JPH075427B2 - Method for growing compound semiconductor single crystal - Google Patents

Method for growing compound semiconductor single crystal

Info

Publication number
JPH075427B2
JPH075427B2 JP61101054A JP10105486A JPH075427B2 JP H075427 B2 JPH075427 B2 JP H075427B2 JP 61101054 A JP61101054 A JP 61101054A JP 10105486 A JP10105486 A JP 10105486A JP H075427 B2 JPH075427 B2 JP H075427B2
Authority
JP
Japan
Prior art keywords
single crystal
compound semiconductor
crystal
growing
melt
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP61101054A
Other languages
Japanese (ja)
Other versions
JPS62283893A (en
Inventor
伸二 ▲吉▼竹
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Sumitomo Electric Industries Ltd
Original Assignee
Sumitomo Electric Industries Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Sumitomo Electric Industries Ltd filed Critical Sumitomo Electric Industries Ltd
Priority to JP61101054A priority Critical patent/JPH075427B2/en
Publication of JPS62283893A publication Critical patent/JPS62283893A/en
Publication of JPH075427B2 publication Critical patent/JPH075427B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Landscapes

  • Crystals, And After-Treatments Of Crystals (AREA)
  • Liquid Deposition Of Substances Of Which Semiconductor Devices Are Composed (AREA)

Description

【発明の詳細な説明】 〔産業上の利用分野〕 本発明は水平ブリツジマン法により化合物半導体単結晶
を成長する方法に関し、特に、不純物を添加した化合物
半導体単結晶の成長方法に関する。
Description: TECHNICAL FIELD The present invention relates to a method for growing a compound semiconductor single crystal by a horizontal Britzmann method, and more particularly to a method for growing an impurity-doped compound semiconductor single crystal.

〔従来の技術〕[Conventional technology]

第1図は、水平ブリツジマン法によりGaAs単結晶を製造
する概念図である。結晶成長炉は円筒の保温材1の中に
ヒーター2を埋込み、炉の中間部に結晶の固液界面を観
察するための覗き窓7を開け、テレビカメラ8を固定し
て画像処理記憶装置10で観察できるようにする。ヒータ
ー2に通電することにより、前記固液界面が覗き窓7の
下に位置するように炉内温度分布9を形成する。一方、
GaAs原料をボートに収容し、該ボートを石英封管3の中
に封入する。かかる石英封管3を上記炉の中に導入して
ボート内の原料を溶融して、GaAs融液6を形成し、その
後徐々に移動方向4に向つて移動することによりGaAs単
結晶5を成長させる。
FIG. 1 is a conceptual diagram of manufacturing a GaAs single crystal by the horizontal Britzmann method. In the crystal growth furnace, a heater 2 is embedded in a cylindrical heat insulating material 1, a viewing window 7 for observing a solid-liquid interface of crystals is opened in an intermediate portion of the furnace, and a television camera 8 is fixed and an image processing storage device 10 is provided. To be able to observe with. By energizing the heater 2, an in-furnace temperature distribution 9 is formed so that the solid-liquid interface is located under the observation window 7. on the other hand,
The GaAs raw material is housed in a boat, and the boat is sealed in the quartz sealed tube 3. The quartz sealed tube 3 is introduced into the furnace to melt the raw material in the boat to form the GaAs melt 6, and then gradually moved in the moving direction 4 to grow the GaAs single crystal 5. Let

結晶成長が進むに従つて、融液6内の不純物濃度は偏析
により高くなる。その結果、融液6の融点は低下し、結
晶成長界面の位置が低温側に移動する。第5図にその1
例として従来法における固液界面位置の変動を固化率と
の関係で示した。この固液界面の移動は結晶成長速度の
変化を来して結晶成長を不安定なものとなし、結晶欠陥
の発生を容易にした。
As the crystal growth progresses, the impurity concentration in the melt 6 increases due to segregation. As a result, the melting point of the melt 6 is lowered, and the position of the crystal growth interface moves to the low temperature side. Fig. 1
As an example, the variation of the solid-liquid interface position in the conventional method is shown in relation to the solidification rate. The movement of the solid-liquid interface causes a change in the crystal growth rate to make the crystal growth unstable and facilitate the generation of crystal defects.

〔本発明が解決しようとする問題点〕[Problems to be Solved by the Present Invention]

本発明は従来の化合物半導体単結晶の成長方法の欠点を
解消し、固液界面位置の移動を抑止して安定な結晶成長
を確保することにより、結晶欠陥の少ない化合物半導体
単結晶を成長する方法を提供しようとするものである。
The present invention is a method for growing a compound semiconductor single crystal with few crystal defects by solving the drawbacks of the conventional method for growing a compound semiconductor single crystal and suppressing the movement of the solid-liquid interface position to ensure stable crystal growth. Is to provide.

〔問題点を解決するための手段〕[Means for solving problems]

本発明は、(1)水平ブリッジマン法により不純物をド
ープした化合物半導体単結晶を成長する方法において、
結晶成長に伴う融液中の不純物濃度の増大による融点降
下に対応して、連続的、若しくは段階的に融液温度を降
下させることにより、炉内の固液界面位置を実質的に変
動しないように保つことを特徴とする不純物をドープし
た化合物半導体単結晶の成長方法、及び、(2)クロム
を添加した砒化ガリウム単結晶を結晶成長速度1〜10mm
/時で成長させ、その成長に合わせて0.01〜1.0℃/時の
割合で融液の温度を降下させることを特徴とする特許請
求の範囲第1項記載の化合物半導体単結晶の成長方法で
ある。
The present invention provides (1) a method for growing a compound semiconductor single crystal doped with impurities by the horizontal Bridgman method,
In order to prevent the solid-liquid interface position in the furnace from fluctuating substantially by decreasing the melt temperature continuously or stepwise in response to the melting point drop due to the increase of the impurity concentration in the melt accompanying the crystal growth. A method for growing a compound semiconductor single crystal doped with impurities, and (2) a gallium arsenide single crystal doped with chromium having a crystal growth rate of 1 to 10 mm.
The method for growing a compound semiconductor single crystal according to claim 1, wherein the temperature of the melt is lowered at a rate of 0.01 to 1.0 ° C./hour according to the growth. .

〔作用〕[Action]

GaAs単結晶の結晶成長における不純物偏析による融点降
下△Tは次のように導かれる。
The melting point drop ΔT due to impurity segregation in the crystal growth of GaAs single crystal is derived as follows.

(赤井慎一著「三温度帯法による低欠陥密度GaAs単結晶
の調整に関する研究」より) n(G)=S(l−x) ……(5) N(I):不純物のmol数 N(G):GaAsのmol数 m(I):不純物の投入重量 n(I):成長中GaAs単結晶中に取込まれた不純物重量 M(I):不純物の原子量 m(G):GaAs投入重量 n(G):成長中のGaAs単結晶重量 M(G):GaAsの分子量 Co:GaAs単結晶最前面の不純物濃度 k:GaAsにおける不純物偏析係数 S:GaAs単結晶の断面積 ρ:GaAs単結晶の比重 Q:固化率 x:GaAs単結晶最後部からの位置 l:GaAs単結晶の全長 上記(1)、(2)、(3)式より△Tは次の式として
表わすことができる。
(From "Study on Preparation of Low Defect Density GaAs Single Crystal by Three Temperature Zone Method" by Shinichi Akai) n (G) = S (l−x) (5) N (I): mol number of impurities N (G): mol number of GaAs m (I): input weight of impurities n (I): growing Impurity weight taken into GaAs single crystal M (I): Atomic weight of impurities m (G): GaAs input weight n (G): Growing GaAs single crystal weight M (G): GaAs molecular weight Co: GaAs Impurity concentration at the front of the single crystal k: Impurity segregation coefficient in GaAs S: Cross section of GaAs single crystal ρ: Specific gravity of GaAs single crystal Q: Solidification rate x: Position from the end of GaAs single crystal l: Total length of GaAs single crystal From the above equations (1), (2) and (3), ΔT can be expressed as the following equation.

ここで、Crを不純物として加え、S=15.2cm2l=56.5cm
のGaAs単結晶成長中の△Tを単結晶固化率に対してプロ
ツトした理論曲線を第4図として示した。
Here, Cr is added as an impurity and S = 15.2 cm 2 l = 56.5 cm
FIG. 4 shows a theoretical curve obtained by plotting .DELTA.T during the growth of GaAs single crystal with respect to the solidification rate of the single crystal.

本発明は、上記結晶成長に伴なう融液の融点降下に沿つ
て融液温度を降下させ、固液界面位置を変動しないよう
にすることを特徴としており、これを結晶の固化率Qと
の関係で段階的に示したのが第2図である。その中で、
結晶成長が開始した直後の状態を示したのが、Q=0の
図である。融点降下△Tも当然零である。結晶成長が3
割進行したQ=0.3の図では融点以下△Tが0.7℃であ
り、融液の温度もその分だけ、点線から実線まで降下さ
せる。結晶成長が6割進行したQ=0.6の図では融点降
下△Tが2.4℃となり、更にQ=0.8の図では融点降下△
Tは5.5℃となり、融液温度も図のように大巾に降下さ
せる。このような融液の温度降下により固液界面位置の
変動を小さくすることにより、結晶成長を安定させるこ
とができ、その結果として結晶欠陥の少ない良好な単結
晶を得ることができる。
The present invention is characterized in that the melt temperature is lowered along with the drop of the melting point of the melt accompanying the crystal growth so that the solid-liquid interface position is not changed. FIG. 2 shows the relationship in a stepwise manner. inside that,
The state immediately after the start of crystal growth is shown in the figure of Q = 0. The melting point drop ΔT is naturally zero. Crystal growth is 3
In the figure of Q = 0.3, which has progressed relatively, the temperature ΔT below the melting point is 0.7 ° C., and the temperature of the melt is also reduced by that amount from the dotted line to the solid line. In the figure of Q = 0.6 where the crystal growth progressed 60%, the melting point drop △ T was 2.4 ° C, and in the figure of Q = 0.8, the melting point drop △
T becomes 5.5 ° C, and the melt temperature is greatly lowered as shown in the figure. By reducing the fluctuation of the solid-liquid interface position due to such temperature drop of the melt, crystal growth can be stabilized, and as a result, a good single crystal with few crystal defects can be obtained.

〔実施例1〕 砒化ガリウム4.550gに対してクロムを9.12g添加し水平
ブリツジマン法で半絶縁性砒化ガリウム単結晶を成長さ
せた。結晶成長速度5mm/時、融液の降温速度0.03℃/時
で結晶成長予定の長さの半分まで成長させた後に融液の
降温速度を0.08℃/時と高めて後半の結晶成長を行なつ
た。
Example 1 9.12 g of chromium was added to 4.550 g of gallium arsenide and a semi-insulating gallium arsenide single crystal was grown by the horizontal Britzmann method. The crystal growth rate is 5 mm / hour, the melt temperature is 0.03 ° C / hour, and the melt temperature is increased to 0.08 ° C / hour, and then the latter half of the crystal is grown. It was

その結果、固液界面位置の変動は第3図に示すように成
長結晶の先端から8割の範囲内で±2mmであつた。この
ように成長した結晶は単結晶であり半絶縁性を有してお
り、結晶欠陥も1×103〜5×103cm-3と極めて少ないも
のであつた。
As a result, the variation of the solid-liquid interface position was ± 2 mm within the range of 80% from the tip of the grown crystal as shown in FIG. The crystal thus grown was a single crystal and had a semi-insulating property, and crystal defects were extremely small at 1 × 10 3 to 5 × 10 3 cm −3 .

〔実施例2〕 砒化ガリウム2000gに対してクロム6.5gを添加し、水平
ブリツジマン法で半絶縁性砒化ガリウム単結晶を成長さ
せた。結晶成長速度を10mm/時とし、融液の降温速度を
前半は0.09℃/時、後半は0.19℃/時で結晶成長を行な
つた。
Example 2 6.5 g of chromium was added to 2000 g of gallium arsenide, and a semi-insulating gallium arsenide single crystal was grown by the horizontal Britzmann method. The crystal growth rate was set to 10 mm / hour, and the crystal growth rate was set to 0.09 ° C./hour in the first half and 0.19 ° C./hour in the second half.

その結果、固液界面位置の変動は±3mm以内と良好であ
り、結晶欠陥も5×102〜5×10-3と少なかつた。
As a result, the variation of the solid-liquid interface position was favorable within ± 3 mm, and the crystal defects were small at 5 × 10 2 to 5 × 10 −3 .

〔比較例〕[Comparative example]

結晶成長に伴なう融液温度の降下を実施しない点を除
き、実施例1の条件に従つて結晶成長を行なつた。固化
率が約1/3のところから固液界面がいびつになり、リネ
ージが発生し、ついには多結晶となつてしまつた。固化
界面は0から80mmの範囲で移動してしまつた。
Crystal growth was carried out according to the conditions of Example 1 except that the melt temperature was not lowered with crystal growth. At the solidification rate of about 1/3, the solid-liquid interface became distorted, lineage was generated, and finally it became polycrystalline. The solidified interface moved within the range of 0 to 80 mm.

〔発明の効果〕〔The invention's effect〕

本発明は上記構成を採用することにより、固液界面位置
の移動が実質的になくなり、安定した結晶成長条件を確
保することができたので、結晶欠陥の少ない良好な化合
物半導体単結晶を成長することができた。
According to the present invention, by adopting the above configuration, the movement of the solid-liquid interface position is substantially eliminated, and stable crystal growth conditions can be secured, so that a good compound semiconductor single crystal with few crystal defects is grown. I was able to.

【図面の簡単な説明】[Brief description of drawings]

第1図は、水平ブリツジマン法によりGaAs単結晶を成長
する状況を示した概念図、第2図は結晶成長と融液の降
液の降温状況を説明するための図、第3図は、実施例1
の固液界面位置の変動状況を示したグラフ、第4図は式
(6)による融点降下と固化率の関係を示したグラフ、
第5図は従来法による結晶成長で生じた固液界面位置の
変動の例を示した図である。
FIG. 1 is a conceptual diagram showing a situation in which a GaAs single crystal is grown by the horizontal Britzmann method, FIG. 2 is a diagram for explaining the crystal growth and the temperature lowering state of the melt descending liquid, and FIG. Example 1
Fig. 4 is a graph showing the variation of the solid-liquid interface position of Fig. 4, Fig. 4 is a graph showing the relationship between the melting point drop and the solidification rate according to equation (6)
FIG. 5 is a diagram showing an example of the variation of the solid-liquid interface position caused by the crystal growth by the conventional method.

Claims (2)

【特許請求の範囲】[Claims] 【請求項1】水平ブリッジマン法により不純物をドープ
した化合物半導体単結晶を成長する方法において、結晶
成長に伴う融液中の不純物濃度の増大による融点降下に
対応して、連続的、若しくは段階的に融液温度を降下さ
せることにより、炉内の固液界面位置を実質的に変動し
ないように保つことを特徴とする不純物をドープした化
合物半導体単結晶の成長方法。
1. A method for growing an impurity-doped compound semiconductor single crystal by the horizontal Bridgman method, which is continuous or stepwise in response to a melting point drop due to an increase in impurity concentration in a melt accompanying crystal growth. A method for growing a compound semiconductor single crystal doped with impurities, characterized in that the position of the solid-liquid interface in the furnace is kept substantially unchanged by lowering the melt temperature.
【請求項2】クロムを添加した砒化ガリウム単結晶を結
晶成長速度1〜10mm/時で成長させ、その成長に合わせ
て0.01〜1.0℃/時の割合で融液の温度を降下させるこ
とを特徴とする特許請求の範囲第1項記載の化合物半導
体単結晶の成長方法。
2. A gallium arsenide single crystal doped with chromium is grown at a crystal growth rate of 1 to 10 mm / hour, and the temperature of the melt is lowered at a rate of 0.01 to 1.0 ° C./hour according to the growth. The method for growing a compound semiconductor single crystal according to claim 1.
JP61101054A 1986-05-02 1986-05-02 Method for growing compound semiconductor single crystal Expired - Fee Related JPH075427B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP61101054A JPH075427B2 (en) 1986-05-02 1986-05-02 Method for growing compound semiconductor single crystal

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP61101054A JPH075427B2 (en) 1986-05-02 1986-05-02 Method for growing compound semiconductor single crystal

Publications (2)

Publication Number Publication Date
JPS62283893A JPS62283893A (en) 1987-12-09
JPH075427B2 true JPH075427B2 (en) 1995-01-25

Family

ID=14290400

Family Applications (1)

Application Number Title Priority Date Filing Date
JP61101054A Expired - Fee Related JPH075427B2 (en) 1986-05-02 1986-05-02 Method for growing compound semiconductor single crystal

Country Status (1)

Country Link
JP (1) JPH075427B2 (en)

Family Cites Families (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5127632A (en) * 1974-08-30 1976-03-08 Hitachi Ltd KAHENSUTEEJISHIKIKIKAKI
JPH0572356A (en) * 1991-09-17 1993-03-26 Seiko Epson Corp Wall clock

Also Published As

Publication number Publication date
JPS62283893A (en) 1987-12-09

Similar Documents

Publication Publication Date Title
JPH0152359B2 (en)
Benz et al. GaSb and InSb crystals grown by vertical and horizontal travelling heater method
US4944925A (en) Apparatus for producing single crystals
Anis The growth of single crystals of GaSe
JPH075427B2 (en) Method for growing compound semiconductor single crystal
JPS63252989A (en) Production of semiconductor single crystal by pull-up method
Kremer et al. Composition gradients and segregation in Hg1− xMnxTe
Kimura et al. Crystal growth of BaB2O4 from melt using a Pt tube as a seed
US4249987A (en) Method of growing large Pb1-x -Snx -Te single crystals where 0<X<1
JP2709272B2 (en) Measurement method of crystallization rate in sublimation method
JP2814796B2 (en) Method and apparatus for producing single crystal
WO2024027072A1 (en) Method for preparing compound crystal via melt migration under supergravity
JP3569954B2 (en) Semiconductor crystal growth method
JP2943419B2 (en) Single crystal growth method
JPH01179796A (en) Seed crystal for producing non-dislocation gaas single crystal
JP3125313B2 (en) Single crystal growth method
US5007979A (en) Method of fabricating GaAs single crystal
JPH0341432B2 (en)
JPH02217393A (en) Production of compound semiconductor single crystal
JPH06345581A (en) Production of multielement compound mixed single crystal
JPH0798715B2 (en) Method for producing silicon single crystal
JPH0633219B2 (en) Method and apparatus for producing single crystal
KR930000903B1 (en) Temperature control method of low temperature part in simple crystal manufacture of iii-v compound semiconductor
JP2856458B2 (en) Method for manufacturing compound semiconductor crystal
Nelson et al. Advances In (Hg, Cd) Te Materials Technology

Legal Events

Date Code Title Description
LAPS Cancellation because of no payment of annual fees