, the temperature at which crystals precipitate from the raw material melt. Then, lower the pulling shaft to bring the seed crystal into contact with the raw material melt, and after thoroughly blending it, the pulling speed was set at 5 mm/
hr, and the pulling shaft was pulled at a rotational speed of 3 rpm. The diameter of the pulled crystal was controlled based on the crystal weight measured by a load cell attached to the top of the pulling shaft.

このようにして、直径80mmの円柱状結晶を得た。結
晶の下部1/4には、Inの析出も見られたが、上部の
高さ120mmは単結晶であった。上端のIn濃度は0
.3w t%であり、下端のIn濃度は]、1wt%で
あった。この単結晶部分から直径80mmのウェハを切
り出し、研磨してKOH融液でエツチングしたところ、
ウェハの周辺部に長さ10mm程度の5lipがあった
が、中心部には、EPD500cm−”以下の広い無転
位の領域が有ることが分かった。なお、引き上げ後の種
結晶をみると、長さが約2mm融解して短くなっていた
In this way, a cylindrical crystal with a diameter of 80 mm was obtained. In the lower 1/4 of the crystal, precipitation of In was also observed, but the upper part with a height of 120 mm was a single crystal. The In concentration at the top is 0
.. 3wt%, and the In concentration at the lower end was 1wt%. A wafer with a diameter of 80 mm was cut from this single crystal part, polished and etched with KOH melt.
Although there were 5lips with a length of about 10mm at the periphery of the wafer, it was found that there was a wide dislocation-free region with an EPD of less than 500cm-'' in the center. The length had melted and become shorter by about 2 mm.

(発明の効果) 本発明は、上記の構成を採用することにより、原料融液
温度が融点から僅かにずれても、種結晶を融解劣化する
こともなく、多結晶を析出することもなく、安定した固
液界面で種付けすることができ、その結果、伝播転位の
発生が抑えられ、中心部に実質的に転位を有しないGa
As単結晶を製造することができるようになった。
(Effects of the Invention) By employing the above configuration, the present invention prevents the seed crystal from melting and deteriorating even if the temperature of the raw material melt slightly deviates from the melting point, and does not precipitate polycrystals. It is possible to seed at a stable solid-liquid interface, and as a result, the generation of propagating dislocations is suppressed, resulting in Ga that has virtually no dislocations in the center.
It has become possible to produce As single crystals.

【図面の簡単な説明】[Brief explanation of the drawing]

第1図は本発明の種結晶を用いた種付けの説明図であり
、(a)は種結晶のInfi度分布図、(b)は種結晶
のそれぞれの位置における融点分布を示した図、(C)
は種結晶と原料融液との関係を示した図であり、第2図
はGaAs結晶にInを添加するときの平衡状態図であ
る。
FIG. 1 is an explanatory diagram of seeding using the seed crystal of the present invention, (a) is an Infi degree distribution diagram of the seed crystal, (b) is a diagram showing the melting point distribution at each position of the seed crystal, ( C)
2 is a diagram showing the relationship between a seed crystal and a raw material melt, and FIG. 2 is an equilibrium state diagram when In is added to a GaAs crystal.

Claims (3)

【特許請求の範囲】[Claims] (1)In添加の無転位GaAs単結晶をLEC法によ
り製造するための種結晶において、原料融液と初めに接
触する種結晶の端部の融点を原料融液の表面温度より僅
かに低くなるように、該端部のIn濃度を設定し、種結
晶の他端部に向かってIn濃度が低下するような濃度勾
配を設けたことを特徴とする無転位GaAs単結晶製造
用の種結晶。
(1) In a seed crystal for producing an In-doped dislocation-free GaAs single crystal by the LEC method, the melting point of the end of the seed crystal that first comes into contact with the raw material melt is made slightly lower than the surface temperature of the raw material melt. A seed crystal for producing a dislocation-free GaAs single crystal, characterized in that the In concentration at the end is set such that a concentration gradient is provided such that the In concentration decreases toward the other end of the seed crystal.
(2)種結晶下端部のIn濃度を原料融液のIn濃度に
偏析係数を乗じた値かそれより大きくしたことを特徴と
する特許請求の範囲第1項記載の無転位GaAs単結晶
製造用の種結晶。
(2) For producing a dislocation-free GaAs single crystal according to claim 1, wherein the In concentration at the lower end of the seed crystal is set to a value equal to or larger than the In concentration of the raw material melt multiplied by the segregation coefficient. seed crystal.
(3)種結晶の上端部のIn濃度を下端部より20%以
上低下させたことを特徴とする特許請求の範囲第1項ま
たは第2項記載の無転位GaAs単結晶製造用の種結晶
(3) A seed crystal for producing a dislocation-free GaAs single crystal according to claim 1 or 2, wherein the In concentration at the upper end of the seed crystal is lowered by 20% or more than at the lower end.
JP125388A 1988-01-08 1988-01-08 Seed crystal for producing non-dislocation gaas single crystal Pending JPH01179796A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP125388A JPH01179796A (en) 1988-01-08 1988-01-08 Seed crystal for producing non-dislocation gaas single crystal

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP125388A JPH01179796A (en) 1988-01-08 1988-01-08 Seed crystal for producing non-dislocation gaas single crystal

Publications (1)

Publication Number Publication Date
JPH01179796A true JPH01179796A (en) 1989-07-17

Family

ID=11496289

Family Applications (1)

Application Number Title Priority Date Filing Date
JP125388A Pending JPH01179796A (en) 1988-01-08 1988-01-08 Seed crystal for producing non-dislocation gaas single crystal

Country Status (1)

Country Link
JP (1) JPH01179796A (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO1997032059A1 (en) * 1996-02-29 1997-09-04 Sumitomo Sitix Corporation Method and apparatus for withdrawing single crystal
JP2020158362A (en) * 2019-03-27 2020-10-01 住友金属鉱山株式会社 SEED CRYSTAL FOR FeGa SINGLE CRYSTAL GROWTH, METHOD FOR MANUFACTURING THE SAME AND METHOD FOR MANUFACTURING FeGa SINGLE CRYSTAL

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO1997032059A1 (en) * 1996-02-29 1997-09-04 Sumitomo Sitix Corporation Method and apparatus for withdrawing single crystal
JP2020158362A (en) * 2019-03-27 2020-10-01 住友金属鉱山株式会社 SEED CRYSTAL FOR FeGa SINGLE CRYSTAL GROWTH, METHOD FOR MANUFACTURING THE SAME AND METHOD FOR MANUFACTURING FeGa SINGLE CRYSTAL

Similar Documents

Publication Publication Date Title
US7442355B2 (en) Indium phosphide substrate and indium phosphide monocrystal and method of manufacturing thereof
JPS5914440B2 (en) Method for doping boron into CaAs single crystal
US4944925A (en) Apparatus for producing single crystals
JPS6065787A (en) Manufacture of dislocation-free silicon single crystal rod
JP2848067B2 (en) Seed crystal of silicon single crystal
JPH01179796A (en) Seed crystal for producing non-dislocation gaas single crystal
JPS63252989A (en) Production of semiconductor single crystal by pull-up method
JP2814796B2 (en) Method and apparatus for producing single crystal
JPH11302094A (en) Production of compound semiconductor single crystal
JP2864808B2 (en) III-V compound semiconductor single crystal
JP2739547B2 (en) Method for producing lithium borate single crystal
KR950007600B1 (en) Method for decreasing dislocation of gaas single crystal by vertical temperature zone control method
JPH0782088A (en) Method for growing single crystal
JPS5912639B2 (en) crystal growth method
KR940009282B1 (en) P-type gaas single crystal growing method by zn doping
JP2004010467A (en) Method for growing compound semiconductor single crystal
JP2005047797A (en) InP SINGLE CRYSTAL, GaAs SINGLE CRYSTAL, AND METHOD FOR PRODUCING THEM
JPH09175892A (en) Production of single crystal
JPS60122791A (en) Pulling up method of crystal under liquid sealing
JP2773441B2 (en) Method for producing GaAs single crystal
JP2507997B2 (en) Single crystal growth method
JPH07291781A (en) Method for growing single crystal
JPS62283893A (en) Method for growing compound semiconductor single crystal
JP2005132717A (en) Compound semiconductor single crystal and its manufacturing method
JP2003342096A (en) Method for producing compound semiconductor single crystal