JP2739547B2 - Method for producing lithium borate single crystal - Google Patents

Method for producing lithium borate single crystal

Info

Publication number
JP2739547B2
JP2739547B2 JP28092293A JP28092293A JP2739547B2 JP 2739547 B2 JP2739547 B2 JP 2739547B2 JP 28092293 A JP28092293 A JP 28092293A JP 28092293 A JP28092293 A JP 28092293A JP 2739547 B2 JP2739547 B2 JP 2739547B2
Authority
JP
Japan
Prior art keywords
lithium borate
single crystal
raw material
water content
crystal
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP28092293A
Other languages
Japanese (ja)
Other versions
JPH07138096A (en
Inventor
清二 十河
一雄 三輪
Original Assignee
キンセキ株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by キンセキ株式会社 filed Critical キンセキ株式会社
Priority to JP28092293A priority Critical patent/JP2739547B2/en
Publication of JPH07138096A publication Critical patent/JPH07138096A/en
Application granted granted Critical
Publication of JP2739547B2 publication Critical patent/JP2739547B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Landscapes

  • Crystals, And After-Treatments Of Crystals (AREA)
  • Surface Acoustic Wave Elements And Circuit Networks Thereof (AREA)

Description

【発明の詳細な説明】DETAILED DESCRIPTION OF THE INVENTION

【0001】[0001]

【産業上の利用分野】本発明は、硼酸リチウム単結晶の
製造方法に関し、例えば弾性表面波装置の基板材料とし
て用いる四硼酸リチウム単結晶の製造に適用して有用な
技術に関する。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a method for producing a lithium borate single crystal, and more particularly to a technique useful for producing a lithium tetraborate single crystal used as a substrate material for a surface acoustic wave device.

【0002】[0002]

【従来の技術】硼酸リチウム単結晶は、零温度係数を有
し且つ電気機械結合係数の高い結晶方位を有するなどの
優れた特性により、弾性表面波装置用の基板材料として
近年注目されている。このような硼酸リチウム単結晶の
一製造方法としてブリッジマン法が公知であるが、得ら
れた硼酸リチウム単結晶中に気泡が生じ易いという欠点
があった。
2. Description of the Related Art In recent years, lithium borate single crystals have attracted attention as substrate materials for surface acoustic wave devices because of their excellent properties such as having a zero temperature coefficient and a crystal orientation having a high electromechanical coupling coefficient. The Bridgman method is known as one method for producing such a lithium borate single crystal, but has a drawback that bubbles are easily generated in the obtained lithium borate single crystal.

【0003】ここで、気泡の発生原因は、硼酸リチウム
単結晶の飽和水分量を超える水分が原料融液中に含まれ
ていて、単結晶製造を工業的に実施する際に採用可能な
結晶成長速度(0.2〜0.5mm/時)においては原料
融液中の水分の拡散が十分に行われないことである。つ
まり、原料融液から結晶が晶出する際に、単結晶の飽和
水分量を超える水分は、固液界面の液相側に吐き出され
て固液界面近傍に留まる。そして、固液界面近傍の水分
は、組成的過冷却により、成長する結晶中に取り込ま
れ、結晶化の際に気泡となって結晶中に残ることにな
る。
[0003] Here, the cause of the generation of bubbles is that the raw material melt contains water exceeding the saturated water content of the lithium borate single crystal, and crystal growth that can be employed when industrially producing a single crystal. At a speed (0.2 to 0.5 mm / hr), the diffusion of water in the raw material melt is not sufficiently performed. That is, when crystals are crystallized from the raw material melt, water exceeding the saturated water content of the single crystal is discharged to the liquid phase side of the solid-liquid interface and remains near the solid-liquid interface. Then, the water near the solid-liquid interface is taken into the growing crystal due to compositional supercooling, and remains in the crystal as bubbles during crystallization.

【0004】そこで、上記欠点を克服するために、水分
含有量0.2%(2000ppm)以下の硼酸リチウム原
料を用い、水分含有量1%(10000ppm)以下の成
長雰囲気下で、硼酸リチウム単結晶の成長を行うことが
提案されている(特開平5−201797号)。その提
案によれば、水分含有量が200ppm以下の気泡の少な
い硼酸リチウム単結晶を得ることができるとされてい
る。
Therefore, in order to overcome the above-mentioned drawbacks, a lithium borate single crystal is used in a growth atmosphere having a water content of 1% (10000 ppm) or less using a lithium borate material having a water content of 0.2% (2000 ppm) or less. Has been proposed (Japanese Patent Laid-Open No. Hei 5-201797). According to the proposal, it is said that a lithium borate single crystal with a small water content of 200 ppm or less and few bubbles can be obtained.

【0005】[0005]

【発明が解決しようとする課題】しかしながら、上記特
開平5−201797号公報に記載された一実施例にお
いては、水分含有量0.07%(700ppm)の成長雰
囲気下で、水分含有量1200ppmの硼酸リチウム原料
から得られた硼酸リチウム単結晶中の水分含有量は12
0ppmであり、単結晶中に存在する気泡は少ないとはい
え皆無ではない。つまり、上記提案を以てしても気泡を
完全になくすことは極めて困難である。従って、弾性表
面波装置用の高品質基板を提供するためには、硼酸リチ
ウム単結晶中の気泡を完全になくす必要があり、それを
実現する製造方法の開発が急務であった。
However, in one embodiment described in Japanese Patent Application Laid-Open No. Hei 5-201797, under a growth atmosphere having a water content of 0.07% (700 ppm), a water content of 1200 ppm was used. The water content in the lithium borate single crystal obtained from the lithium borate raw material is 12
It is 0 ppm, and although there are few bubbles present in the single crystal, it is not none at all. That is, even with the above proposal, it is extremely difficult to completely eliminate bubbles. Therefore, in order to provide a high-quality substrate for a surface acoustic wave device, it is necessary to completely eliminate bubbles in a lithium borate single crystal, and there has been an urgent need to develop a manufacturing method for realizing it.

【0006】本発明はかかる事情に鑑みてなされたもの
で、その目的とするところは、気泡を含まない硼酸リチ
ウム単結晶の製造方法を提供することにある。
The present invention has been made in view of such circumstances, and an object of the present invention is to provide a method for producing a lithium borate single crystal containing no bubbles.

【0007】[0007]

【課題を解決するための手段】上記目的を達成するため
に、本発明者らは、ブリッジマン法により、硼酸リチウ
ム原料融液中の水分含有量Cや結晶成長速度vや温度勾
配ΔTを種々変えて硼酸リチウム単結晶を製造し、得ら
れた単結晶について気泡の有無を調べたところ、上記原
料融液中の水分含有量C、結晶成長速度v及び炉内の成
長容器近傍で測定された融点近傍の温度勾配ΔTの間に
相関関係があることを見い出し、本発明を完成するに至
った。
Means for Solving the Problems To achieve the above object, the inventors of the present invention used the Bridgman method to vary the water content C, crystal growth rate v, and temperature gradient ΔT in a lithium borate raw material melt. A lithium borate single crystal was manufactured by changing the above conditions, and the obtained single crystal was examined for the presence or absence of air bubbles. The inventors have found that there is a correlation between the temperature gradients ΔT near the melting point, and have completed the present invention.

【0008】即ち、本発明は、硼酸リチウム原料を加熱
溶融し、その溶融した硼酸リチウム原料融液から硼酸リ
チウム単結晶を成長させるにあたって、前記硼酸リチウ
ム原料融液中の水分含有量C(単位:ppm)と結晶成長
速度v(単位:mm/時)と温度勾配ΔT(単位:℃/c
m)とが、次式: C≦(2.8×ΔT−5.4)/v ・・・・(1) を満たすようにして硼酸リチウム単結晶の成長を行なう
ことを提案するものである。
That is, according to the present invention, when a lithium borate raw material is heated and melted to grow a lithium borate single crystal from the molten lithium borate raw material melt, the water content C (unit: ppm), crystal growth rate v (unit: mm / hour) and temperature gradient ΔT (unit: ° C / c)
m) and the following formula: C ≦ (2.8 × ΔT−5.4) / v (1) is proposed to grow the lithium borate single crystal. .

【0009】上記関係式の導出について説明する。The derivation of the above relational expression will be described.

【0010】本発明者らが行った種々の硼酸リチウム単
結晶の成長実験(後述する実施例1や実施例2など)に
おいて、例えば、温度勾配ΔTを20℃/cmに設定し、
水分含有量Cが250ppm又は70ppmの硼酸リチウム原
料融液を用いたところ、250ppmの場合には結晶成長
速度vは約0.2mm/時以下、70ppmの場合には結晶
成長速度vは約0.7mm/時以下、であれば、得られた
単結晶中に気泡のないことが判明した。また、温度勾配
ΔTを7℃/cmに設定して同様に単結晶成長を行ったと
ころ、気泡が生じないのは、250ppmの場合には結晶
成長速度vは約0.06mm/時以下、70ppmの場合に
は結晶成長速度vは約0.2mm/時以下、であることが
判った。
In various lithium borate single crystal growth experiments (Examples 1 and 2 described later) performed by the present inventors, for example, the temperature gradient ΔT was set to 20 ° C./cm,
When a lithium borate raw material melt having a water content C of 250 ppm or 70 ppm was used, the crystal growth rate v was about 0.2 mm / hour or less at 250 ppm, and about 0.2 mm / hour at 70 ppm. If it is 7 mm / hour or less, it was found that there was no bubble in the obtained single crystal. When a single crystal was grown in the same manner with the temperature gradient ΔT set to 7 ° C./cm, no bubbles were generated. The crystal growth rate v was about 0.06 mm / hour or less at 250 ppm and 70 ppm. In this case, the crystal growth rate v was found to be about 0.2 mm / hour or less.

【0011】図1に、上記各温度勾配ΔTにおいて気泡
のない単結晶を成長させる場合の、硼酸リチウム原料融
液中の水分含有量Cと結晶成長速度vとの関係の臨界特
性を示す。同図より、気泡の生じない臨界においては、
硼酸リチウム原料融液中の水分含有量Cと結晶成長速度
vとは相反する関係にあると考えられる。
FIG. 1 shows the critical characteristics of the relationship between the water content C in the lithium borate raw material melt and the crystal growth rate v when a single crystal without bubbles is grown at each of the temperature gradients ΔT. From the figure, at the critical point where bubbles do not occur,
It is considered that the water content C in the lithium borate raw material melt and the crystal growth rate v have an opposite relationship.

【0012】即ち、結晶成長速度vが小さければ、成長
する単結晶から吐き出された過剰な水分は、原料融液中
を十分に拡散して結晶中に取り込まれ難くなるので、単
結晶中に気泡が生じ難くなる。また、結晶成長速度vが
大きければ、吐き出された過剰な水分の拡散が十分に行
われず、結晶中に水分が取り込まれ易くなるので、単結
晶中に気泡が生じ易くなる。
That is, if the crystal growth rate v is low, excess water discharged from the growing single crystal diffuses sufficiently in the raw material melt and becomes difficult to be taken into the crystal. Is less likely to occur. On the other hand, if the crystal growth rate v is high, the excessive water that has been discharged is not sufficiently diffused, and the water is easily taken into the crystal, so that bubbles are easily generated in the single crystal.

【0013】つまり、気泡のない硼酸リチウム単結晶を
製造する場合、結晶成長速度vが大きくなるのに伴っ
て、硼酸リチウム原料融液中の水分含有量Cの許容範囲
の上限値は低くなる。
In other words, when producing a lithium borate single crystal without bubbles, the upper limit of the allowable range of the water content C in the lithium borate raw material melt becomes lower as the crystal growth rate v becomes higher.

【0014】図2に、結晶成長速度vが0.2mm/時で
ある時に気泡のない単結晶を成長させる場合の、硼酸リ
チウム原料融液中の水分含有量Cと温度勾配ΔTとの関
係の臨界特性を示す。同図より、気泡の生じない臨界に
おいては、硼酸リチウム原料融液中の水分含有量Cと温
度勾配ΔTとは比例の関係にあると考えられる。
FIG. 2 shows the relationship between the water content C in the lithium borate raw material melt and the temperature gradient ΔT when a single crystal without bubbles is grown when the crystal growth rate v is 0.2 mm / hour. Shows critical properties. From the figure, it is considered that the water content C in the lithium borate raw material melt and the temperature gradient ΔT have a proportional relationship at the critical point where no bubbles are generated.

【0015】即ち、温度勾配ΔTが小さいと、固液界面
における熱のゆらぎ等の影響を受けて変則的な固化が起
こった時に、固液界面から比較的遠ざかった範囲まで瞬
間的に固化してしまい、結晶中に多くの水分が取り込ま
れて気泡が生じる。しかし、温度勾配ΔTが大きけれ
ば、固液界面における固化範囲が極めて界面付近に限定
されるとともに、固液界面における熱のゆらぎ等の影響
が相対的に小さくなるので、結晶中に水分が取り込まれ
難くなる。
That is, when the temperature gradient ΔT is small, when irregular solidification occurs due to the influence of heat fluctuation at the solid-liquid interface, the solidification is instantaneously solidified to a range relatively far from the solid-liquid interface. As a result, a large amount of water is taken into the crystal to generate bubbles. However, if the temperature gradient ΔT is large, the solidification range at the solid-liquid interface is extremely limited to the vicinity of the interface, and the influence of heat fluctuation at the solid-liquid interface becomes relatively small, so that moisture is taken into the crystal. It becomes difficult.

【0016】つまり、気泡のない硼酸リチウム単結晶を
製造する場合、温度勾配ΔTが小さくなるのに伴って、
硼酸リチウム原料融液中の水分含有量Cの許容範囲の上
限値は低くなる。
That is, when producing a lithium borate single crystal without bubbles, as the temperature gradient ΔT becomes smaller,
The upper limit of the allowable range of the water content C in the lithium borate raw material melt becomes lower.

【0017】以上、詳述した硼酸リチウム原料融液中の
水分含有量Cと結晶成長速度vと温度勾配ΔTとの関係
を一括し、上記各実験により得られたデータに基いて係
数をを求めると、上記(1)式が導出される。なお、そ
の(1)式においては、硼酸リチウム原料融液中の水分
含有量Cが硼酸リチウム単結晶の飽和水分量に較べて高
いか低いか、或は等しいかを問わない。
As described above, the relationship between the water content C in the lithium borate raw material melt, the crystal growth rate v, and the temperature gradient ΔT is collectively determined, and the coefficient is obtained based on the data obtained in each of the above experiments. And the above equation (1) is derived. In the formula (1), it does not matter whether the water content C in the lithium borate raw material melt is higher, lower, or equal to the saturated water content of the lithium borate single crystal.

【0018】ここで、温度勾配ΔTの選択範囲は、5℃
/cm以上で25℃/cm以下である。その理由は、温度勾
配ΔTが下限値に満たないと、結晶成長が遅くなりすぎ
てしまい工業的な実施には不適であり、一方、上限値を
超えると、成長した結晶にクラックが生じる虞があるか
らである。
Here, the selection range of the temperature gradient ΔT is 5 ° C.
/ Cm or more and 25 ° C / cm or less. The reason is that if the temperature gradient ΔT is less than the lower limit, the crystal growth becomes too slow, which is not suitable for industrial implementation. On the other hand, if the temperature gradient ΔT exceeds the upper limit, cracks may occur in the grown crystal. Because there is.

【0019】また、結晶成長速度vの選択範囲は、0.
2mm/時以上で1.0mm/時以下である。その理由は、
結晶成長速度vが下限値に満たないと、育成コストが高
すぎて工業的な実施には不適であり、一方、上限値を超
えると、多結晶化する虞があるからである。
The selection range of the crystal growth rate v is 0.
It is not less than 2 mm / hour and not more than 1.0 mm / hour. The reason is,
If the crystal growth rate v is less than the lower limit, the growing cost is too high, which is not suitable for industrial implementation. On the other hand, if it exceeds the upper limit, polycrystallization may occur.

【0020】なお、硼酸リチウム原料融液中の水分含有
量Cを、硼酸リチウム単結晶の成長開始から終了まで上
記(1)式を満たすように保持するには、先ず、結晶成
長速度vや温度勾配ΔTに対応して決まる原料融液中の
水分含有量Cと同じ水分含有量の硼酸リチウム原料を用
意する。そして、その原料を成長容器に入れて加熱溶融
するとともに、乾燥雰囲気(真空状態を含む。)下で結
晶成長を行って成長雰囲気から原料融液中に水分が溶解
しないようにすればよい。但し、用意した硼酸リチウム
原料の水分含有量が、硼酸リチウム原料融液における飽
和水分量に近い場合、又は設定した結晶成長速度vや温
度勾配ΔTにおいて許容される水分含有量Cの上限値に
較べて著しく低い場合には、乾燥雰囲気でなくてもよ
い。
In order to maintain the water content C in the lithium borate raw material melt so as to satisfy the above formula (1) from the start to the end of the growth of the lithium borate single crystal, first, the crystal growth rate v and the temperature A lithium borate raw material having the same water content as the water content C in the raw material melt determined according to the gradient ΔT is prepared. Then, the raw material is placed in a growth vessel and heated and melted, and a crystal is grown under a dry atmosphere (including a vacuum state) so that moisture is not dissolved in the raw material melt from the growth atmosphere. However, when the water content of the prepared lithium borate raw material is close to the saturated water content in the lithium borate raw material melt, or compared with the upper limit of the water content C allowable at the set crystal growth rate v and temperature gradient ΔT. If the temperature is extremely low, the atmosphere may not be a dry atmosphere.

【0021】[0021]

【作用】上記した手段によれば、硼酸リチウム原料融液
中の水分含有量Cと結晶成長速度vと温度勾配ΔTとが
上記(1)式を満たすような条件で硼酸リチウム単結晶
の成長を行なうため、結晶成長時に固液界面において単
結晶から吐き出された過剰な水分が結晶中に取り込まれ
るのが防止され、気泡のない硼酸リチウム単結晶が得ら
れる。
According to the above-described means, the growth of a lithium borate single crystal can be performed under such conditions that the water content C, the crystal growth rate v, and the temperature gradient ΔT in the lithium borate raw material melt satisfy the above equation (1). As a result, excessive moisture discharged from the single crystal at the solid-liquid interface during crystal growth is prevented from being taken into the crystal, and a lithium borate single crystal without bubbles can be obtained.

【0022】[0022]

【実施例】以下に、上記(1)式を満たす成長条件で、
周知のブリッジマン法により、硼酸リチウム単結晶の成
長を行った実施例を挙げる。
The following is a description of the growth conditions satisfying the above equation (1).
An example in which a lithium borate single crystal is grown by the well-known Bridgman method will be described.

【0023】(実施例1)水分含有量250ppmの硼酸
リチウム原料を入れた成長容器を結晶成長炉内に設置
し、乾燥雰囲気下で前記硼酸リチウム原料を加熱溶融し
た。そして、温度勾配ΔTを20℃/cm、結晶成長速度
vを0.2mm/時とし、硼酸リチウム原料融液中の水分
含有量Cを250ppmに保持しながらその原料融液を一
端から徐々に冷却して硼酸リチウム単結晶を成長させ
た。得られた単結晶中には、気泡が認められなかった。
Example 1 A growth vessel containing a lithium borate raw material having a water content of 250 ppm was set in a crystal growth furnace, and the lithium borate raw material was heated and melted in a dry atmosphere. Then, the temperature gradient ΔT is set to 20 ° C./cm, the crystal growth rate v is set to 0.2 mm / hour, and while keeping the water content C in the lithium borate raw material melt at 250 ppm, the raw material melt is gradually cooled from one end. Thus, a lithium borate single crystal was grown. No bubbles were observed in the obtained single crystal.

【0024】(実施例2)水分含有量70ppmの硼酸リ
チウム原料を用いた。そして、温度勾配ΔTを7℃/c
m、結晶成長速度vを0.2mm/時とし、硼酸リチウム
原料融液中の水分含有量Cを70ppmに保持しながら、
その他の成長条件等を上記実施例1と同一にして上記実
施例1と同様に硼酸リチウム単結晶を成長させた。得ら
れた硼酸リチウム単結晶中には、気泡が認められなかっ
た。
Example 2 A lithium borate raw material having a water content of 70 ppm was used. Then, the temperature gradient ΔT is set at 7 ° C./c.
m, the crystal growth rate v was 0.2 mm / hour, and while maintaining the water content C in the lithium borate raw material melt at 70 ppm,
A lithium borate single crystal was grown in the same manner as in Example 1 except that the other growth conditions were the same as in Example 1. No bubbles were observed in the obtained lithium borate single crystal.

【0025】なお、本発明は、上記各実施例により何等
制限されないのはいうまでもない。即ち、上記(1)式
を満たす範囲で、硼酸リチウム原料融液中の水分含有量
C、結晶成長速度v、温度勾配ΔTを任意に選択するこ
とができる。
It is needless to say that the present invention is not limited by the above embodiments. That is, the water content C, the crystal growth rate v, and the temperature gradient ΔT in the lithium borate raw material melt can be arbitrarily selected as long as the above formula (1) is satisfied.

【0026】[0026]

【発明の効果】本発明に係る硼酸リチウム単結晶の製造
方法によれば、硼酸リチウム原料融液中の水分含有量C
と結晶成長速度vと温度勾配ΔTとが上記(1)式を満
たすような条件で硼酸リチウム単結晶の成長を行なうた
め、結晶成長時に固液界面において単結晶から吐き出さ
れた過剰な水分が結晶中に取り込まれるのが防止され、
気泡のない硼酸リチウム単結晶を製造することができ
る。
According to the method for producing a lithium borate single crystal according to the present invention, the water content C in the lithium borate raw material melt is adjusted.
In order to grow a single crystal of lithium borate under such conditions that the crystal growth rate v and the temperature gradient ΔT satisfy the above formula (1), excessive water discharged from the single crystal at the solid-liquid interface during the crystal growth causes the crystal to grow. It is prevented from being taken in,
A bubble-free lithium borate single crystal can be produced.

【図面の簡単な説明】[Brief description of the drawings]

【図1】硼酸リチウム原料融液中の水分含有量Cと結晶
成長速度vとの関係の臨界を示す特性図である。
FIG. 1 is a characteristic diagram showing a criticality of a relationship between a water content C in a lithium borate raw material melt and a crystal growth rate v.

【図2】硼酸リチウム原料融液中の水分含有量Cと温度
勾配ΔTとの関係の臨界を示す特性図である。
FIG. 2 is a characteristic diagram showing a criticality of a relationship between a water content C in a lithium borate raw material melt and a temperature gradient ΔT.

Claims (1)

(57)【特許請求の範囲】(57) [Claims] 【請求項1】 硼酸リチウム原料を加熱溶融し、その溶
融した硼酸リチウム原料融液から硼酸リチウム単結晶を
成長させるにあたって、前記硼酸リチウム原料融液中の
水分含有量Cと結晶成長速度vと温度勾配ΔTとが、次
式: C≦(2.8×ΔT−5.4)/v を満たすことを特徴とする硼酸リチウム単結晶の製造方
法。
1. A method for heating and melting a lithium borate raw material and growing a lithium borate single crystal from the molten lithium borate raw material melt, the water content C in the lithium borate raw material melt, the crystal growth rate v, and the temperature. A method for producing a lithium borate single crystal, characterized in that the gradient ΔT satisfies the following expression: C ≦ (2.8 × ΔT−5.4) / v.
JP28092293A 1993-11-10 1993-11-10 Method for producing lithium borate single crystal Expired - Fee Related JP2739547B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP28092293A JP2739547B2 (en) 1993-11-10 1993-11-10 Method for producing lithium borate single crystal

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP28092293A JP2739547B2 (en) 1993-11-10 1993-11-10 Method for producing lithium borate single crystal

Publications (2)

Publication Number Publication Date
JPH07138096A JPH07138096A (en) 1995-05-30
JP2739547B2 true JP2739547B2 (en) 1998-04-15

Family

ID=17631807

Family Applications (1)

Application Number Title Priority Date Filing Date
JP28092293A Expired - Fee Related JP2739547B2 (en) 1993-11-10 1993-11-10 Method for producing lithium borate single crystal

Country Status (1)

Country Link
JP (1) JP2739547B2 (en)

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US7374616B2 (en) * 2003-07-10 2008-05-20 Clemson University Acentric lithium borate crystals, method for making, and applications thereof

Also Published As

Publication number Publication date
JPH07138096A (en) 1995-05-30

Similar Documents

Publication Publication Date Title
JP2739547B2 (en) Method for producing lithium borate single crystal
Ivleva et al. The growth of multicomponent oxide single crystals by stepanov's technique
EP0187843B1 (en) Growth of single crystal cadmium-indium-telluride
JP2739546B2 (en) Method for producing lithium borate single crystal
KR850000779A (en) Liquid Phase Growth of Crystalline Polyphosphide
JP3213806B2 (en) Method for growing lithium borate single crystal
JP3188923B2 (en) Container for growing lithium borate single crystal and method for growing lithium borate single crystal
JP2739556B2 (en) Method for manufacturing piezoelectric crystal
JP2834558B2 (en) Compound semiconductor single crystal growth method
JPS56149399A (en) Liquid phase epitaxial growing method
JPH07138016A (en) Production of lithium borate raw material
JPH04193798A (en) Production of sic single crystal
JP3806793B2 (en) Method for producing compound semiconductor single crystal
JP2922039B2 (en) Single crystal growth method
JPH01179796A (en) Seed crystal for producing non-dislocation gaas single crystal
JP2773441B2 (en) Method for producing GaAs single crystal
JPH05319973A (en) Single crystal production unit
JPH0782088A (en) Method for growing single crystal
JPH03137085A (en) Production of ii-vi compound semiconductor crystal
JP2651788B2 (en) Method for producing lithium tetraborate single crystal
JPH05270995A (en) Production of cadmium-tellurium based single crystal
JPH01234387A (en) Growth of semiconductor crystal
JPH10297999A (en) Production of gallium-rsenic single crystal
JPS57129896A (en) Liquid phase epitaxial growing apparatus
JPS62278185A (en) Graphite boat for growth of compound semiconductor crystal

Legal Events

Date Code Title Description
S533 Written request for registration of change of name

Free format text: JAPANESE INTERMEDIATE CODE: R313533

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

FPAY Renewal fee payment (prs date is renewal date of database)

Year of fee payment: 11

Free format text: PAYMENT UNTIL: 20090123

FPAY Renewal fee payment (prs date is renewal date of database)

Year of fee payment: 12

Free format text: PAYMENT UNTIL: 20100123

FPAY Renewal fee payment (prs date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110123

Year of fee payment: 13

FPAY Renewal fee payment (prs date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120123

Year of fee payment: 14

FPAY Renewal fee payment (prs date is renewal date of database)

Year of fee payment: 14

Free format text: PAYMENT UNTIL: 20120123

FPAY Renewal fee payment (prs date is renewal date of database)

Year of fee payment: 15

Free format text: PAYMENT UNTIL: 20130123

FPAY Renewal fee payment (prs date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130123

Year of fee payment: 15

S533 Written request for registration of change of name

Free format text: JAPANESE INTERMEDIATE CODE: R313533

FPAY Renewal fee payment (prs date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130123

Year of fee payment: 15

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

LAPS Cancellation because of no payment of annual fees
S531 Written request for registration of change of domicile

Free format text: JAPANESE INTERMEDIATE CODE: R313531

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350