JPH03223200A - Production of gaas single crystal - Google Patents

Production of gaas single crystal

Info

Publication number
JPH03223200A
JPH03223200A JP1654090A JP1654090A JPH03223200A JP H03223200 A JPH03223200 A JP H03223200A JP 1654090 A JP1654090 A JP 1654090A JP 1654090 A JP1654090 A JP 1654090A JP H03223200 A JPH03223200 A JP H03223200A
Authority
JP
Japan
Prior art keywords
melt
gaas
crystal
zone
quartz
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP1654090A
Other languages
Japanese (ja)
Inventor
Seiji Mizuniwa
清治 水庭
Toru Kurihara
徹 栗原
Konichi Nakamura
中村 渾一
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Hitachi Cable Ltd
Original Assignee
Hitachi Cable Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Hitachi Cable Ltd filed Critical Hitachi Cable Ltd
Priority to JP1654090A priority Critical patent/JPH03223200A/en
Publication of JPH03223200A publication Critical patent/JPH03223200A/en
Pending legal-status Critical Current

Links

Landscapes

  • Crystals, And After-Treatments Of Crystals (AREA)

Abstract

PURPOSE:To eliminate the wetting of a quartz boat and a crystal and uniformize the concentrations of dopant Cr and residual Si by using a horizontal zone- melting method concentrating spontaneously migrated oxygen into a melt zone, foregoingly to the crystal growth. CONSTITUTION:The objective GaAs single crystal is grown by a following method: (a) A quartz boat 1 containing a seed crystal 2, Ga or GaAs polycrystalline substance and dopants Cr and As 10 are received in a quartz ample 12; (b) Whole of the quartz ample 12 is vacuum-treated with heating; (c) The As 10 and the quartz boat 12 are heated and Ga is made to react with As vapor or GaAs polycrystalline substance, is melted to form GaAs melt 3 in the quartz boat 1; (d) The system is held in the state for an enough time to sufficiently dissolve residual oxygen or oxide in the quartz ample 12 into the melt 3; (e) Zone of the melt is transferred to the seed crystal 2 to narrow breadth of the melt zone to a fixed value and the melt 3 is cooled at a cooling rate of <=80mm/hr to solidify; (f) The seed is attached to the melt at the seed crystal 2 side in attaining to a fixed melt zone breadth X and (g) the melt zone is transferred to a reverse direction of the seed crystal 2 under keeping the melt zone breadth X.

Description

【発明の詳細な説明】[Detailed description of the invention]

、−産業上の利用分野つ 本発明は、横型ゾーンメルト法による不純物(Cr、S
i)濃度の均一な半絶縁性GaAs単結晶の製造方法に
関するものである。 [従来の技術] ボート法による半絶縁性GaAs単結晶は、通常、水平
ブリッジマン法(HB法)および温度傾斜法(GF法)
によって製造されている。これらの方法は、−旦、ボー
ト内の種結晶を除<GaAs全体を融液にし、シード付
けを行った後、シード付は部分から結晶化させる、いわ
ゆるノーマルフリージングによる。 ところで、GaAs単結晶の半絶縁性を実現するために
、一般には、不純物であるCrや0をドープすることが
行われる。ところか、上述した方法はノーマルフリー/
フグによるため、特に偏析係数の小さいCrの場合は結
晶の長さ方向に沿って極端な濃度の変化をもたらす(例
えば固化率0゜9まてて10〜100倍変化する)。 これに対して、残留不純物であるSiの場合は5倍程度
変化する。すなわち、石英ボートから混入する残留Si
a度に関しては、通常の偏析現象を伴わない。残留5i
7IIは、(1)式に示す化学反応により融液中の酸素
濃度に対応して決定される。 5ift−3i(in GaAs melt)+20 
(in GaAs melt)−(1)k(定数)= 
[S i ][0]” つまり、GaAs融液中の酸素濃度が高ければSi濃度
が低減し、逆に酸素濃度が低ければ、Si濃度が高くな
る。このことは、0をドープすることで残留Si濃度を
減らすことができることを意味する。、故に、HB法、
GF法においては、融液中の酸素も結晶の長さ方向に沿
って濃度の変化をもたらし後端に酸素が凝縮されるため
、偏析係数が約014にもかかわらず、5i711度は
結晶後端程低くなる。 そこで、上記偏析による不純物濃度の変化を緩和する目
的で水平ゾーンメルト法が考えられている(参考、特公
昭49−14382号公報)。ゾーンメルト法は一般的
には、ポートもしくは結晶の長さよりも極力小さい幅の
メルトゾーンを設け、このゾーン幅を保ったまま一旦結
晶後端から種結晶方向へ移動させた後、シード付けを行
い、その後シード付は部から後端方向へ向かって移動さ
せて単結晶を製造している。この方法は、通常の偏析を
生じる不純物(例えばCr)であれば、メルト幅X、結
晶長さQとすればシード付は部からQ−xの部分まで、
すなわちメルト幅に相当する長さの結晶後端を残した部
分までの不純物濃度を一定に保つことができる。 [発明が解決しようとする課題] さて、Crトープ半絶縁性結晶の電気特性を一定に保つ
にはCr濃度たけてなく残留Si濃度も一定に保つ必要
があるが、前述の通常のゾーンメルト法によると、メル
トゾーン幅を狭くしているため、融液中に酸素を溶かし
込んでも、種結晶部から成長するにつれて、この成長し
た単結晶部に偏析により酸素か取り込まれ、しかも、後
端方向へ移動する融液中への新たな供給が期待できない
ため、結晶後端へ行くに従って酸素濃度が低くなり、逆
にSiJ度か高くなってしまう。 つまり、Cr濃度は均一に出来ても残留Si濃度か結晶
の長さ方向に沿って不均一な結晶しか得られないことに
なる。 そこで、このような欠点を解決するために、故意に酸素
または酸化物をドープすると共に、種結晶を除いたボー
ト内のGaAs全体を幅広なメルトゾーン内に入れて、
GaAs全体を融液にする。 そして、その融液状態で所定時間放置し、その後、種結
晶とは反対側から徐々にメルトゾーン幅を狭くして行く
ことにより融液を固化させ、種結晶側て所定のメルトゾ
ーン幅となった時にシード付けを行い、その後、ゾーン
幅を保ったまま種結晶の反対方向へメルトゾーンを移動
させて結晶固化させる単結晶の製造方法が提案されてい
る(特開昭64−65099号公報)。 しかしながら、この方法は、ゾーン幅を狭くすればする
程、シード付は時の融液中に酸素が濃縮され過ぎ、ポー
トと結晶後端とが焼き付いてしまう現象、いわゆる「ぬ
れ」が新たに発生し、石英ボートを破壊しなければ、単
結晶を取り出すことができな(なってしまう。通常、石
英ボートは3〜5回再使用が可能であるから、「ぬれ」
か発生する上記の方法は石英ボートの寿命の点からはな
はだ不経済であるという欠点を有する。 本発明の目的は、前記した従来の横型ゾーンメルト法の
欠点を解消し、石英ボートと結晶との「ぬれ」がなく、
しかもCr等の添加不純物のみならず、残留Si濃度も
結晶の長さ方向に沿って均一な半絶縁性GaAs単結晶
の製造方法を提供することにある。 [課題を解決するための手段] 本発明は、石英ボートを用いて故意に酸素をドープしな
いCrドープ半絶縁性GaAs単結晶を製造する方法に
おいて、石英アンプル内の一端側に種結晶、原料として
のGa或はGaAs多結晶並びにドーパントとしてのC
rを入れた石英ボートを配置し、前記石英アンプル内の
他端側にAsを配置した後、前記石英アンプル全体を加
熱しながら真空引き処理し、その後、前記石英アンプル
内圧力かほぼGaAsの解離圧(1atm)になるよう
に前記Asを加熱すると共に、前記種結晶を除く部分の
前記石英ボートをメルトゾーン内にいれて均一に加熱し
て、前記Gaと前記A sの蒸気を合成反応させること
により、若しくは前記GaAs多結晶を融解することに
より、前記石英ボート内にGaAs融液を形成する。 そして、この石英ボート内にGaAs融液を形成してい
る状態で、前記真空引き処理では除去できずに前記石英
アンプル内に残存している酸素もしくは酸化物を前記G
aAs融液中に十分溶解させるのに十分な時間放置し1
、その後、前記GaAs融液を形成する前記メルトゾー
ンが所定幅に狭められるまで前記種結晶の反対側から種
結晶に向けてメルトゾーンを移動することにより、前記
GaAs@液を80mm/hr以下の速度で徐々に多結
晶として冷却固化させて、融液中に溶け込んでいた酸素
をメルトゾーン中に濃縮し、前記種結晶側で所定のメル
トゾーン幅になったときにノート付けを行い、その後、
前記メルト・ノーンのゾーン幅を保持した状態で該メル
トゾーンを前記種結晶の反対方向へ移動させてGaAs
単結晶を成長させるようにしたものである。 嘗作用] 本発明方法が特開昭64−65099号公報記載の発明
と異なる点は、公報記載の発明では故意に酸素または酸
化物を添加するのに対し、本発明では酸素または酸化物
を添加せずに、石英ボートを入れた石英アンプルを封じ
切る前に行われる真空引き処理では完全に排除できずに
、石英アンプル内壁面1五英ボート+ GaAs原料表
面等に自然に存在している酸素をメルトゾーン中に濃縮
させるようにした点である。故意に酸素をドープすると
、前述した様に、メルトゾーン幅を狭くするにつれて酸
素が濃縮され過きて「ぬれ、が発生しやすくなるからで
ある。 なお、アンプル内の真空引き処理は、通常、温度か13
0〜2500C,圧力が5 X 1’O−’torrで
、少なくとも1時間行われる。温度が1500Cより低
いと、アンプル内に吸着している水分を功¥よく排除で
きす、また温度が250°Cより高くなるとアンプル内
雰囲気圧力を制御するために入れられたAsの損失か増
大するため、加熱温度は150〜250’cが望ましい
。 また、−旦ボート内のGaAs全体を融液とした後、ボ
ート後端側から固化させる速度は、偏析で融液中の酸素
を濃縮させる必要があるため、少なくとも、80mm/
hよりも遅い速度で固化させなければならない。これ以
上速いと、偏析効果が少なくなり、酸素が融液中に濃縮
されないことから、Si濃度を均一にする効果がなくな
ってしまい、しかも結晶中のSi濃度が高くなり、半絶
縁性でなくなってしまうからである。 [実施例。 以下、本発明の好適実施例を添付図面を用いて説明する
。 第1図〜第4図はそれぞれ本実施例のG a 、A、 
s単結晶の製造工程を示す図である。 第1図〜第3図において、1は石英ボート、2はGaA
s種結晶、3はG a A S融液、4はGaA s単
結晶または多結晶を示し、T、〜T3は石英ボートlの
位置に対応した炉内の温度分布を示し、M3.M3は温
度分布または炉の移動方向を示す。 A li分布T、−T3内に入る領域かメルトゾーンで
あり、またその幅かメルトゾーン幅となる。 第4図において、12は石英ボート1及び雰囲気内圧力
を約1 atmに保つためのAs1Oを収容した石英ア
ンプル、14は水平ゾーンメルト装置、14aは高温炉
、14bは低温炉、16はメルト形成部である。 まず、一方のアンプル片12aにGaAs種結晶2.G
aAs原t4原人4た石英ボート1と拡散障壁17とを
セットし、アンプル片12aの開口部とAs1Oを入れ
た他方のアンフル片+2bの開口部とを−Fね合わせて
、その中央部12Cで溶接する。 次に、一方のアンプル片12aの端部の小径開口部12
 dに真空ポンプ(図示せず)をつないておき、アンプ
ル12全体を150〜250°Cの温度で1時間程度加
熱し、その1品度を保ちながら少なくとも1時間、3 
X I O−’torr以下て真空引き処理する。 この後、小径開口部12dは封し切られ、アンプル12
の内壁面に吸着していた水分や酸素、及びGaAs原料
の表面、例えばGaAs、GaAsの表面に存在するG
 a tol、  A S 208等の酸化物のほとん
どを排除した密封アンプル12が準備される。 しかし、ここで重要なことは、上述の真空引き処理では
、アンプル12内に存在する酸素及び酸化物を完全に除
去することは不可能であり、アンプル12内には、微量
の酸素又は酸化物か残在していることである。なお、第
4図に示した温度分布については、後に具体的な実施例
と共に説明する。 上記の如く密封アンプル12を準備した後、第1図に示
すように石英ボート1には、石英ボート1の一端1aに
設けられた種結晶2から他端1bにかけて図示の1島度
分布T、て示すように、GaAsか融点以上(1245
〜1255°C好ましくよ1250’Cンにされて融液
3とされる。このとき、上述の石英アンプル12内、例
えばアンプル内壁面1石英ボート内、GaAs融液表面
には、真空引き処理では完全に排除できなかった酸素。 酸化物か存在している。そこで本実施例においては、自
然に混入したこの微量な酸素、酸化物を融液3内に溶か
し込むために、融液3の状態で、少なくとも30分以上
好ましくは5時間程度放置する。 次に第2図に示すように、それまでの温度分布T、から
図示の矢印x42で示すように、後端1b側から種結晶
2に向かってメルトゾーン幅を挟めること:こより、1
余々に炉の温度を下げて(結晶温度で4000〜120
00C)いく。このようにして1、温度分布T2て示す
ように後端1bから種結晶2近くまてG a As融液
3を固化させて多結晶4bとしていく。そして、種結晶
2側の融液3のメルト/−7幅か所定幅Xとtっだとき
、/−ト付けを行って種結晶2から単結晶を形成してい
く。 即ち、第3図に示すように種結晶2とプ対方向こ図示の
温度分布T3となるように、前記メルトゾーン幅Xを保
持しつつメルトゾーンを移動させることにより、その融
液3を矢印M、て示すように移動しなから長さQの単結
晶4aを形成していく。このメルトゾーン幅Xは長さに
対してx/Q=1/3〜1/20、好ましくはl/10
とする。 また、移動速度は4〜15mm/hとする。 このようにGaAs単結晶を形成することで、Sia度
および、ドーパントとしてCrを用いた場合のCr濃度
が種結晶2から固化率(1−x/Q)の間で一定の分布
となり、且つSi及びCrの不純物のls度変化はその
固化率(1−x/12)間ては±50%以下となる。 以下、本発明の具体的実施例および比較例とを併せて説
明する。 (実施例1) 第4図に示すように、一方の石英アンプル片12aに、
種結晶2.Ga2,500g、  ドーパントとしての
Cr500rr+9を乗せた石英ボート1と、拡散障壁
17とをセットし、他方の石英アンプル片+ 2 bに
As 10を2.790gを入れ、これらの開口部を重
ね合わせ、その中央部12cて溶接する。 次に、アンプル12全体を200’Cに加熱して1時間
保持した後、アンプル片12 a (D小径開口部12
dにっないた真空ポンプ(図示せず)により5 X 1
0−”Torr以下で、1時間真空引きした後、小径開
口部12dを封じ切り、密封された石英アンプル12を
準備した。このアンプル12を水平ゾーンメルト装置1
4にセットした後、高温炉14aでは融液形成部16の
温度t0を1,250’C1それ以外の温度t1は1,
2000Cに調整した。低温炉14bは、アンプル12
内のAs圧をI atmに保つため温度t、を約600
’Cに調整した。 次に、成長開始前に種結晶2を除くポート1の全体温度
, -Industrial application field The present invention is directed to the removal of impurities (Cr, S) by the horizontal zone melting method.
i) A method for producing a semi-insulating GaAs single crystal with uniform concentration. [Prior art] Semi-insulating GaAs single crystals produced by the boat method are usually manufactured using the horizontal Bridgman method (HB method) and the temperature gradient method (GF method).
Manufactured by. These methods are based on so-called normal freezing, in which the seed crystal in the boat is removed, the entire GaAs is made into a melt, seeding is performed, and the seeding is crystallized from a portion. By the way, in order to realize semi-insulating properties of GaAs single crystal, it is generally doped with impurities such as Cr or 0. However, the above method is normally free/
Due to the pufferfish, especially in the case of Cr having a small segregation coefficient, the concentration changes extremely along the length direction of the crystal (for example, the concentration changes by a factor of 10 to 100 at a solidification rate of 0°9). On the other hand, in the case of Si, which is a residual impurity, the change is about five times. In other words, residual Si mixed in from the quartz boat
Regarding a degree, there is no usual segregation phenomenon. residual 5i
7II is determined according to the oxygen concentration in the melt by the chemical reaction shown in equation (1). 5ift-3i(in GaAs melt)+20
(in GaAs melt) - (1) k (constant) =
[S i ] [0]” In other words, if the oxygen concentration in the GaAs melt is high, the Si concentration will decrease, and conversely, if the oxygen concentration is low, the Si concentration will increase. This means that the residual Si concentration can be reduced. Therefore, the HB method
In the GF method, the concentration of oxygen in the melt also changes along the length of the crystal, and oxygen is condensed at the rear end of the crystal. It becomes moderately low. Therefore, a horizontal zone melting method has been considered for the purpose of alleviating the change in impurity concentration due to the above-mentioned segregation (see Japanese Patent Publication No. 14382/1982). In general, in the zone melt method, a melt zone with a width as small as possible than the length of the port or crystal is created, and the melt is moved from the rear end of the crystal toward the seed crystal while maintaining this zone width, and then seeded. After that, the seeding device is moved from the part toward the rear end to produce a single crystal. In this method, if it is an impurity that normally causes segregation (for example, Cr), if the melt width is X and the crystal length is Q, then the seeding will be from part to Q-x.
In other words, the impurity concentration can be kept constant up to the portion where the trailing end of the crystal is left with a length corresponding to the melt width. [Problems to be Solved by the Invention] Now, in order to keep the electrical properties of the Cr-topped semi-insulating crystal constant, it is necessary to keep the Cr concentration constant and the residual Si concentration constant, but the above-mentioned normal zone melt method According to the authors, because the melt zone width is narrow, even if oxygen is dissolved into the melt, as it grows from the seed crystal, oxygen is taken in by segregation into the grown single crystal, Since no new supply can be expected into the melt moving toward the crystal, the oxygen concentration decreases toward the rear end of the crystal, and conversely, the SiJ degree increases. In other words, even if the Cr concentration can be made uniform, only the residual Si concentration or the non-uniform crystal along the length direction of the crystal can be obtained. Therefore, in order to solve these drawbacks, the GaAs in the boat, excluding the seed crystal, was intentionally doped with oxygen or an oxide, and the entire GaAs in the boat was placed in a wide melt zone.
The entire GaAs is made into a melt. The melt is left in the melt state for a predetermined period of time, and then the melt zone is solidified by gradually narrowing the melt zone width from the side opposite to the seed crystal, until the melt zone reaches the predetermined width on the seed crystal side. A method for producing a single crystal has been proposed in which seeding is performed at the time of melting, and then the melt zone is moved in the opposite direction of the seed crystal while maintaining the zone width to solidify the crystal (Japanese Unexamined Patent Publication No. 64-65099). . However, with this method, the narrower the zone width, the more oxygen is concentrated in the melt during seeding, and a phenomenon called "wetting" occurs, where the port and the rear end of the crystal are sewn together. However, the single crystal cannot be taken out without destroying the quartz boat.Usually, the quartz boat can be reused 3 to 5 times,
The above-mentioned method of generating quartz boats has the disadvantage of being very uneconomical in terms of the life of the quartz boat. The purpose of the present invention is to eliminate the drawbacks of the conventional horizontal zone melting method described above, and to eliminate "wetting" between the quartz boat and the crystal.
Moreover, it is an object of the present invention to provide a method for manufacturing a semi-insulating GaAs single crystal in which not only the added impurities such as Cr but also the residual Si concentration are uniform along the length direction of the crystal. [Means for Solving the Problems] The present invention provides a method for manufacturing a Cr-doped semi-insulating GaAs single crystal without intentionally doping oxygen using a quartz boat, in which a seed crystal is placed on one end side of a quartz ampoule as a raw material. Ga or GaAs polycrystals and C as a dopant
After placing a quartz boat containing r and placing As on the other end side of the quartz ampoule, the entire quartz ampoule is heated and vacuumed, and then the internal pressure of the quartz ampoule is approximately equal to the dissociation of GaAs. The As is heated to a pressure (1 atm), and the quartz boat excluding the seed crystal is placed in a melt zone and heated uniformly to cause a synthetic reaction between the Ga and the As vapor. or by melting the GaAs polycrystal, forming a GaAs melt in the quartz boat. Then, while the GaAs melt is formed in the quartz boat, oxygen or oxides remaining in the quartz ampoule that cannot be removed by the vacuum treatment are removed by the G
Leave it for a sufficient time to fully dissolve it in the aAs melt1.
, Then, by moving the melt zone from the opposite side of the seed crystal toward the seed crystal until the melt zone forming the GaAs melt is narrowed to a predetermined width, the GaAs@ liquid is heated at a rate of 80 mm/hr or less. The melt is gradually cooled and solidified as polycrystals at a high speed, and the oxygen dissolved in the melt is concentrated in the melt zone. When a predetermined melt zone width is reached on the seed crystal side, a note is attached, and then,
While maintaining the zone width of the melt zone, the melt zone is moved in a direction opposite to the seed crystal, and the GaAs
It is designed to grow a single crystal. Effect] The difference between the method of the present invention and the invention described in JP-A No. 64-65099 is that oxygen or oxides are intentionally added in the invention described in the publication, whereas in the present invention, oxygen or oxides are intentionally added. The vacuum treatment performed before sealing the quartz ampoule containing the quartz boat cannot completely eliminate the oxygen that naturally exists on the inner wall surface of the quartz ampoule. is concentrated in the melt zone. This is because, as mentioned above, if oxygen is intentionally doped, as the melt zone width is narrowed, oxygen becomes too concentrated and "wetting" is likely to occur. Temperature 13
0-2500C and a pressure of 5 x 1'O-'torr for at least 1 hour. When the temperature is lower than 1500°C, the water adsorbed in the ampoule can be effectively removed, and when the temperature is higher than 250°C, the loss of As introduced to control the atmospheric pressure inside the ampoule increases. Therefore, the heating temperature is preferably 150 to 250'C. In addition, once the entire GaAs in the boat has been made into a melt, the speed at which it is solidified from the rear end of the boat is at least 80 mm/mm, since it is necessary to concentrate the oxygen in the melt due to segregation.
It must be allowed to solidify at a rate slower than h. If it is faster than this, the segregation effect will be reduced and oxygen will not be concentrated in the melt, so the effect of making the Si concentration uniform will be lost, and the Si concentration in the crystal will increase, making it no longer semi-insulating. This is because it will be put away. [Example. Preferred embodiments of the present invention will be described below with reference to the accompanying drawings. FIGS. 1 to 4 show G a , A, and A of this example, respectively.
It is a figure showing the manufacturing process of s single crystal. In Figures 1 to 3, 1 is a quartz boat, 2 is a GaA
s seed crystal, 3 indicates GaAs melt, 4 indicates GaAs single crystal or polycrystal, T, to T3 indicate the temperature distribution in the furnace corresponding to the position of quartz boat l, M3. M3 indicates the temperature distribution or the direction of movement of the furnace. The region falling within the A li distribution T, -T3 is the melt zone, and its width is the melt zone width. In FIG. 4, 12 is a quartz boat 1 and a quartz ampoule containing As1O for maintaining the atmospheric pressure at about 1 atm, 14 is a horizontal zone melting device, 14a is a high temperature furnace, 14b is a low temperature furnace, and 16 is a melt forming Department. First, a GaAs seed crystal 2. G
Set the quartz boat 1 containing the As original t4 and the diffusion barrier 17, align the opening of the ampoule piece 12a with the opening of the other ampoule piece +2b containing As1O, and place the central part 12C. Weld with. Next, the small diameter opening 12 at the end of one ampoule piece 12a
Connect a vacuum pump (not shown) to d, heat the entire ampoule 12 at a temperature of 150 to 250°C for about 1 hour, and heat it for at least 1 hour while maintaining its quality.
Vacuum treatment is performed below XIO-'torr. After that, the small diameter opening 12d is sealed off, and the ampoule 12
Moisture and oxygen adsorbed on the inner wall surface of the GaAs raw material, such as GaAs,
A sealed ampoule 12 is prepared which excludes most of the oxides such as ATOL and AS 208. However, what is important here is that it is impossible to completely remove the oxygen and oxides present in the ampoule 12 with the above-mentioned evacuation process; or that it still exists. The temperature distribution shown in FIG. 4 will be explained later along with specific examples. After preparing the sealed ampoule 12 as described above, as shown in FIG. As shown, GaAs has a melting point or higher (1245
The melt 3 is heated to 1255°C, preferably 1250°C. At this time, oxygen that could not be completely removed by the vacuum treatment is present in the quartz ampoule 12, for example, in the ampoule inner wall surface 1, in the quartz boat, and on the surface of the GaAs melt. Oxides are present. Therefore, in this embodiment, in order to dissolve the naturally mixed trace amount of oxygen and oxides into the melt 3, the melt 3 is left to stand for at least 30 minutes or more, preferably for about 5 hours. Next, as shown in FIG. 2, from the temperature distribution T up to that point, the width of the melt zone can be sandwiched from the rear end 1b side toward the seed crystal 2, as shown by the arrow x42.
Lower the furnace temperature too much (crystal temperature: 4000~120)
00C) Go. In this way, the GaAs melt 3 is solidified from the rear end 1b to the vicinity of the seed crystal 2 to form a polycrystal 4b as shown by temperature distribution T2. Then, when the melt 3 on the side of the seed crystal 2 reaches a width of /-7 or a predetermined width X, /-t is attached to form a single crystal from the seed crystal 2. That is, as shown in FIG. 3, by moving the melt zone while maintaining the melt zone width X, the melt 3 is moved in the direction of the arrow so that the temperature distribution T3 as shown in the figure is obtained in the direction opposite to the seed crystal 2. As shown by M, a single crystal 4a of length Q is formed while moving. This melt zone width X is x/Q=1/3 to 1/20, preferably l/10 to the length.
shall be. Moreover, the moving speed is 4 to 15 mm/h. By forming a GaAs single crystal in this way, the SiA degree and the Cr concentration when Cr is used as a dopant have a constant distribution between the seed crystal 2 and the solidification rate (1-x/Q), and the Si The change in degree of impurity of Cr and Cr is ±50% or less between the solidification rates (1-x/12). Hereinafter, specific examples of the present invention and comparative examples will be described together. (Example 1) As shown in FIG. 4, one quartz ampoule piece 12a has
Seed crystal 2. A quartz boat 1 carrying 2,500 g of Ga and 500 rr of Cr as a dopant + 9 and a diffusion barrier 17 were set, 2.790 g of As 10 was put into the other quartz ampoule piece + 2 b, and these openings were overlapped. The central portion 12c is welded. Next, after heating the entire ampoule 12 to 200'C and holding it for 1 hour, the ampoule piece 12 a (D small diameter opening 12
5 x 1 by vacuum pump (not shown)
After evacuation for 1 hour at 0-" Torr or less, the small diameter opening 12d was sealed off to prepare a sealed quartz ampoule 12. This ampoule 12 was transferred to the horizontal zone melting apparatus 1
4, the temperature t0 of the melt forming part 16 in the high temperature furnace 14a is set to 1,250'C1, and the other temperature t1 is set to 1,250'C1.
Adjusted to 2000C. The low temperature furnace 14b has an ampoule 12
In order to maintain the As pressure inside the tank at I atm, the temperature t was set to about 600
Adjusted to 'C. Next, before starting growth, the overall temperature of port 1 excluding seed crystal 2 is

【6を1.250°Cに上げてGaAs融l夜3を形成
させた後、この状態で5時間放置し、その後、後端側か
ら全体温度t6を保持したメルトゾーン幅を狭めて行っ
て炉の温度を徐々に下げることにより、ノーマルフリー
ンングめ形て2゜mm/hの速度で多結晶状に固化させ
た。たたし、種結晶近傍の融液、長さ60mmは残した
。 次にシード付けを行った後、5 m m / hの速度
でメルトゾーン幅を保持したまま、メルト装置14ある
いはアンプル12のいずれかを移動させることにより、
前記ゾーンを反対側へ移動して最終的には600mmの
単結晶を成長させて、その後100 deg/hて室温
まで冷却した。 結晶とボートとの間に「ぬれ」は起こっておらず、また
結晶の前端および後端をfloo1面でスライスし、研
磨した後、溶融KOHによる工、チングにより、転位密
度(E D P :Etch Pit Density
)を調べた結果、FDP≦5,000cm−’の良好な
結晶であった。 この単結晶の長さ方向のCrおよび5laIjを、CD
MSで測定した結果を第5図の濃度分布56に示す。C
rLfa度分布5は、約54cm(y−1−x/Q=0
.9)まてほぼ一定濃度40X1016cm−3を保ち
、また同様Si濃度分布6も約54cm(it =0.
9)までほぼ一定ts度0.6X10 ”c m〜3を
保つと共に全体の不純物量(Cr−81)に対して9=
0.9の間では50%以下となった。 (実施例2) Crドープしないアンドープ半絶縁性結晶を実施例1と
同様に製造したところ、s1濃度分布は実施例1と同じ
結果が得られた。なお、「ぬれ」の発生はなかった。 (実施例3) 実施例1において、融液をポート後端から多結晶状に固
化させる速度を80mm/hとしたとき、Si4度はg
=o、Iで0.8X I O”cmg=0.9で0.9
x 10”cm−3であった。「ぬれ−の発生はなかっ
た。 (実施例4) 実施例1において、融液をポート後端から多結晶状1こ
固化させる速度を50mm/hとしたとき、S”rI度
はg=(’)、1で0.6X1016cmg−09で0
.7x 10”cm−’であった。:ぬれ−はなかった
。 (比較例1) 実施例1と同様のアンプルを準備し、結晶長600mm
に対し、メルトゾーン幅か60mmになるようメルトゾ
ーン幅以外の部分の融液全体を急激に温度を下げて一度
に固化させた。 次に、シード付けを行い、5mm/hの速度で反対側へ
移動させることにより、最終的にハロ00mmの単結晶
を成長させた。その後、1100de/hで室温まで冷
却した。 結晶とポートとの「ぬれ」は発生しなかったが、結晶を
取り出して特性測定したところ、実施例1の結晶と比較
して転位密度およびCra度の際立った差は見られなか
ったが、Si7$iは、結晶先端では2.  OX 1
016cm−3であり、第5図の分布7が示すように後
端へ行くに従って更に高(なり、g=09ては10X 
1016cm−3でアラた。そのため結晶の長さ方向に
おいて比抵抗値に差が出ることが分かる。 (比較例2) 実施例1と同じ条件で、但し、G a 、A s全体か
融液状態での放置時間を30分間にしたところ、/−ド
付部0. 8x l 016cm−3に対し、約54c
m(g=0.9)成長した結晶のSi濃度は約15倍の
1.2XIO”cm−3になっていた。なお、ぬれ号の
発生はなかった。 また、放置時間が30分間以下の場合は、それ以上の濃
度差か現れることがわかった。 (比較例3) GaAs@1fflをボート後端から固化させる速度を
100mm/hにした以外は実施例1と同じ方法で結晶
成長させたところ、/−ト付は部のS】LRV l 、
  OX 10 ”Cm−’か、実施例1に対し、約1
.5倍になり、得られた結晶は、一応手絶縁性結晶であ
ったか、アニール後の特性は、不安定な部分か存在した
。「ぬれヨの発生はなかった。 (比較例4) G a A S融液をボート後端から固化させる速度を
150mm/hにした以外は、実施例1と同し方法で結
晶成長させたところ、/−ト付は部のS濃度か約2倍以
上のl 、  5×1016c m−3になり、また結
晶後端(g=0.9)では5.0X10”cm−3にな
り、得られた結晶は長さ方向のほぼ全体にわたり半絶縁
性ではなくなってしまった。 「ぬれ」の発生はなかった。 (比較例5) 実施例1において、石英ボートにGat0350mgを
入れて成長させたところ、Si濃度はg=09までほぼ
一定濃度0.  I X 10 ”c m−’となった
が、結晶とボートとか全体的に焼き付いてしまった。 (比較例6) 実施例1において、真空引き処理するときの加熱mWを
120’Cにしたところ、Si濃度はg−09までほぼ
一定濃度0.2X1018cmとなったか、結晶とボー
トとか全体的に焼き付いてしまった。 丁発明の効果1 以上説明してきたように、本発明によれば、次の如き優
れた効果を発揮する。 (1)故意に酸素または酸化物をドープをすることなく
、自然にl凡人している酸素を結晶成長を行う前のゾー
ンメルト甲に濃縮するようにしたので、/−ド付は部か
ら結晶後端近傍の位置まで、Crおよび残留S1のla
度がほぼ一定で、しかもボートと結晶との焼付きが全く
ないGaAs半絶縁性結晶を得ることかできる。 (2)また、同時に抵抗値等の特性のばらつきがなくな
り、半絶縁性結晶にとって重要なウェハ面内の高抵抗性
を一様にすることができる。
[6] was raised to 1.250°C to form GaAs melt 3, left in this state for 5 hours, and then the width of the melt zone was narrowed from the rear end side while maintaining the overall temperature t6. By gradually lowering the temperature of the furnace, the mixture was solidified into a polycrystalline form at a rate of 2 mm/h using normal freezing. However, a portion of the melt near the seed crystal with a length of 60 mm was left. Next, after seeding, by moving either the melting device 14 or the ampoule 12 while maintaining the melt zone width at a speed of 5 mm / h,
The zone was moved to the opposite side to finally grow a single crystal of 600 mm, and then cooled to room temperature at 100 deg/h. There is no "wetting" between the crystal and the boat, and after slicing and polishing the front and rear ends of the crystal with one surface of floo, the dislocation density (E D P : Etch Pit Density
) was found to be a good crystal with FDP≦5,000 cm-'. Cr and 5laIj in the length direction of this single crystal are CD
The results measured by MS are shown in concentration distribution 56 in FIG. C
The rLfa degree distribution 5 is approximately 54 cm (y-1-x/Q=0
.. 9) The concentration is maintained at a nearly constant level of 40 x 1016 cm-3, and the Si concentration distribution 6 is also approximately 54 cm (it = 0.
9) while maintaining a nearly constant ts degree of 0.6 x 10" cm ~ 3 and 9= for the total impurity amount (Cr-81)
Between 0.9 and 50% or less. (Example 2) When an undoped semi-insulating crystal not doped with Cr was produced in the same manner as in Example 1, the same result as in Example 1 was obtained for the s1 concentration distribution. Note that "wetting" did not occur. (Example 3) In Example 1, when the speed at which the melt is solidified into a polycrystalline form from the rear end of the port is 80 mm/h, the Si4 degree is g
= o, I is 0.8X I O” cmg = 0.9 is 0.9
x 10"cm-3. No wetting occurred. (Example 4) In Example 1, the speed at which the melt solidified into a polycrystalline form from the rear end of the port was set to 50 mm/h. When, S''rI degree is g=('), 1 is 0.6X1016 cmg-09 is 0
.. 7 x 10"cm-': There was no wetting. (Comparative Example 1) An ampoule similar to Example 1 was prepared, and the crystal length was 600 mm.
On the other hand, the temperature of the entire melt outside the melt zone was rapidly lowered so that the melt zone width was 60 mm, and the entire melt was solidified at once. Next, by seeding and moving to the opposite side at a speed of 5 mm/h, a single crystal with a halo of 00 mm was finally grown. Thereafter, it was cooled to room temperature at 1100 de/h. Although "wetting" between the crystal and the port did not occur, when the crystal was taken out and its properties were measured, no significant difference in dislocation density or Cra degree was observed compared to the crystal of Example 1, but Si7 $i is 2. OX1
016 cm-3, and as distribution 7 in Fig. 5 shows, it becomes even higher toward the rear end (g = 09, 10X
It was 1016cm-3. Therefore, it can be seen that there is a difference in the specific resistance value in the length direction of the crystal. (Comparative Example 2) Under the same conditions as in Example 1, except that the entire G a and A s were left in the melted state for 30 minutes, the /- marked portion was 0. Approximately 54c for 8x l 016cm-3
m (g = 0.9), the Si concentration of the crystal grown was approximately 15 times as high as 1.2 (Comparative Example 3) Crystal growth was performed in the same manner as in Example 1, except that the rate at which GaAs@1ffl was solidified from the rear end of the boat was 100 mm/h. However, the part with /-g is S】LRV l,
OX 10 "Cm-' or about 1 for Example 1
.. The crystal size was increased to 5 times, and the obtained crystal was probably a hand-insulating crystal, or the characteristics after annealing were unstable. "No wetting occurred. (Comparative Example 4) Crystal growth was performed in the same manner as in Example 1, except that the speed at which the G a S melt was solidified from the rear end of the boat was 150 mm/h. , / - The S concentration at the end is approximately twice as high as l, 5 x 1016 cm -3, and at the rear end of the crystal (g = 0.9) it is 5.0 x 10" cm -3, resulting in a The resulting crystal is no longer semi-insulating over almost its entire length. There was no occurrence of "wetting". (Comparative Example 5) In Example 1, when 350 mg of Gat0 was placed in a quartz boat and grown, the Si concentration was almost constant until g=09. I x 10 ``cm-'', but the crystal and boat were completely burned. (Comparative Example 6) In Example 1, when the heating mW during vacuuming treatment was set to 120'C. , the Si concentration was almost constant up to g-09 of 0.2 x 1018 cm, or the crystal and boat were completely burned out. Effects of the Invention 1 As explained above, according to the present invention, the following are achieved. (1) Without intentionally doping oxygen or oxides, naturally occurring oxygen is concentrated in the zone melt shell before crystal growth. /- indicates the la of Cr and residual S1 from the part to the position near the rear end of the crystal.
It is possible to obtain a GaAs semi-insulating crystal which has a substantially constant temperature and is completely free from seizure between the boat and the crystal. (2) At the same time, variations in characteristics such as resistance values are eliminated, and high resistance within the wafer surface, which is important for semi-insulating crystals, can be made uniform.

【図面の簡単な説明】[Brief explanation of drawings]

第1図〜第4図は本発明のGaAs単結晶の製造方法の
実施例を示す概略工程図であって、第1図はG a A
s全体を融液状態で所定時間放置している説明図、第2
図は種結晶の反対側から所定速実以下の速度でf余ケに
冷却固化させている説明図、第3図はメルトゾーン幅を
保持したまま種結晶の叉対方同ヘメルトゾーンを移動さ
せて固化させて(・る説明図、第4図は本実施例による
か軸方向の温度分布特性図、第5図は本発明の製法例お
よび々東方法によって得られた結晶の長さ方向のCrお
よびSi濃度分布を表す特性図である。 1は石英ボート、2は種結晶、3はG a 、A s融
液、4aは単結晶、4bは多結晶、Xはメルトゾーンの
幅、Qは結晶の長さである。 1 石英本゛−ト 本実施例による放置説明図 第 】 図 第2図 本実施例による後端方向への結品固化 本実施例による炉軸方向の温度特性 第4図
1 to 4 are schematic process diagrams showing an embodiment of the GaAs single crystal manufacturing method of the present invention, and FIG.
Explanatory diagram showing that the entire s is left in a melted state for a predetermined time, 2nd
The figure is an explanatory diagram of cooling and solidifying from the opposite side of the seed crystal at a speed below a predetermined speed, and Figure 3 shows the melt zone being moved from the opposite side of the seed crystal to the same side while maintaining the melt zone width. Fig. 4 is a temperature distribution characteristic diagram in the axial direction according to this example, and Fig. 5 is a longitudinal temperature distribution diagram of crystals obtained by the manufacturing method example of the present invention and the Toto method. It is a characteristic diagram showing the Cr and Si concentration distribution. 1 is a quartz boat, 2 is a seed crystal, 3 is a Ga, As melt, 4a is a single crystal, 4b is a polycrystal, X is the width of the melt zone, Q is the length of the crystal. 1. Explanatory diagram of the quartz book left unused according to this example. Figure 2: Solidification of crystals in the direction of the rear end according to this example. Temperature characteristics in the furnace axis direction according to this example. Figure 4

Claims (1)

【特許請求の範囲】 石英ボートを用いて故意に酸素をドープしないCrドー
プ半絶縁性GaAs単結晶を製造する方法において、 (a)石英アンプル内の一端側に種結晶、原料としての
Ga或はGaAs多結晶並びにドーパントとしてのCr
を入れた石英ボートを配置し、前記石英アンプル内の他
端側にAsを配置した後、 (b)前記石英アンプル全体を加熱しながら真空引き処
理し、その後、 (c)前記石英アンプル内圧力かほぼGaAsの解離圧
になるように前記Asを加熱すると共に、前記種結晶を
除く部分の前記石英ボートをメルトゾーン内に入れて均
一に加熱して、前記Gaと前記Asの蒸気を合成反応さ
せることにより、若しくは前記GaAs多結晶を融解す
ることにより、前記石英ボート内にGaAs融液を形成
せしめ、(d)その状態で前記真空引き処理では除去で
きずに前記石英アンプル内に残存している酸素もしくは
酸化物を前記GaAs融液中に十分溶解させるのに十分
な時間放置し、 (e)放置後、前記GaAs融液を形成するメルトゾー
ン幅が所定値に狭められるまで前記種結晶の反対側から
種結晶に向けてメルトゾーンを移動することにより、前
記GaAs融液を80mm/hr以下の速度で徐々に多
結晶として冷却固化させて、融液中に溶け込んでいた酸
素をメルトゾーン中に濃縮し、 (f)前記種結晶側で所定のメルトゾーン幅になったと
きにシード付けを行い、 (g)しかる後に、前記メルトゾーンのゾーン幅を保持
した状態で該メルトゾーンを前記種結晶の反対方向へ移
動させてGaAs単結晶を成長させる ことを特徴とするGaAs単結晶の製造方法。
[Claims] In a method for producing a Cr-doped semi-insulating GaAs single crystal without intentionally doping oxygen using a quartz boat, (a) a seed crystal is placed on one end side of a quartz ampoule, Ga as a raw material or GaAs polycrystal and Cr as a dopant
After placing a quartz boat containing As and placing As on the other end side of the quartz ampoule, (b) vacuuming the entire quartz ampoule while heating it, and (c) reducing the internal pressure of the quartz ampoule. At the same time, the As is heated to approximately the dissociation pressure of GaAs, and the quartz boat excluding the seed crystal is placed in the melt zone and heated uniformly, so that the Ga and As vapors undergo a synthesis reaction. or by melting the GaAs polycrystal, a GaAs melt is formed in the quartz boat, and (d) in that state, the GaAs melt cannot be removed by the vacuum treatment and remains in the quartz ampoule. (e) After standing, the seed crystal is allowed to stand for a sufficient period of time to sufficiently dissolve the oxygen or oxide present in the GaAs melt; and (e) after the standing, the seed crystal is By moving the melt zone toward the seed crystal from the opposite side, the GaAs melt is gradually cooled and solidified as polycrystals at a speed of 80 mm/hr or less, and the oxygen dissolved in the melt is removed from the melt zone. (f) seeding is performed when the melt zone reaches a predetermined width on the seed crystal side; (g) after that, the melt zone is seeded with the seed while maintaining the zone width of the melt zone; A method for producing a GaAs single crystal, comprising growing the GaAs single crystal by moving the crystal in the opposite direction.
JP1654090A 1990-01-26 1990-01-26 Production of gaas single crystal Pending JPH03223200A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP1654090A JPH03223200A (en) 1990-01-26 1990-01-26 Production of gaas single crystal

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP1654090A JPH03223200A (en) 1990-01-26 1990-01-26 Production of gaas single crystal

Publications (1)

Publication Number Publication Date
JPH03223200A true JPH03223200A (en) 1991-10-02

Family

ID=11919100

Family Applications (1)

Application Number Title Priority Date Filing Date
JP1654090A Pending JPH03223200A (en) 1990-01-26 1990-01-26 Production of gaas single crystal

Country Status (1)

Country Link
JP (1) JPH03223200A (en)

Similar Documents

Publication Publication Date Title
US4040895A (en) Control of oxygen in silicon crystals
US5871580A (en) Method of growing a bulk crystal
JP2009149452A (en) Method for growing semiconductor crystal
US4944925A (en) Apparatus for producing single crystals
JP4120016B2 (en) Method for producing semi-insulating GaAs single crystal
TWI281520B (en) InP single crystal, GaAs single crystal, and method for producing thereof
JPH03223200A (en) Production of gaas single crystal
JP2002255697A (en) GALLIUM-ARSENIC SINGLE CRYSTAL AND GaAs WAFER AND PRODUCTION METHOD FOR GaAs SINGLE CRYSTAL
US5007979A (en) Method of fabricating GaAs single crystal
JP3885245B2 (en) Single crystal pulling method
JP2531875B2 (en) Method for producing compound semiconductor single crystal
JP2773441B2 (en) Method for producing GaAs single crystal
JP2781857B2 (en) Single crystal manufacturing method
Šestáková et al. Various methods for the growth of GaSb single crystals
JPH0867593A (en) Method for growing single crystal
JPH05178684A (en) Production of semiconductor single crystal
JPH05155685A (en) Production of compound semiconductor single crystal
JPH0782088A (en) Method for growing single crystal
JPH06279198A (en) Production of semi-insulating gallium arsenide semiconductor single crystal
JP2885452B2 (en) Boat growth method for group III-V compound crystals
KR920007340B1 (en) Manufacturing method of 3-4 compound material semiconductor crystal
JPH11130579A (en) Production of compound semiconductor single crystal and apparatus for producing the same
JPH09175892A (en) Production of single crystal
JPH08217589A (en) Production of single crystal
JP2005047797A (en) InP SINGLE CRYSTAL, GaAs SINGLE CRYSTAL, AND METHOD FOR PRODUCING THEM