JPH03137085A - Production of ii-vi compound semiconductor crystal - Google Patents

Production of ii-vi compound semiconductor crystal

Info

Publication number
JPH03137085A
JPH03137085A JP27351189A JP27351189A JPH03137085A JP H03137085 A JPH03137085 A JP H03137085A JP 27351189 A JP27351189 A JP 27351189A JP 27351189 A JP27351189 A JP 27351189A JP H03137085 A JPH03137085 A JP H03137085A
Authority
JP
Japan
Prior art keywords
temperature
vapor pressure
cdte
crystal
boat
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP27351189A
Other languages
Japanese (ja)
Inventor
Akio Takagi
章雄 高木
Hideki Sakai
英樹 堺
Nobutoshi Maruyama
信俊 丸山
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Eneos Corp
Original Assignee
Nippon Mining Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Nippon Mining Co Ltd filed Critical Nippon Mining Co Ltd
Priority to JP27351189A priority Critical patent/JPH03137085A/en
Publication of JPH03137085A publication Critical patent/JPH03137085A/en
Pending legal-status Critical Current

Links

Landscapes

  • Liquid Deposition Of Substances Of Which Semiconductor Devices Are Composed (AREA)
  • Crystals, And After-Treatments Of Crystals (AREA)

Abstract

PURPOSE:To prevent dislocation, polycrystallization, etc., and to obtain a high- quality II-IV compd. semiconductor crystal by heating the molten raw material contg. an excess of Te over the stoichiometric composition from a specified temp. to a specified temp. while controlling the Te vapor pressure to grow a CdTe-based crystal. CONSTITUTION:A boat 2 charged with the polycrystal CdTe contg. an excess of Te over the stoichiometric composition and the vapor pressure controlling Te 3 are enclosed in a vacuum quartz reaction tube 5 which is inserted into a heater 1. Three soaking zones T1, T2 and T3 (T1 > T2 > T3) are formed in the furnace by the heater 1 in its axial direction. The vapor pressure is controlled by the Te 3 arranged in the low-temp. zone T3, the boat 2 contg. molten raw material is moved from the intermediate-temp. zone T2 at 800-900 deg.C to the high-temp. zone T1 at 920-970 deg.C to grow a CdTe-based single crystal, and a II-VI compd. semiconductor crystal is obtained.

Description

【発明の詳細な説明】 [産業上の利用分野コ 本発明は、化合物半導体単結晶の製造技術、さらには熱
伝導率の低いII−VI族化合物半導体単結晶特にC:
dTe系単結晶の育成に利用して効果的な技術に関する
DETAILED DESCRIPTION OF THE INVENTION [Industrial Fields of Application] The present invention relates to a technology for manufacturing compound semiconductor single crystals, and more particularly to II-VI group compound semiconductor single crystals having low thermal conductivity, particularly C:
This invention relates to effective techniques for growing dTe-based single crystals.

[従来の技術] 従来、CdTe、CdZnTe等のII−VI族化合物
半導体単結晶は、化学量論的比率のCd、TeおよびC
d、Zn、TeあるいはCdTe多結晶やCdZnTe
多結晶を原料として、ブリッジマン法やグラジエントフ
リージング法、トラベリングヒータ法等で融液を冷却さ
せることで育成していた。
[Prior Art] Conventionally, II-VI group compound semiconductor single crystals such as CdTe and CdZnTe contain stoichiometric ratios of Cd, Te and C.
d, Zn, Te or CdTe polycrystal or CdZnTe
Using polycrystals as raw materials, they were grown by cooling the melt using the Bridgman method, gradient freezing method, traveling heater method, etc.

一方、CdTeに関しては、970’Cで融解したCd
過剰融液を、Cd蒸気圧を印加しながら1025℃に昇
温することによってCdTe単結晶を育成する方法がL
orenzによって提案されている(Journal 
 of  AppliedPhysics  Vol、
33.No、11゜1962年11月、p3304)。
On the other hand, regarding CdTe, Cd melted at 970'C
L
proposed by orenz (Journal
of Applied Physics Vol.
33. No. 11゜November 1962, p3304).

[発明が解決しようとする課題] 原料融液を冷却して単結晶を育成する従来の一般的なボ
ート法にあっては、II−VI族化合物半導体の熱伝導
率が小さいので、凝固潜熱が結晶内を伝わって逃げにく
くなる。そのため、成長容器を伝わって逃げる熱の割合
が多くなってしまう。その結果、固液界面形状が第5図
に示すごとく融液側に凹状となるため、成長容器に接し
た部分で核ができて多結晶化し易い。また、トラベリン
グヒータ法以外の結晶成長方法では、融点直下の高温で
結晶を成長するため結晶中に熱応力が生じ易く、リニエ
ージやセル構造の転位の発生を助長するという欠点があ
った。
[Problem to be solved by the invention] In the conventional general boat method in which a raw material melt is cooled to grow a single crystal, the latent heat of solidification is It travels through the crystal and becomes difficult to escape. Therefore, the proportion of heat that escapes through the growth container increases. As a result, the solid-liquid interface shape becomes concave toward the melt side as shown in FIG. 5, so that nuclei are formed in the portion in contact with the growth container and polycrystals are likely to occur. In addition, crystal growth methods other than the traveling heater method have the disadvantage that because the crystal is grown at a high temperature just below the melting point, thermal stress is likely to occur in the crystal, promoting lineage and dislocation of the cell structure.

一方、Lorenzの方法にあっては、結晶化温度が9
70℃〜1025℃の間にあって融点(1092℃)よ
りも100℃近く低くさせることはできているが、品質
については報告されていない。
On the other hand, in Lorenz's method, the crystallization temperature is 9
Although it has been possible to lower the melting point (1092°C) by nearly 100°C between 70°C and 1025°C, the quality has not been reported.

本発明は、上記のような問題点に着目してなされたもの
で、その目的とするところは、CdTeのような熱伝導
率の低い化合物半導体単結晶を育成する場合に、単結晶
化率を向上させ、かつ転位の少ない高品質の結晶を育成
可能な結晶成長技術を提供することにある。
The present invention was made in view of the above-mentioned problems, and its purpose is to improve the single crystallization rate when growing compound semiconductor single crystals with low thermal conductivity such as CdTe. It is an object of the present invention to provide a crystal growth technique capable of growing high-quality crystals with improved performance and fewer dislocations.

[課題を解決するための手段] 本発明者は、Cd過剰融液をCd蒸気圧を印加しながら
昇温することによってCdTe単結晶を育成するLor
enzの方法が可能ならば、Te過剰融液をTe蒸気圧
を印加しながら昇温することでCdTe単結晶を育成で
きるのではないかと考え、検討した。
[Means for Solving the Problem] The present inventor has developed a Lor method for growing a CdTe single crystal by heating an excess Cd melt while applying a Cd vapor pressure.
If enz's method is possible, we considered that it would be possible to grow a CdTe single crystal by heating a Te-excess melt while applying Te vapor pressure.

その結果、Te蒸気圧制御の場合、CdTeの相図上に
平衡するTe蒸気圧P’reを記入すると、第3図のよ
うになり、0.08<Pre<0.245atmの範囲
では同−Te蒸気圧で液相線と交わる点が二点ずつ存在
する。この二点のうち低温側の点をTQ、、高温側の点
をThとすると、低温側(TQ)では、この温度以下で
液相である原料融液をTe蒸気圧を制御しながら温度T
Qから高温側の点Thに向かって加熱昇温させることに
より、結晶を成長させ得ることができる。
As a result, in the case of Te vapor pressure control, if the equilibrium Te vapor pressure P're is written on the phase diagram of CdTe, it becomes as shown in Figure 3, and in the range of 0.08<Pre<0.245 atm, - There are two points each where the Te vapor pressure intersects the liquidus line. If the point on the low temperature side of these two points is TQ, and the point on the high temperature side is Th, then on the low temperature side (TQ), the raw material melt, which is in the liquid phase below this temperature, is heated to a temperature of T while controlling the Te vapor pressure.
By heating and increasing the temperature from Q toward point Th on the high temperature side, crystals can be grown.

しかも、Te過剰側で結晶を育成すると、Cd過剰にお
ける970℃から1025℃への昇温に比べて低い温度
で結晶化できるので不純物の混入量を減らし、かつ熱応
力を低減できるとともに、Cd蒸気圧(5、9atm)
に比べ低いTe蒸気圧(0,2atm)で結晶を育成で
きるとの結論に達した。
Moreover, when crystals are grown in an excess of Te, they can be crystallized at a lower temperature compared to raising the temperature from 970°C to 1025°C in an excess of Cd, reducing the amount of impurities mixed in and reducing thermal stress. Pressure (5, 9 atm)
It was concluded that crystals can be grown at a Te vapor pressure (0.2 atm) that is lower than that of Te vapor pressure (0.2 atm).

この発明は、上記考察に基づいてなされたもので、化学
量論組成よりTe過剰とされた原料融液を、Te蒸気圧
を制御しながら800℃〜900℃から920”C〜9
70℃へpAさせることでCdTe系結晶を育成する方
法を提案するものである。
This invention was made based on the above consideration, and the raw material melt containing excessive Te compared to the stoichiometric composition was heated from 800 to 900 °C to 920"C to 92"C while controlling the Te vapor pressure.
This paper proposes a method of growing CdTe-based crystals by raising the pA to 70°C.

なお、本発明はCdTeのみならずCdZnTeその他
CdTe系結晶の育成に適用できる。その場合、最適の
結晶化温度範囲およびTe蒸気圧は結晶の種類に応じて
変化する。
Note that the present invention can be applied to the growth of not only CdTe but also CdZnTe and other CdTe-based crystals. In that case, the optimal crystallization temperature range and Te vapor pressure vary depending on the type of crystal.

[作用] 上記手段によれば、従来方法に比べ低い成長温度で結晶
を育成でき、これによって不純物の混入量を減らし熱応
力を低減できるた、ノ、リニエージやセル構造の転位の
発生を抑えることができるとともに、昇温により結晶化
するため冷却により結晶化する従来の一般的なボート法
に対し、熱の伝達方向(液相から固相)が逆(固相がら
液相)になるので、固液界面形状が融液側に凸形になり
[Function] According to the above means, crystals can be grown at a lower growth temperature than conventional methods, thereby reducing the amount of impurities mixed in and reducing thermal stress, and also suppressing the generation of lineage and dislocations in the cell structure. In addition, the direction of heat transfer (from liquid phase to solid phase) is reversed (from solid phase to liquid phase), compared to the conventional general boat method in which crystallization occurs when the temperature is raised and crystallizes when cooled. The solid-liquid interface shape becomes convex toward the melt side.

多結晶化を抑えることが可能となる。It becomes possible to suppress polycrystalization.

[実施例コ 横型ボート法の−っである三温度帯水平ブリッジマン法
を適用した結晶成長装置によりCd Te結晶の育成を
行なった。
[Example] A CdTe crystal was grown using a crystal growth apparatus to which a three-temperature horizontal Bridgman method, which is an alternative to the horizontal boat method, was applied.

第1図に使用した結晶成長装置の構成例を示す。FIG. 1 shows an example of the configuration of the crystal growth apparatus used.

この装置は原料を充填したボート2と蒸気圧制御用の元
素3および対流防止板4を真空封入した石英反応管5が
ヒータ1内に挿入され、ヒータ1によって炉内に軸方向
に沿って3つの均熱帯T I tT、、T、(T、’>
T、>T、)が形成されるように構成されている。石英
反応管5は当初原料を装填したボート2が中間温度均熱
帯T、に位置し、蒸気圧制御用の元素3が低温度均熱帯
T1に位置するように配置される(第1図)。この状態
で、先ずボート2内の原料を溶融させてがら、ボート2
が中間温度均熱帯T、から高温度均熱帯T1に向がうよ
うに移動させることにより、ボート2内の原料の固液界
面を相対的に移動させ、左端から右端に向かって結晶を
成長させるものである。また、結晶成長中低温度均熱帯
T、は反応管5内が元素3の蒸気圧によって所望の圧力
となるように温度が制御される。CdTeの成長に伴っ
て融液からTeが吐き出され、過剰のTeが低温部へ移
動する。
In this device, a boat 2 filled with raw materials, a quartz reaction tube 5 vacuum-sealed with an element 3 for vapor pressure control, and a convection prevention plate 4 are inserted into a heater 1, and the heater 1 moves three quartz tubes along the axial direction into the furnace. Soaking zone T I tT,,T,(T,'>
T,>T,) is formed. The quartz reaction tube 5 is initially arranged so that the boat 2 loaded with raw materials is located in the intermediate temperature soaking zone T, and the element 3 for vapor pressure control is located in the low temperature soaking zone T1 (FIG. 1). In this state, first, while melting the raw materials in the boat 2,
By moving the material from the medium-temperature soaking zone T toward the high-temperature soaking zone T1, the solid-liquid interface of the raw material in the boat 2 is relatively moved, and crystals grow from the left end to the right end. It is something. Further, the temperature of the low-temperature soaking zone T during crystal growth is controlled so that the inside of the reaction tube 5 has a desired pressure depending on the vapor pressure of the element 3. As CdTe grows, Te is expelled from the melt, and excess Te moves to the low temperature section.

第2図には結晶育成終了時のボートの位置を示す。Figure 2 shows the position of the boat at the end of crystal growth.

(具体例1) Cd : Te=30 : 70at%で予め合成した
Te過剰CdTe多結晶1700gを、pBN製ボート
2に充填し、蒸気圧制御用のTe塊650g及び対流防
止板4とともに、石英反応管5内に真空封入した。ヒー
タ1により高温度均熱帯T、を950’C1中間温度均
熱帯T3を880℃、低温度均熱帯T、を825℃に制
御した温度分布を形成し、中間温度均熱帯T、にボート
2が位置し、蒸気圧制御用Teが低温度均熱帯T、に位
置するように石英反応v5を設置し、Te蒸気圧0.2
atmの条件のもとて原料を融解した。ヒータ1を0.
1mm/hrで移動させ、ボート部の温度を880℃か
ら950℃に昇温させ、CdTe結晶を育成した。得ら
れた結晶は出発原料に対して約6割の重量で、平均の大
きさが30×30×40mmの単結晶粒が4個得られ、
転位密度は(1〜3)×10’cm−″であった。
(Specific Example 1) 1700 g of Te-excess CdTe polycrystals synthesized in advance at Cd:Te=30:70 at% were filled into a pBN boat 2, and together with 650 g of Te lumps for vapor pressure control and a convection prevention plate 4, a quartz reaction was carried out. The tube 5 was sealed in vacuum. Heater 1 forms a temperature distribution in which the high temperature soaking zone T is controlled to 950'C, the intermediate temperature soaking zone T3 is controlled to 880℃, and the low temperature soaking zone T is controlled to 825℃. The quartz reaction v5 is installed so that the Te for vapor pressure control is located in the low temperature soaking zone T, and the Te vapor pressure is 0.2.
The raw material was melted under ATM conditions. Set heater 1 to 0.
The boat was moved at a rate of 1 mm/hr and the temperature of the boat portion was raised from 880°C to 950°C to grow CdTe crystals. The obtained crystals had a weight of about 60% of the starting material, and four single crystal grains with an average size of 30 x 30 x 40 mm were obtained.
The dislocation density was (1-3) x 10'cm-''.

(具体例2) Cd : Te=30 : 70at%で予め合成した
Te過剰CdTe多結晶1700gと、Z n T e
 30gをpBN製ボート1に充填し、蒸気圧制御用T
e650g及び対流防止板4とともに石英反応管5内に
真空封入した。ヒータlで高温度均熱帯950℃、中間
温度均熱帯870’C1低温度均熱帯825℃の温度分
布を形成し、中間温度均熱帯にボート2が位置するよう
に石英反応管5を設置して、Te蒸気圧0.2atmの
条件のもとで、ヒータ1を0.1mm/hrで移動させ
、ボート部の温度を870℃から950℃に昇温させて
Cd ZnTe結晶を育成した。得られた結晶は、出発
原料に対して約6割の重量で平均の大きさが25×35
×40(財)の単結晶粒が5個集まった結晶体が得られ
た。Zn濃度から固液界面形状を調べた結果、第4図に
示すように融液側に対して凸型を有し、転位密度は(1
〜2)×104CITl−であった。
(Specific Example 2) 1700 g of Te-excess CdTe polycrystal synthesized in advance with Cd:Te=30:70at% and ZnTe
30g was filled into pBN boat 1, and T for steam pressure control was filled.
It was vacuum sealed in a quartz reaction tube 5 together with 650 g of e and a convection prevention plate 4. A temperature distribution of 950°C in a high-temperature soaking zone, 870'C in a middle-temperature soaking zone, and 825°C in a low-temperature soaking zone is formed using the heater L, and the quartz reaction tube 5 is installed so that the boat 2 is located in the middle-temperature soaking zone. , Te vapor pressure of 0.2 atm, the heater 1 was moved at a rate of 0.1 mm/hr, and the temperature of the boat portion was raised from 870° C. to 950° C. to grow a Cd ZnTe crystal. The obtained crystals weigh approximately 60% of the starting material and have an average size of 25 x 35
A crystal body consisting of five single crystal grains of ×40 (Foundation) was obtained. As a result of examining the shape of the solid-liquid interface from the Zn concentration, it was found that it had a convex shape toward the melt side, as shown in Figure 4, and the dislocation density was (1
~2)×104CITl−.

(比較例) 上記実施例と同一の結晶成長装置を用い、化学量論組成
で合成したCdTe多結晶2400g及びZnTe60
gをpBN製ボートに充填し、蒸気圧制御用Cd70g
及び対流防止板とともに、石英反応管内に真空封入した
。高温度均熱帯1105℃、中間温度均熱帯1050℃
、低温度均熱帯820℃の温度分布を形成し、高温度均
熱帯にボートが位置するように石英反応管を設置し、c
d蒸気圧1.5atmの条件のもとて原料を融解した。
(Comparative example) 2400 g of CdTe polycrystal and ZnTe60 synthesized with stoichiometric composition using the same crystal growth apparatus as in the above example.
g into a pBN boat, and 70 g of Cd for vapor pressure control.
It was vacuum sealed in a quartz reaction tube together with a convection prevention plate. High temperature soaking zone 1105℃, medium temperature soaking zone 1050℃
A quartz reaction tube was installed so that a temperature distribution of 820°C was formed in the low-temperature soaking zone, and the boat was located in the high-temperature soaking zone.
d The raw material was melted under the condition of vapor pressure of 1.5 atm.

ヒータを1mm/hrで逆方向に移動させ、ボート部の
温度を1105℃から1050℃に冷却して、Cd Z
nTe結晶を育成した。得られた結晶は、出発原料に対
してほぼ同じ重量の結晶であったが、その平均の大きさ
が15×20×20mmの結晶粒が20〜30個存在し
、Zn濃度から固液界面形状を調べた結果、融液側に対
して凹形をなし、転位密度は7X10’〜5×10“印
−″で、リニエージが存在した。
The heater was moved in the opposite direction at 1 mm/hr to cool the temperature of the boat part from 1105°C to 1050°C, and the Cd Z
An nTe crystal was grown. The obtained crystals had approximately the same weight as the starting material, but there were 20 to 30 crystal grains with an average size of 15 x 20 x 20 mm, and the solid-liquid interface shape was determined from the Zn concentration. As a result of examination, it was found that the shape was concave toward the melt side, the dislocation density was 7×10' to 5×10 "mark-", and lineage was present.

[発明の効果] 以上説明したようにこの発明は、化学量論組成よりTe
過剰とされた原料融液を、Te蒸気圧を制御しながら8
00℃〜900℃から920℃〜970℃へ昇温させる
ことでCdTe系結晶を育成するようにしたので、従来
方法に比べ低い成長温度で結晶を育成でき、これによっ
て、不純物の混入量を減らし熱応力を低減できるため、
リニエージやセル構造の転位の発生を抑えることができ
るとともに、昇温により結晶化するため、冷却により結
晶化する方法に対し、熱の伝達方向(液相から固相)が
逆(固相から液相)になるので、固液界面形状が融液側
に凸形になり、多結晶化を抑えることが可能となるとい
う効果がある。
[Effect of the invention] As explained above, the present invention has the advantage that Te
While controlling the Te vapor pressure, the excess raw material melt was
Since CdTe-based crystals are grown by raising the temperature from 00°C to 900°C to 920°C to 970°C, crystals can be grown at a lower growth temperature than conventional methods, thereby reducing the amount of impurities mixed in. Because thermal stress can be reduced,
In addition to suppressing the occurrence of lineage and dislocations in the cell structure, the heat transfer direction (from liquid phase to solid phase) is opposite (from solid phase to liquid phase), compared to the method of crystallization by cooling, since the generation of lineage and dislocations in the cell structure can be suppressed. phase), the solid-liquid interface shape becomes convex toward the melt side, which has the effect of suppressing polycrystalization.

さらに、Te過剰側で結晶を育成するので、Cd過剰側
における970’Cから1025℃への昇温による結晶
化に比べて低い温度で結晶化できるため、不純物の混入
量を減らし、かつ熱応力を低減し、高品質の結晶を育成
できるとともに、Cd蒸気圧(5,9atm)に比べ低
いTe蒸気圧(0゜2atm)で結晶を汀成できるため
高圧容器とする必要がなく、設備が安価で危険性も少な
い。
Furthermore, since crystals are grown on the Te-excessive side, they can be crystallized at a lower temperature compared to crystallization by raising the temperature from 970'C to 1025°C on the Cd-excessive side, which reduces the amount of impurities mixed in and reduces thermal stress. In addition to being able to grow high-quality crystals, there is no need for a high-pressure vessel, and the equipment is inexpensive because the crystals can be grown at Te vapor pressure (0°2 atm), which is lower than Cd vapor pressure (5,9 atm). And it's less dangerous.

【図面の簡単な説明】[Brief explanation of the drawing]

第1図は本発明方法が適用される結晶成長装置の一例と
しての三温度帯水平ブリッジマン法を用いる結晶成長装
置の結晶成長開始時の状態を示す断面正面図、 第2図はその装置の結晶成長終了時の状態を示す断面正
面図、 第3図はCdTeの融液組成と温度との関係を示す状態
図、 第4図は本発明方法による結晶育成中のボート内原料の
固液界面の形状を示す平面図、第5図は従来方法による
結晶育成中のボート内原料の固液界面の形状を示す平面
図である。 1・・・・ヒータ、2・・・・ボート、3・・・・蒸気
圧制御用元素、4・・・・対流防止板、5・・・・石英
反応管。 第  1 図 第  3 d OlOmiCpercen↑tellurium第  
4  図 鷹鴨 第 壷八 手続補正書 (自発) 1、事件の表示 平成1年特許願第273511号 2゜ 発明の名称 II−VI族化合物半導体単結晶の製造方法3゜ 補正をする者 事件との関係
Figure 1 is a cross-sectional front view showing the state at the start of crystal growth of a crystal growth apparatus using the three-temperature horizontal Bridgman method as an example of a crystal growth apparatus to which the method of the present invention is applied, and Figure 2 is a front view of the apparatus. Figure 3 is a phase diagram showing the relationship between CdTe melt composition and temperature; Figure 4 is the solid-liquid interface of the raw material in the boat during crystal growth according to the method of the present invention. FIG. 5 is a plan view showing the shape of the solid-liquid interface of the raw material in the boat during crystal growth by the conventional method. 1... Heater, 2... Boat, 3... Element for vapor pressure control, 4... Convection prevention plate, 5... Quartz reaction tube. Figure 1 Figure 3 d OlOmiCpercen↑tellurium
4 Illustration Takakamo No. 8 Procedural Amendment (Voluntary) 1. Indication of the Case 1999 Patent Application No. 273511 2゜ Title of Invention Method for Manufacturing Group II-VI Group Compound Semiconductor Single Crystal 3゜ Person Who Makes Amendment Case and connection of

Claims (2)

【特許請求の範囲】[Claims] (1)化学量論組成よりTe過剰とされた原料融液をT
e蒸気圧を制御しながら800℃〜900℃から920
℃〜970℃へ昇温させることでCdTe系結晶を育成
することを特徴とするII−VI族化合物半導体結晶の製造
方法。
(1) The raw material melt, which has an excess of Te than the stoichiometric composition, is
e From 800℃ to 900℃ to 920℃ while controlling the vapor pressure.
A method for producing a II-VI group compound semiconductor crystal, which comprises growing a CdTe-based crystal by raising the temperature to 970°C.
(2)三温度帯水平ブリッジマン法を適用した結晶成長
装置において低温度均熱帯でTeの蒸気圧を制御すると
ともに、原料を入れたボートを中間温度均熱帯から高温
度均熱帯へ移動して結晶を成長させるようにしたことを
特徴とする請求項1記載のII−VI族化合物半導体結晶の
製造方法。
(2) In a crystal growth apparatus applying the three-temperature horizontal Bridgman method, the vapor pressure of Te is controlled in the low-temperature soaking zone, and the boat containing the raw materials is moved from the intermediate-temperature soaking zone to the high-temperature soaking zone. 2. The method for producing a II-VI group compound semiconductor crystal according to claim 1, wherein the crystal is grown.
JP27351189A 1989-10-20 1989-10-20 Production of ii-vi compound semiconductor crystal Pending JPH03137085A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP27351189A JPH03137085A (en) 1989-10-20 1989-10-20 Production of ii-vi compound semiconductor crystal

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP27351189A JPH03137085A (en) 1989-10-20 1989-10-20 Production of ii-vi compound semiconductor crystal

Publications (1)

Publication Number Publication Date
JPH03137085A true JPH03137085A (en) 1991-06-11

Family

ID=17528892

Family Applications (1)

Application Number Title Priority Date Filing Date
JP27351189A Pending JPH03137085A (en) 1989-10-20 1989-10-20 Production of ii-vi compound semiconductor crystal

Country Status (1)

Country Link
JP (1) JPH03137085A (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2021167266A (en) * 2020-04-09 2021-10-21 エスケイシー・カンパニー・リミテッドSkc Co., Ltd. Method and system for producing silicon carbide ingot
JP2021187728A (en) * 2020-05-29 2021-12-13 エスケイシー・カンパニー・リミテッドSkc Co., Ltd. Production method of silicon carbide ingot, and production system of silicon carbide ingot

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2021167266A (en) * 2020-04-09 2021-10-21 エスケイシー・カンパニー・リミテッドSkc Co., Ltd. Method and system for producing silicon carbide ingot
JP2021187728A (en) * 2020-05-29 2021-12-13 エスケイシー・カンパニー・リミテッドSkc Co., Ltd. Production method of silicon carbide ingot, and production system of silicon carbide ingot

Similar Documents

Publication Publication Date Title
JPS5914440B2 (en) Method for doping boron into CaAs single crystal
Kadokura et al. Germanium-silicon single crystal growth using an encapsulant in a silica ampoule
US3796548A (en) Boat structure in an apparatus for making semiconductor compound single crystals
JP3648703B2 (en) Method for producing compound semiconductor single crystal
JPH03137085A (en) Production of ii-vi compound semiconductor crystal
JP3806791B2 (en) Method for producing compound semiconductor single crystal
JPH03131599A (en) Production of ii-vi group compound semiconductor crystal
JP4344021B2 (en) Method for producing InP single crystal
US4613495A (en) Growth of single crystal Cadmium-Indium-Telluride
JP3831913B2 (en) Method for producing compound semiconductor single crystal
JP2733898B2 (en) Method for manufacturing compound semiconductor single crystal
JPS62148389A (en) Method for growing single crystal
JP2922038B2 (en) Method for manufacturing compound semiconductor single crystal
JP3806793B2 (en) Method for producing compound semiconductor single crystal
JP2781857B2 (en) Single crystal manufacturing method
JP2739547B2 (en) Method for producing lithium borate single crystal
JP2773441B2 (en) Method for producing GaAs single crystal
JPH0558772A (en) Production of compound semiconductor single crystal
JPH07165486A (en) Method for growing compound semiconductor single crystal in vertical container
JP2000327496A (en) Production of inp single crystal
JPH01138199A (en) Lead-tin-tellurium based semiconductor single crystal
JPS63319286A (en) Method for growing single crystal
JPS63270392A (en) Production of compound semiconductor crystal
JPH02229783A (en) Method for growing single crystal of compound semiconductor by vertical type boat method
JPH06157184A (en) Crystal growth ampoule