JPS62283893A - Method for growing compound semiconductor single crystal - Google Patents

Method for growing compound semiconductor single crystal

Info

Publication number
JPS62283893A
JPS62283893A JP10105486A JP10105486A JPS62283893A JP S62283893 A JPS62283893 A JP S62283893A JP 10105486 A JP10105486 A JP 10105486A JP 10105486 A JP10105486 A JP 10105486A JP S62283893 A JPS62283893 A JP S62283893A
Authority
JP
Japan
Prior art keywords
crystal
growth
melt
single crystal
solid
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP10105486A
Other languages
Japanese (ja)
Other versions
JPH075427B2 (en
Inventor
▲吉▼竹 伸二
Shinji Yoshitake
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Sumitomo Electric Industries Ltd
Original Assignee
Sumitomo Electric Industries Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Sumitomo Electric Industries Ltd filed Critical Sumitomo Electric Industries Ltd
Priority to JP61101054A priority Critical patent/JPH075427B2/en
Publication of JPS62283893A publication Critical patent/JPS62283893A/en
Publication of JPH075427B2 publication Critical patent/JPH075427B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Landscapes

  • Crystals, And After-Treatments Of Crystals (AREA)
  • Liquid Deposition Of Substances Of Which Semiconductor Devices Are Composed (AREA)

Abstract

PURPOSE:To inhibit the shift of the position of a solid-liquid interface and to secure the stable growth of crystal by descending the temp. of a melt in coincidence with the growth of crystal in a horizontal Bridgman's method. CONSTITUTION:In the growth of compd. semiconductor single crystal by a horizontal Bridgman's method, the concn. of impurities incorporated in a melt is made high as the growth of crystal is progressed and m.p. of the melt is lowered and the position of the interface of crystalline growth is shifted to a low-temp. side. As a result, the growth of crystal is made unstable. Therefore the temp. of the melt is continuously or intermittently lowered in coincidence with the growth of crystal and the fluctuation of the position of a solid-liquid interface is made small and thereby the growth of crystal is made stable. As a result, single crystal such as GaAs which has little crystalline flaw and good quality can be obtained.

Description

【発明の詳細な説明】 3発明の詳細な説明 〔産業上の利用分野〕 本発明は水平ブリッジマン法により化合物半導体単結晶
を成長する方法に関し、特に、不純物を添加した化合物
半導体単結晶の成長方法に関する。
Detailed Description of the Invention 3. Detailed Description of the Invention [Field of Industrial Application] The present invention relates to a method for growing compound semiconductor single crystals by the horizontal Bridgman method, and in particular, to a method for growing compound semiconductor single crystals doped with impurities. Regarding the method.

〔従来の技術〕[Conventional technology]

第1図は、水平ブリッジマン法によ’9 GaA日単結
晶を製造する概念図である。結晶成長炉は円筒の保温材
1の中にヒーター2を埋込み、炉の中間部に結晶の固液
界面を観察するための覗き窓7を開け、テレビカメラ8
と固定して画像処理記憶装置10で観察できるようにす
る。ヒーター2に通電することによシ、前記固液界面が
覗き窓7の下に位置するように炉内温度分布9を形成す
る。一方、GaAs原料をボートに収容し、該ボートを
石英封管Sの中に封入する。
FIG. 1 is a conceptual diagram of manufacturing a '9 GaA single crystal by the horizontal Bridgman method. In the crystal growth furnace, a heater 2 is embedded in a cylindrical heat insulator 1, a viewing window 7 is opened in the middle of the furnace to observe the solid-liquid interface of the crystal, and a television camera 8 is installed.
This is fixed so that it can be observed on the image processing storage device 10. By energizing the heater 2, a temperature distribution 9 in the furnace is formed such that the solid-liquid interface is located below the viewing window 7. On the other hand, a GaAs raw material is placed in a boat, and the boat is sealed in a quartz sealed tube S.

かかる石英封管3を上記炉の中に導入してボート内の原
料を溶融して、GaAe融液6を形成し、その後徐々に
移動方向4に向って移動することによりGaA11l単
結晶5を成長させる。
The quartz sealed tube 3 is introduced into the furnace to melt the raw material in the boat to form a GaAe melt 6, and then gradually moves in the moving direction 4 to grow a GaA11l single crystal 5. let

結晶成長が進むに従って、融液6内の不純物濃度は偏析
により高くなる。その結果、融液6の融点は低下し、結
晶成長界面の位置が低温側に移動する。第5図にその1
例として従来法における固液界面位置の変動を固化率と
の関係で示した。この固液界面の移動は結晶成長速度の
変化を来して結晶成長を不安定なものとなし、結晶欠陥
の発生を容易にした。
As the crystal growth progresses, the impurity concentration in the melt 6 increases due to segregation. As a result, the melting point of the melt 6 decreases, and the position of the crystal growth interface moves to the lower temperature side. Figure 5 shows Part 1
As an example, the variation of the solid-liquid interface position in the conventional method is shown in relation to the solidification rate. This movement of the solid-liquid interface changes the crystal growth rate, making crystal growth unstable and facilitating the generation of crystal defects.

〔本発明が解決しようとする問題点〕[Problems to be solved by the present invention]

本発明は従来の化合物半導体単結晶の成長方法の欠点を
解消し、固液界面位置の移動を抑止して安定な結晶成長
を確保することにより、結晶欠陥の少ない化合物半導体
単結晶を成長する方法を提供しようとするものである。
The present invention is a method for growing compound semiconductor single crystals with fewer crystal defects by eliminating the drawbacks of conventional compound semiconductor single crystal growth methods and ensuring stable crystal growth by suppressing the movement of the solid-liquid interface position. This is what we are trying to provide.

〔問題点を解決するための手段〕[Means for solving problems]

本発明は水平ブリッジマン法により化合物半導体単結晶
を成長する方法において、結晶成長に合わせて連続的、
若しくは断続的に融液温度を降下させることにより、炉
内の固液界面位置を実質的に変動しないように保つこと
を特徴とする化合物半導体単結晶の成長方法である。
The present invention provides a method for growing compound semiconductor single crystals using the horizontal Bridgman method, in which continuous growth is performed in accordance with crystal growth.
Alternatively, the method for growing a compound semiconductor single crystal is characterized in that the position of the solid-liquid interface in the furnace is kept substantially unchanged by lowering the melt temperature intermittently.

〔作用〕 GaAs  単結晶の結晶成長における不純物偏析によ
る融点降下ΔTは次のように導かれる。
[Operation] The melting point drop ΔT due to impurity segregation during crystal growth of GaAs single crystal is derived as follows.

(赤井慎−著「三温度帯法による低欠陥密度C1aAs
  単結晶の調整に関する研究」より)n (G) −
El (1−x )           −−−(5
)N(1):不純物のmo’l数 N(G): GaAsのmol数 m(1):不純物の投入重量 n(1):成長中GaAs  単結晶中に取込まれた不
純物重量 M(巧:不純物の原子量 m (G) : GaAa投入重量 n (G) :成長中のGaA日単結晶重量M(G):
 GaAsの分子量 Co :  GaAs  単結晶最前面の不純物濃度k
  :  GaAs  における不純物偏析係数S  
:  GaAa  単結晶の断面積ρ :  GaAs
  単結晶の比重 Q : 固化率 x  :  GaAs  単結晶最後部からの位置/ 
 :  GaAa 単結晶の全長 上記(1)、(2)、(3)式よりΔTは次の式として
表わすことができる。
(Shin Akai, “Low Defect Density C1aAs Using Three Temperature Zone Method”
Research on the preparation of single crystals) n (G) −
El (1-x) ---(5
)N(1): Number of mo'l of impurities N(G): Number of moles of GaAs m(1): Weight of impurities introduced n(1): Weight of impurities taken into the GaAs single crystal during growth M( Takumi: Atomic weight of impurities m (G): GaAa input weight n (G): GaA daily single crystal weight during growth M (G):
Molecular weight of GaAs Co: Impurity concentration k at the forefront of GaAs single crystal
: Impurity segregation coefficient S in GaAs
: Cross-sectional area of GaAa single crystal ρ : GaAs
Specific gravity of single crystal Q: Solidification rate x: Position from the rear end of GaAs single crystal/
: Total length of GaAa single crystal From the above equations (1), (2), and (3), ΔT can be expressed as the following equation.

ここで、Crを不純物として加え、5−112M! −
51−5cmのGaAs単結晶成長中のΔτを単結晶固
化率に対してプロットした理論曲線を第4図として示し
た。
Here, Cr is added as an impurity and 5-112M! −
FIG. 4 shows a theoretical curve in which Δτ during growth of a 51-5 cm GaAs single crystal is plotted against the solidification rate of the single crystal.

本発明は、上記結晶成長に洋なう融液の融点降下に沿っ
て融液温度を降下させ、固液界面位置を変動しないよう
にすることを特徴としており、これを結晶の固化率Qと
の関係で段階的に示しだのが第2図である。その中で、
結晶成長が開始した直後の状態を示したのが、Q−0の
図である。融点降下ΔTも当然零である。結晶成長が5
割進行したQ−α5の図では融点以下△Tが17℃であ
シ、融液の温度もその分だけ、点線から実IvJ″1で
降下させる。結晶成長が6割進行したQ=Q、6の図で
は融点降下△Tが’L4℃となり、更にQ、=[18の
図では融点降下ΔTは5.5℃となシ、融液温度も図の
ように大巾に降下させる。このような融液の温度降下に
より固液界面位置の変動を小さくすることにより、結晶
成長を安定させることができ、その結果として結晶欠陥
の少ない良好な単結晶を得ることができる。
The present invention is characterized in that the temperature of the melt is lowered in accordance with the melting point drop of the melt due to crystal growth, so that the solid-liquid interface position does not change, and this is determined by the solidification rate Q of the crystal. Figure 2 shows the relationship step by step. among them,
The diagram of Q-0 shows the state immediately after crystal growth starts. Naturally, the melting point depression ΔT is also zero. Crystal growth is 5
In the diagram of Q-α5, which has progressed by 60%, ΔT below the melting point is 17°C, and the temperature of the melt is also lowered by that amount from the dotted line by actual IvJ''1. Q = Q when crystal growth has progressed by 60%, In the figure 6, the melting point drop ΔT is 'L4℃, and in the figure Q,=[18, the melting point drop ΔT is 5.5℃, and the melt temperature is also drastically lowered as shown in the figure. By reducing the fluctuation in the solid-liquid interface position by reducing the temperature of the melt, crystal growth can be stabilized, and as a result, a good single crystal with few crystal defects can be obtained.

〔実施例1〕 砒化ガリウム4.550 tに対してクロム分9、12
 F添加し水平ブリッジマン法で半絶縁性砒化ガリウム
単結晶を成長させた。結晶成長速度5蝙/時、融液の降
温速度α03℃/時で結晶成長予定の長さの半分まで成
長させた後に融夜の降温速度をQ、08℃/時と高めて
後半の結晶成長を行なった。
[Example 1] Chromium content 9.12 for gallium arsenide 4.550 t
A semi-insulating gallium arsenide single crystal was grown by adding F and using the horizontal Bridgman method. After growing to half of the expected crystal growth length at a crystal growth rate of 5°C/hour and a melt cooling rate α of 03°C/hour, the crystal growth in the second half was performed by increasing the melting temperature cooling rate to Q, 08°C/hour. I did it.

その結果、固液界面位置の変動は第5図に示すように成
長結晶の先端から8割の範囲内で±2fiであった。こ
のように成長した結晶は単結晶であシ半絶縁性を有して
おり、結晶欠陥も1×103〜5 X 1 o”cln
−”と極めて少ないものであった。
As a result, the variation in the solid-liquid interface position was ±2fi within 80% of the tip of the growing crystal, as shown in FIG. The crystal grown in this way is a single crystal and has semi-insulating properties, and has crystal defects of 1×103 to 5×1 o”cln.
-”, which was extremely low.

〔実施例2〕 砒化ガリウム2000Fに対してクロム&52を添加し
、水平ブリッジマン法で半絶縁性砒化ガリウム単結晶を
成長させた。結晶成長速度を1OW/時とし、融液の降
温速度を前半は109℃/時、後半は119℃/時で結
晶成長2行なった。
[Example 2] Chromium &52 was added to gallium arsenide 2000F, and a semi-insulating gallium arsenide single crystal was grown by the horizontal Bridgman method. Two crystal growths were carried out at a crystal growth rate of 1 OW/hour and a melt cooling rate of 109° C./hour in the first half and 119° C./hour in the second half.

その結果、固液界面位置の変動は±3wa以内と良好で
あり、結晶欠陥も5 X 102〜5×10″″3と少
々かった。
As a result, the variation in the solid-liquid interface position was good within ±3 wa, and the number of crystal defects was small at 5×10 2 to 5×10″3.

〔比較例〕[Comparative example]

結晶成長に伴なう融液温度の降下を実施しない点?除き
、実施例1の条件に従って結晶成長を行なった。固化率
が約115のところから固液界面がいびつになり、リネ
ージが発生し、ついには多結晶となってしまった。固化
界面は0からaomの範囲で移動してしまった。
What about not lowering the melt temperature due to crystal growth? Crystal growth was performed according to the conditions of Example 1 except for the following. At a solidification rate of about 115, the solid-liquid interface became distorted, lineage occurred, and finally polycrystalline formation occurred. The solidification interface has moved in the range of 0 to aom.

〔発明の効果〕〔Effect of the invention〕

本発明は上記構成を採用することにより、固液界面位置
の移動が実質的になくなり、安定己た結晶成長条件を確
保することができたので、結晶欠陥の少ない良好な化合
物半導体単結晶を成長することができた。
By adopting the above configuration, the present invention has been able to substantially eliminate movement of the solid-liquid interface position and ensure stable crystal growth conditions, thereby growing a good compound semiconductor single crystal with few crystal defects. We were able to.

【図面の簡単な説明】[Brief explanation of the drawing]

第1図は、水平ブリッジマン法によF) GaAs単結
晶を成長する状況を示した概念図、第2図は結晶成長と
融液の降液の降温状況を説明するだめの図、第5図は、
実施例1の固液界面位置の変動状況を示したグラフ、第
4図は式(6)による融点降下と固化率の関係を示した
グラフ、第5図は従来法による結晶成長で生じた固液界
面位置の変動の例を示した図である。
Figure 1 is a conceptual diagram showing the situation in which a F) GaAs single crystal is grown using the horizontal Bridgman method. Figure 2 is a conceptual diagram illustrating the crystal growth and the temperature drop of the melt. Figure 5 The diagram is
A graph showing the fluctuation of the solid-liquid interface position in Example 1, Fig. 4 is a graph showing the relationship between melting point depression and solidification rate according to equation (6), and Fig. 5 shows the solidification caused by crystal growth by the conventional method. FIG. 3 is a diagram showing an example of variation in the position of a liquid surface.

Claims (2)

【特許請求の範囲】[Claims] (1)水平ブリッジマン法により化合物半導体単結晶を
成長する方法において、結晶成長に合わせて連続的、若
しくは断続的に融液温度を降下させることにより、炉内
の固液界面位置を実質的に変動しないように保つことを
特徴とする化合物半導体単結晶の成長方法。
(1) In the method of growing compound semiconductor single crystals by the horizontal Bridgman method, the position of the solid-liquid interface in the furnace is substantially reduced by lowering the melt temperature continuously or intermittently in accordance with crystal growth. A method for growing a compound semiconductor single crystal characterized by keeping it unchanged.
(2)クロムを添加した砒化ガリウム単結晶を結晶成長
速度1〜100mm/時で成長させ、その成長に合わせ
て0.01〜1.0℃/時の割合で融液の温度を降下さ
せることを特徴とする特許請求の範囲第1項記載の方法
(2) Growing a chromium-added gallium arsenide single crystal at a crystal growth rate of 1 to 100 mm/hour, and lowering the temperature of the melt at a rate of 0.01 to 1.0°C/hour in accordance with the growth. A method according to claim 1, characterized in that:
JP61101054A 1986-05-02 1986-05-02 Method for growing compound semiconductor single crystal Expired - Fee Related JPH075427B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP61101054A JPH075427B2 (en) 1986-05-02 1986-05-02 Method for growing compound semiconductor single crystal

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP61101054A JPH075427B2 (en) 1986-05-02 1986-05-02 Method for growing compound semiconductor single crystal

Publications (2)

Publication Number Publication Date
JPS62283893A true JPS62283893A (en) 1987-12-09
JPH075427B2 JPH075427B2 (en) 1995-01-25

Family

ID=14290400

Family Applications (1)

Application Number Title Priority Date Filing Date
JP61101054A Expired - Fee Related JPH075427B2 (en) 1986-05-02 1986-05-02 Method for growing compound semiconductor single crystal

Country Status (1)

Country Link
JP (1) JPH075427B2 (en)

Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5127632A (en) * 1974-08-30 1976-03-08 Hitachi Ltd KAHENSUTEEJISHIKIKIKAKI
JPH0572356A (en) * 1991-09-17 1993-03-26 Seiko Epson Corp Wall clock

Patent Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5127632A (en) * 1974-08-30 1976-03-08 Hitachi Ltd KAHENSUTEEJISHIKIKIKAKI
JPH0572356A (en) * 1991-09-17 1993-03-26 Seiko Epson Corp Wall clock

Also Published As

Publication number Publication date
JPH075427B2 (en) 1995-01-25

Similar Documents

Publication Publication Date Title
KR101979130B1 (en) Method for growing beta phase of gallium oxide (β-Ga2O3) single crystals from the melt contained within a metal crucible
JPS6345198A (en) Production of crystal of multiple system
JPH10167898A (en) Production of semi-insulative gaas single crystal
JPS62283893A (en) Method for growing compound semiconductor single crystal
JPS63252989A (en) Production of semiconductor single crystal by pull-up method
JP2734820B2 (en) Method for manufacturing compound semiconductor single crystal
US5007979A (en) Method of fabricating GaAs single crystal
JP3435118B2 (en) Method for growing compound semiconductor bulk crystal and method for manufacturing compound semiconductor device
US4249987A (en) Method of growing large Pb1-x -Snx -Te single crystals where 0<X<1
JPH01179796A (en) Seed crystal for producing non-dislocation gaas single crystal
KR940009282B1 (en) P-type gaas single crystal growing method by zn doping
JP2856458B2 (en) Method for manufacturing compound semiconductor crystal
JP2814657B2 (en) Method for growing compound semiconductor single crystal
JPH0341432B2 (en)
JP2781857B2 (en) Single crystal manufacturing method
RU1809847C (en) Method of crystalline gallium arsenide preparing
JPH03137085A (en) Production of ii-vi compound semiconductor crystal
Miller et al. Solute diffusion growth of Ga x In 1− x Sb
JPH02196082A (en) Production of silicon single crystal
JP2773441B2 (en) Method for producing GaAs single crystal
JP2004010467A (en) Method for growing compound semiconductor single crystal
JPH07206598A (en) Device for producing cd1-x-ymnxhgyte single crystal
JPH03223200A (en) Production of gaas single crystal
JPH05178684A (en) Production of semiconductor single crystal
JPS5938183B2 (en) Single crystal manufacturing method

Legal Events

Date Code Title Description
LAPS Cancellation because of no payment of annual fees