JP2020158362A - SEED CRYSTAL FOR FeGa SINGLE CRYSTAL GROWTH, METHOD FOR MANUFACTURING THE SAME AND METHOD FOR MANUFACTURING FeGa SINGLE CRYSTAL - Google Patents

SEED CRYSTAL FOR FeGa SINGLE CRYSTAL GROWTH, METHOD FOR MANUFACTURING THE SAME AND METHOD FOR MANUFACTURING FeGa SINGLE CRYSTAL Download PDF

Info

Publication number
JP2020158362A
JP2020158362A JP2019061041A JP2019061041A JP2020158362A JP 2020158362 A JP2020158362 A JP 2020158362A JP 2019061041 A JP2019061041 A JP 2019061041A JP 2019061041 A JP2019061041 A JP 2019061041A JP 2020158362 A JP2020158362 A JP 2020158362A
Authority
JP
Japan
Prior art keywords
crystal
single crystal
fega
concentration
seed crystal
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2019061041A
Other languages
Japanese (ja)
Other versions
JP7349100B2 (en
Inventor
勝彦 岡野
Katsuhiko Okano
勝彦 岡野
敏則 太子
Toshinori Taishi
敏則 太子
圭吾 干川
Keigo Hoshikawa
圭吾 干川
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Sumitomo Metal Mining Co Ltd
Shinshu University NUC
Original Assignee
Sumitomo Metal Mining Co Ltd
Shinshu University NUC
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Sumitomo Metal Mining Co Ltd, Shinshu University NUC filed Critical Sumitomo Metal Mining Co Ltd
Priority to JP2019061041A priority Critical patent/JP7349100B2/en
Publication of JP2020158362A publication Critical patent/JP2020158362A/en
Application granted granted Critical
Publication of JP7349100B2 publication Critical patent/JP7349100B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Abstract

To provide: a seed crystal for FeGa single crystal growth capable of easily matching the melting point of a raw material melt in the vicinity of the seed crystal with the melting point of a molten seed crystal when seeding in the raw material melt by a VB method or a VGF method and reducing polycrystal or anisotropic growth during growth; a method for manufacturing the same; and a method for manufacturing a FeGa single crystal.SOLUTION: The seed crystal for FeGa single crystal growth used for FeGa single crystal growth by a unidirectional solidification crystal growth method for solidifying a melt in a crucible has a concentration distribution that a Ga concentration is higher from one end toward the other end in the crystal growth direction.SELECTED DRAWING: Figure 3

Description

本発明は、FeGa単結晶育成用種結晶及びその製造方法、並びにFeGa単結晶の製造方法に関する。 The present invention relates to a seed crystal for growing a FeGa single crystal, a method for producing the same, and a method for producing a FeGa single crystal.

FeGa合金は、機械加工が可能であり、100〜350ppm程度の大きな磁歪を示すため、磁歪式振動発電やアクチュエータ等に用いられる素材として好適であり、近年、注目されている。さらに、FeGa合金は結晶の特定方位に大きな磁気歪みを現出させるため、磁歪部材の磁歪を必要とする方向と結晶の磁気歪みが最大となる方位を一致させた単結晶の部材として、磁歪式振動発電やアクチュエータ等に用いられる素材に最適であると考えられる。 The FeGa alloy is machinable and exhibits a large magnetostriction of about 100 to 350 ppm, and is therefore suitable as a material used for magnetostrictive vibration power generation and actuators, and has been attracting attention in recent years. Further, since the FeGa alloy causes a large magnetostriction to appear in a specific orientation of the crystal, the magnetostrictive type is used as a single crystal member in which the direction in which the magnetostrictive member requires magnetostriction and the orientation in which the magnetostrictive of the crystal is maximized are matched. It is considered to be most suitable for materials used for vibration power generation and actuators.

FeGa単結晶の製造方法には、例えば、特許文献1には、チョクラルスキー法による単結晶の育成方法が記載されている。チョクラルスキー法は、単結晶になる原料を充填した坩堝を高温に加熱してこの原料を溶融し、坩堝内の原料融液の液面に上方から種結晶を接触させた後に上昇させることで種結晶と同一方位の単結晶を育成する方法である。 As for the method for producing a FeGa single crystal, for example, Patent Document 1 describes a method for growing a single crystal by the Czochralski method. In the Czochralski method, a crucible filled with a raw material that becomes a single crystal is heated to a high temperature to melt this raw material, and the seed crystal is brought into contact with the liquid surface of the raw material melt in the crucible from above and then raised. This is a method of growing a single crystal in the same orientation as the seed crystal.

しかしながら、この方法は、高周波誘導加熱方式により原料融解を行うため電源コストが高くなる。また装置構成が複雑であるため、装置コストも高く、結果的に製造コストが高くなってしまう。 However, in this method, the raw material is melted by the high frequency induction heating method, so that the power supply cost is high. Further, since the device configuration is complicated, the device cost is high, and as a result, the manufacturing cost is high.

これに対して、一方向凝固結晶成長法であるVB(Vertical Bridgeman、垂直ブリッジマン)法やVGF(Vertical Gradient Freeze、垂直温度勾配凝固)法は、育成された単結晶を引き上げる必要がなく、装置内に単結晶引き上げのスペースは不要であるため、結晶育成装置の小型化や簡略化が可能であり、初期投資費用を抑えることができる。VB法やVGF法にて単結晶を育成する場合、坩堝の底に種結晶を配置し、その上にFeとGaの混合原料を必要量入れ、この原料を融解させる。そして、その後坩堝を加熱手段から遠ざけるように降下させることで単結晶を育成する。その過程の中で結晶方位を伝播させる目的で、シーディングを行う。シーディング時は、混合原料が融解しかつ種結晶の一部が融解する必要があり、これにより、種結晶の結晶方位が伝播した単結晶を育成することができる。 On the other hand, the VB (Vertical Bridgeman) method and the VGF (Vertical Gradient Freeze) method, which are unidirectional solidification crystal growth methods, do not require pulling up the grown single crystal and are devices. Since there is no need for a space for pulling up a single crystal inside, the crystal growth device can be miniaturized and simplified, and the initial investment cost can be suppressed. When growing a single crystal by the VB method or the VGF method, a seed crystal is placed at the bottom of the crucible, and a required amount of a mixed raw material of Fe and Ga is put on the seed crystal, and this raw material is melted. Then, the crucible is lowered so as to be away from the heating means to grow a single crystal. Seeding is performed for the purpose of propagating the crystal orientation in the process. At the time of seeding, it is necessary that the mixed raw material is melted and a part of the seed crystal is melted, so that a single crystal in which the crystal orientation of the seed crystal is propagated can be grown.

特開2016−28831号公報Japanese Unexamined Patent Publication No. 2016-28831

しかしながら、シーディング時において、混合原料融液の温度と種結晶が融解する融点との差が大きく異なると問題が生じる。例えば、混合原料融液の温度が種結晶の融点より低い場合、種結晶は未融解のまま育成されるため多結晶化等の結晶欠陥が発生する。混合原料融液の温度が種結晶の融点より高すぎる場合、種結晶が完全融解し異方成長など不具合が発生する。つまり、一方向凝固結晶成長法では、種結晶の混合原料と接触している部分付近のみが融解し、種結晶の下部は融解しない状態とすることが求められる。よって、種結晶と混合原料との接触面付近の温度制御の許容制御幅は非常に小さい。また、種結晶と混合原料の接触面は坩堝の内部にあり、外から状態を観察することはできないため、微妙な温度制御を行うのは極めて困難である。 However, at the time of seeding, a problem arises when the difference between the temperature of the mixed raw material melt and the melting point at which the seed crystal melts is significantly different. For example, when the temperature of the mixed raw material melt is lower than the melting point of the seed crystal, the seed crystal is grown in an unmelted state, so that crystal defects such as polycrystallization occur. If the temperature of the mixed raw material melt is too high above the melting point of the seed crystal, the seed crystal is completely melted and problems such as anisotropic growth occur. That is, in the one-way solidification crystal growth method, it is required that only the vicinity of the portion in contact with the mixed raw material of the seed crystal is melted and the lower part of the seed crystal is not melted. Therefore, the permissible control range of temperature control near the contact surface between the seed crystal and the mixed raw material is very small. Further, since the contact surface between the seed crystal and the mixed raw material is inside the crucible and the state cannot be observed from the outside, it is extremely difficult to perform delicate temperature control.

そこで、本発明は、上述のような問題点に鑑み、VB法やVGF法によりシーディングした時に、種結晶近傍の原料融液温度と種結晶の融点とを容易に一致させることができ、シーディングによる多結晶化等の結晶欠陥や異方成長などの不具合を低減できるFeGa単結晶育成用種結晶及びその製造方法、並びにFeGa単結晶の製造方法を提供することを目的とする。 Therefore, in view of the above-mentioned problems, the present invention can easily match the temperature of the raw material melt in the vicinity of the seed crystal with the melting point of the seed crystal when seeding by the VB method or the VGF method. It is an object of the present invention to provide a seed crystal for growing a FeGa single crystal, a method for producing the same, and a method for producing a FeGa single crystal, which can reduce crystal defects such as polycrystallization due to ding and defects such as heterogeneous growth.

上記目的を達成するため、本発明の一態様に係るFeGa単結晶育成用種結晶は、融液を坩堝中で固化させる一方向凝固結晶成長法によるFeGa単結晶育成に用いられるFeGa単結晶育成用種結晶であって、
結晶成長方向において一端から他端に向かってGa濃度が高くなる。
In order to achieve the above object, the seed crystal for growing a FeGa single crystal according to one aspect of the present invention is for growing a FeGa single crystal used for growing a FeGa single crystal by a unidirectional solidification crystal growth method in which a melt is solidified in a pit. Seed crystal
The Ga concentration increases from one end to the other in the crystal growth direction.

本発明によれば、原料の融点と種結晶の融点に温度差がある場合であっても、双方を適切に融解させ、単結晶を育成することができる。 According to the present invention, even when there is a temperature difference between the melting point of the raw material and the melting point of the seed crystal, both can be appropriately melted to grow a single crystal.

本発明の実施形態に係るFeGa単結晶の製造方法を実施するために用いられる結晶育成装置の一例を示した図である。It is a figure which showed an example of the crystal growth apparatus used for carrying out the manufacturing method of the FeGa single crystal which concerns on embodiment of this invention. 本発明の実施形態に係るFeGa単結晶の製造方法を実施するために用いられる結晶育成装置で増径部有する坩堝を使用した一例を示した図である。It is a figure which showed an example which used the crucible which has the diameter-increasing part in the crystal growth apparatus used for carrying out the manufacturing method of the FeGa single crystal which concerns on embodiment of this invention. 本発明の実施形態に係る種結晶の一例を示した図である。It is a figure which showed an example of the seed crystal which concerns on embodiment of this invention. 本発明の実施形態に係る種結晶のGa濃度分布の一例を示した図である。It is a figure which showed an example of the Ga concentration distribution of the seed crystal which concerns on embodiment of this invention. 本発明の実施形態に係る種結晶を製造するための育成炉の一例を示した構造図である。It is a structural drawing which showed an example of the growth furnace for producing the seed crystal which concerns on embodiment of this invention. 本発明の実施形態に係る種結晶を製造するための育成炉で増径部を有する坩堝を使用した一例を示した構造図である。It is a structural drawing which showed an example which used the crucible which has the diameter-increasing part in the growth furnace for producing the seed crystal which concerns on embodiment of this invention.

以下、図面を参照して、本発明を実施するための形態の説明を行う。 Hereinafter, embodiments for carrying out the present invention will be described with reference to the drawings.

一方向凝固結晶成長法では、種結晶が融解する融点と混合原料が融解された種結晶近傍の融点との差が大きく異なると、VB法では坩堝位置による調整、VGF法についてはヒータ出力の調整の制御が困難となり、適正なシーディングができず、種結晶の未融解や完全融解により、多結晶や異方成長などの結晶欠陥が発生することがある。 In the one-way solidification crystal growth method, if the difference between the melting point at which the seed crystal melts and the melting point near the seed crystal where the mixed raw material is melted is significantly different, the VB method adjusts by the position of the pit, and the VGF method adjusts the heater output. It becomes difficult to control the seed crystal, and proper seeding cannot be performed. Crystal defects such as polycrystal and heterogeneous growth may occur due to unmelting or complete melting of the seed crystal.

本発明者等は、単結晶育成用種結晶について鋭意研究を重ねた結果、結晶の成長方向(上側)がGa濃度が高く、その反対側(下側)のGa濃度が低い種結晶を用いることで、原料融液温度と種結晶の融点とを合わせやすくなることを見出した。即ち、このような種結晶を用いることにより、坩堝位置やヒータ出力の微調整が不要となり、また調整が前後に多少振れたとしても種結晶の融点に高低差があることからシーディングを確実に行うことができることの知見を得て、本発明を完成するに至ったものである。 As a result of intensive research on a seed crystal for growing a single crystal, the present inventors should use a seed crystal having a high Ga concentration in the growth direction (upper side) of the crystal and a low Ga concentration on the opposite side (lower side). Therefore, it was found that the temperature of the raw material melt and the melting point of the seed crystal can be easily matched. That is, by using such a seed crystal, it is not necessary to finely adjust the crucible position and the heater output, and even if the adjustment fluctuates slightly back and forth, there is a difference in the melting point of the seed crystal, so that the seeding is surely performed. The present invention has been completed by obtaining the knowledge that it can be performed.

本発明の実施形態に係る種結晶は、FeGa単結晶育成に用いる種結晶である。FeGa結晶は、100〜350ppm程度の大きな磁歪特性を有するため、磁歪式振動発電やアクチュエータ等に用いられている。この磁歪特性を、結晶の特定方位に現出させるためには、磁歪特性を必要とする方向と結晶の磁気歪みが最大となる方位を一致させた単結晶の部材が最適であると考えられている。 The seed crystal according to the embodiment of the present invention is a seed crystal used for growing a FeGa single crystal. Since FeGa crystals have a large magnetostrictive characteristic of about 100 to 350 ppm, they are used in magnetostrictive vibration power generation, actuators, and the like. In order to make this magnetostrictive characteristic appear in a specific orientation of the crystal, it is considered that a single crystal member in which the direction in which the magnetostrictive characteristic is required and the orientation in which the magnetic strain of the crystal is maximized match is optimal. There is.

FeGa単結晶は、引き上げ法(チョクラルスキー法)や一方向凝固結晶成長法に用いて製造することができる。本発明では、一方向凝固結晶成長法に用いる種結晶について説明する。一方向凝固結晶成長法には、例えば、VB法やVGF法の方法がある。 The FeGa single crystal can be produced by using it in a pulling method (Czochralski method) or a unidirectional solidification crystal growth method. In the present invention, the seed crystal used in the unidirectional solidification crystal growth method will be described. Examples of the unidirectional solidification crystal growth method include a VB method and a VGF method.

図1は、本発明の実施形態に係るFeGa単結晶の製造方法を実施するために用いられる結晶育成装置の一例を示した図である。図1においては、一方向凝固結晶成長法のうち、VB法により単結晶を育成するための結晶育成装置の構成の一例が示されている。 FIG. 1 is a diagram showing an example of a crystal growing apparatus used for carrying out the method for producing a FeGa single crystal according to an embodiment of the present invention. FIG. 1 shows an example of the configuration of a crystal growth apparatus for growing a single crystal by the VB method among the unidirectional solidification crystal growth methods.

図1に示される結晶育成装置は、坩堝10と、坩堝台20と、坩堝軸30と、発熱体40とを備える。また、坩堝10の中には、本発明の実施形態に係る種結晶50と、原料60が貯留されている。 The crystal growing device shown in FIG. 1 includes a crucible 10, a crucible stand 20, a crucible shaft 30, and a heating element 40. Further, the seed crystal 50 and the raw material 60 according to the embodiment of the present invention are stored in the crucible 10.

坩堝10は、種結晶50及び原料60を貯留又は保持するための容器である。坩堝10は、耐熱性の高い材料から構成され、例えば、アルミナ製であってもよい。 The crucible 10 is a container for storing or holding the seed crystal 50 and the raw material 60. The crucible 10 is made of a material having high heat resistance, and may be made of, for example, alumina.

坩堝台20は、坩堝10を支持するための支持台である。坩堝台20も、耐熱性の高い材料から構成される。 The crucible stand 20 is a support stand for supporting the crucible 10. The crucible stand 20 is also made of a material having high heat resistance.

坩堝軸30は、坩堝台20を上下動させるための軸であり、上端で坩堝台20を支持している。 The crucible shaft 30 is a shaft for moving the crucible base 20 up and down, and supports the crucible base 20 at the upper end.

発熱体40は、坩堝10を加熱し、その内部に貯留保持された種結晶50及び原料60を融解するための加熱手段である。発熱体40は、例えば、抵抗体を用いたヒータから構成されてもよい。発熱体40には、例えば、カーボン発熱体を用いてもよい。 The heating element 40 is a heating means for heating the crucible 10 and melting the seed crystal 50 and the raw material 60 stored and held inside the crucible 10. The heating element 40 may be composed of, for example, a heater using a resistor. As the heating element 40, for example, a carbon heating element may be used.

図1に示されるように、VB法は、坩堝10の底に種結晶50を配置し、その上にFeとGaの混合原料60を必要量入れ、この原料60を融解させ、その後坩堝10を加熱手段である発熱体40から離すように降下させることで単結晶を育成する方法である。 As shown in FIG. 1, in the VB method, a seed crystal 50 is placed on the bottom of the crucible 10, a required amount of a mixed raw material 60 of Fe and Ga is put therein, the raw material 60 is melted, and then the crucible 10 is added. This is a method of growing a single crystal by lowering it away from the heating element 40, which is a heating means.

また、VGF法は、原料60を融解させた後、坩堝10の上方が高く、下方が低い温度勾配を維持したまま加熱手段である発熱体40の出力を降下させて結晶を育成する方法である。これらの方法では、育成した結晶の方位を揃えるため、坩堝10の底に種結晶50を配置する。よって、種結晶の直径は、坩堝10の内径と同じ直径となり、例えば、100〜150mm程度の直径となる。 The VGF method is a method of growing crystals by melting the raw material 60 and then lowering the output of the heating element 40, which is a heating means, while maintaining a high temperature gradient above the crucible 10 and a low temperature gradient below. .. In these methods, the seed crystal 50 is placed at the bottom of the crucible 10 in order to align the orientation of the grown crystals. Therefore, the diameter of the seed crystal is the same as the inner diameter of the crucible 10, and is, for example, about 100 to 150 mm.

本発明は、この種結晶に関する発明である。 The present invention is an invention relating to this kind crystal.

FeGa単結晶は不一致組成結晶であり、液相と固相とのGa濃度が異なる。磁歪特性が良いとされるFeGa単結晶は、Ga濃度は18.5at%付近である。このため、単結晶育成の原料は、Ga濃度が18.5at%付近になるように混合される。種結晶は、育成原料のGa濃度に合わせた種結晶を用いる。この時の種結晶の濃度バラツキは1%以内とされるのが一般的である。 The FeGa single crystal is a crystal having a mismatched composition, and the Ga concentration between the liquid phase and the solid phase is different. The FeGa single crystal, which is said to have good magnetostrictive characteristics, has a Ga concentration of around 18.5 at%. Therefore, the raw materials for growing a single crystal are mixed so that the Ga concentration is around 18.5 at%. As the seed crystal, a seed crystal that matches the Ga concentration of the growing raw material is used. The concentration variation of the seed crystal at this time is generally within 1%.

本発明の実施形態に係る種結晶は、原料融液と接触する面側(結晶の成長方向・上面側)から反対面である坩堝底面側(下面側)に向かう方向においてGa濃度差を有している。このGa濃度差は、原料融液と接触する面側のGa濃度が高く、坩堝底面側のGa濃度が低くなるように設定される。この時のGa濃度差は2at%以上であり、好ましく3at%以上、より好ましくは6at%以上に設定される。上述のように、FeGa結晶の融点は、Ga濃度が高くなるに従い低下する。 The seed crystal according to the embodiment of the present invention has a Ga concentration difference in the direction from the surface side (crystal growth direction / upper surface side) in contact with the raw material melt to the opposite surface, the crucible bottom surface side (lower surface side). ing. This Ga concentration difference is set so that the Ga concentration on the surface side in contact with the raw material melt is high and the Ga concentration on the bottom surface side of the crucible is low. The Ga concentration difference at this time is 2 at% or more, preferably 3 at% or more, and more preferably 6 at% or more. As described above, the melting point of the FeGa crystal decreases as the Ga concentration increases.

なお、本発明の実施形態に係るFeGa単結晶の製造方法を実施するために用いられる結晶育成装置は、図2に示すよう増径部112を有する坩堝110を使用した結晶育成装置であってもよい。図2は、本発明の実施形態に係るFeGa単結晶の製造方法を実施するために用いられる結晶育成装置で増径部112を有する坩堝110を使用した一例を示した図である。図1の坩堝10は、円柱状であり、これに使用する種結晶50は育成される単結晶と同径である。これに対し、図2で示す結晶育成装置の坩堝110は、種結晶150を設置する井戸状の細径部113、該細径部113から上方に向けて直径が大きくなる逆円錐形の管状の増径部112、および該増径部112から上方に結晶成長部として続く円筒状の定径部111で構成されている。種結晶150は直径がφ10mm前後であり、細径部113に設置される。図1の態様では、種結晶50は100mm程度の直径を有する場合が多いので、図2の態様では、種結晶150の直径を大幅に縮小することができる。増径部112の内壁は、水平方向に対して30〜60度の角度を有する。シーディング後、結晶は増径部112で直径を大きくしながら育成され、その後定径部111で一定の直径となり育成される。この様な坩堝110を使用することで、種結晶150の形状を小さくすることができ、種結晶150の製造コストを削減することができる。 The crystal growth apparatus used for carrying out the method for producing a FeGa single crystal according to the embodiment of the present invention may be a crystal growth apparatus using a crucible 110 having a diameter-increasing portion 112 as shown in FIG. Good. FIG. 2 is a diagram showing an example in which a crucible 110 having a diameter-increasing portion 112 is used in a crystal growing device used for carrying out the method for producing a FeGa single crystal according to an embodiment of the present invention. The crucible 10 in FIG. 1 has a columnar shape, and the seed crystal 50 used for the crucible 10 has the same diameter as the single crystal to be grown. On the other hand, the pit 110 of the crystal growth apparatus shown in FIG. 2 has a well-shaped small diameter portion 113 in which the seed crystal 150 is installed, and an inverted conical tubular shape whose diameter increases upward from the small diameter portion 113. It is composed of a diameter-increasing portion 112 and a cylindrical fixed-diameter portion 111 that continues upward from the diameter-increasing portion 112 as a crystal growth portion. The seed crystal 150 has a diameter of about φ10 mm and is installed in the small diameter portion 113. In the aspect of FIG. 1, the seed crystal 50 often has a diameter of about 100 mm. Therefore, in the aspect of FIG. 2, the diameter of the seed crystal 150 can be significantly reduced. The inner wall of the diameter-increasing portion 112 has an angle of 30 to 60 degrees with respect to the horizontal direction. After seeding, the crystal is grown in the diameter-increasing portion 112 while increasing the diameter, and then is grown in the constant-diameter portion 111 to have a constant diameter. By using such a crucible 110, the shape of the seed crystal 150 can be reduced, and the production cost of the seed crystal 150 can be reduced.

なお、他の構成要素については、図1と同様であるので、図1に対応する構成要素に同一の符号を付してその説明を省略する。 Since the other components are the same as those in FIG. 1, the components corresponding to FIG. 1 are designated by the same reference numerals and the description thereof will be omitted.

図3は、本発明の実施形態に係る種結晶の一例を示した図である。図3に示されるように、原料と接触する上面51のGa濃度が高く設定され、坩堝10の底面に接触する下面52のGa濃度が低く設定される。 FIG. 3 is a diagram showing an example of a seed crystal according to an embodiment of the present invention. As shown in FIG. 3, the Ga concentration of the upper surface 51 in contact with the raw material is set high, and the Ga concentration of the lower surface 52 in contact with the bottom surface of the crucible 10 is set low.

図1を参照して説明したように、VB法やVGF法での結晶育成方法では、坩堝10の底に種結晶50を配置し、その上にFeとGaの混合原料60を必要量入れ、この原料60を融解させて、その後、シーディングを行う。シーディングは、混合した原料60が融解し、かつ種結晶50の一部が融解した状態にすることである。原料60のGa濃度は、磁歪特性が良いとされる18.5at%付近に設定されることが多く、一般的に種結晶50は、Ga濃度に合わせて18〜19at%の種結晶50を使用することが多い。 As described with reference to FIG. 1, in the crystal growth method by the VB method or the VGF method, the seed crystal 50 is arranged at the bottom of the crucible 10, and the required amount of the mixed raw material 60 of Fe and Ga is put on the seed crystal 50. The raw material 60 is melted and then seeded. Seeding is a state in which the mixed raw material 60 is melted and a part of the seed crystal 50 is melted. The Ga concentration of the raw material 60 is often set to around 18.5 at%, which is considered to have good magnetostrictive characteristics, and in general, the seed crystal 50 uses a seed crystal 50 of 18 to 19 at% according to the Ga concentration. I often do it.

本発明の実施形態に係る種結晶50は、例えばGa濃度差を3at%とし、16.5〜19.5at%とすることができる。種結晶50がGa濃度差を有しているため、従来の種結晶を用いた場合と比較すると、幅広い温度に対応して種結晶50の一部を融解してシーディングを行うことができる。つまり、原料60が融解する温度に合わせて種結晶50を加熱しても、融点差があるため、種結晶50の下部は融解しない。よって、加熱温度を高くし過ぎて種結晶50が融解し過ぎてしまう事態や、そのような事態を懸念して原料60が融解する温度まで加熱していない、といった事態を防ぐことができる。このため、シーディング時にVB法における坩堝10の位置やVGF法でのヒータ出力の微調整が必要なく、また多少調整がずれたとしても、濃度差を設けていることで調整誤差を許容できる。これにより、種結晶50の未融解や完全融解を防止することができ、多結晶化や異方成長を抑制することができる。 The seed crystal 50 according to the embodiment of the present invention can have, for example, a Ga concentration difference of 3 at% and 16.5 to 19.5 at%. Since the seed crystal 50 has a Ga concentration difference, a part of the seed crystal 50 can be melted and seeded in response to a wide range of temperatures as compared with the case where a conventional seed crystal is used. That is, even if the seed crystal 50 is heated according to the temperature at which the raw material 60 melts, the lower part of the seed crystal 50 does not melt because of the difference in melting point. Therefore, it is possible to prevent a situation in which the heating temperature is too high and the seed crystal 50 is melted too much, or a situation in which the raw material 60 is not heated to a temperature at which the raw material 60 is melted due to such a situation. Therefore, it is not necessary to finely adjust the position of the crucible 10 in the VB method and the heater output in the VGF method at the time of seeding, and even if the adjustment is slightly deviated, the adjustment error can be tolerated by providing the concentration difference. As a result, unmelting or complete melting of the seed crystal 50 can be prevented, and polycrystallization and anisotropic growth can be suppressed.

種結晶50のGa濃度範囲は、FeとGaの混合原料のGa濃度を中央値として上下均等に設定してもよいが、種結晶50のGa濃度上限をFeとGaの混合原料のGa濃度+1at%とし、種結晶50のGa濃度下限側を広く設定してもよい。シーディング時は、少なくともFeとGaの混合原料を融解させる必要があり限定される。このため、混合原料偏析等のバラツキを含めて種結晶50のGa濃度上限は混合原料のGa濃度+1at%と設定することで種結晶50の未融解を防止できる。種結晶50のGa濃度下限を広く設定することで、混合原料60の融点より高い温度でも種結晶50の完全融解をより防止することができる。好ましくは、種結晶50のGa濃度差を6at%以上としGa濃度範囲の上限を混合原料60のGa濃度+1at%とし、下限を混合原料60のGa濃度−5at%以下に設定するとよい。 The Ga concentration range of the seed crystal 50 may be set evenly above and below with the Ga concentration of the mixed raw material of Fe and Ga as the median value, but the upper limit of the Ga concentration of the seed crystal 50 is set to the Ga concentration of the mixed raw material of Fe and Ga + 1at. %, And the lower limit side of the Ga concentration of the seed crystal 50 may be set wide. At the time of seeding, it is necessary to melt at least a mixed raw material of Fe and Ga, which is limited. Therefore, unmelting of the seed crystal 50 can be prevented by setting the upper limit of the Ga concentration of the seed crystal 50 to be + 1 at% of the Ga concentration of the mixed raw material, including variations such as segregation of the mixed raw material. By setting the lower limit of the Ga concentration of the seed crystal 50 widely, it is possible to further prevent the seed crystal 50 from completely melting even at a temperature higher than the melting point of the mixed raw material 60. Preferably, the Ga concentration difference of the seed crystal 50 is set to 6 at% or more, the upper limit of the Ga concentration range is set to the Ga concentration of the mixed raw material 60 + 1 at%, and the lower limit is set to the Ga concentration of the mixed raw material 60 to -5 at% or less.

種結晶50の厚さは、10mm〜50mm程度である。この厚さの範囲で均等に濃度勾配があることが好ましいが、濃度勾配は均一でなくてもよい。 The thickness of the seed crystal 50 is about 10 mm to 50 mm. It is preferable that the concentration gradient is evenly distributed within this thickness range, but the concentration gradient does not have to be uniform.

図4は、本実施形態に係る種結晶のGa濃度分布の一例を示した図である。 FIG. 4 is a diagram showing an example of the Ga concentration distribution of the seed crystal according to the present embodiment.

図4においては、本実施形態に係る種結晶50のGa濃度分布の一例が示されているが、13.0at%から20.0未満の19.5at%付近までGa濃度の分布が見られる。 In FIG. 4, an example of the Ga concentration distribution of the seed crystal 50 according to the present embodiment is shown, and the Ga concentration distribution can be seen from 13.0 at% to around 19.5 at%, which is less than 20.0.

Ga濃度分布は、用途に応じて種々設定することが可能である。例えば、図4に示すように、Gaの濃度が低い側の濃度勾配が緩く、Gaの濃度が高い側の濃度勾配が急になっていても良い。この時、種結晶長さとGa濃度差を考慮する。図4では結晶長17mm〜42mm間で種結晶を採取することで、種結晶長さ25mm、Ga濃度13.5at%〜19.5at%のGa濃度差6%の種結晶を得ることができる。このように、必要な濃度勾配と種結晶長さを適宜設定し、必要な箇所より採取することができる。そして、Ga濃度分布の高い端面が原料60に接触する位置に配置され、Ga濃度分布の低い端面が坩堝10の底面と接触するように坩堝10内に配置される。このように、Ga濃度の高低差が6.0at%もあると、融点差を大きく設定することができ、シーディングを非常に容易に行うことができる。 The Ga concentration distribution can be variously set according to the application. For example, as shown in FIG. 4, the concentration gradient on the side where the concentration of Ga is low may be gentle, and the concentration gradient on the side where the concentration of Ga is high may be steep. At this time, the difference between the seed crystal length and the Ga concentration is taken into consideration. In FIG. 4, by collecting seed crystals with a crystal length of 17 mm to 42 mm, a seed crystal having a seed crystal length of 25 mm and a Ga concentration of 13.5 at% to 19.5 at% and a Ga concentration difference of 6% can be obtained. In this way, the required concentration gradient and seed crystal length can be appropriately set, and the seed crystal can be collected from the required location. Then, the end face having a high Ga concentration distribution is arranged at a position in contact with the raw material 60, and the end face having a low Ga concentration distribution is arranged in the crucible 10 so as to come into contact with the bottom surface of the crucible 10. As described above, when the height difference of Ga concentration is as much as 6.0 at%, the melting point difference can be set large, and seeding can be performed very easily.

次に、本発明の実施形態に係る種結晶50の製造方法について説明する。本発明の実施形態に係る種結晶50の製造方法では、一方向凝固結晶成長法を用いて結晶を育成する。一方向凝固結晶成長法には、VB法やVGF法の方法がある。上述のように、VB法は、坩堝10の底に種結晶50を配置し、その上にFeとGaの混合原料60を必要量入れ、この原料60を融解させ、その後坩堝10を加熱手段である発熱体40から離すように降下させることで単結晶を育成する方法である。VGF法は、原料60を融解させた後、坩堝10の上方が高く、下方が低い温度勾配を維持したまま加熱手段である発熱体40の出力を降下させて結晶を育成する方法である。 Next, a method for producing the seed crystal 50 according to the embodiment of the present invention will be described. In the method for producing a seed crystal 50 according to the embodiment of the present invention, a crystal is grown by using a unidirectional solidification crystal growth method. The unidirectional solidification crystal growth method includes a VB method and a VGF method. As described above, in the VB method, a seed crystal 50 is placed on the bottom of the crucible 10, a required amount of a mixed raw material 60 of Fe and Ga is put therein, the raw material 60 is melted, and then the crucible 10 is heated by a heating means. This is a method of growing a single crystal by lowering it away from a certain heating element 40. The VGF method is a method of growing crystals by melting the raw material 60 and then lowering the output of the heating element 40, which is a heating means, while maintaining a high temperature gradient above the crucible 10 and a low temperature gradient below.

以下、図5を参照して、VB法を例に挙げ、FeGa種結晶の製造方法の詳細を説明する。図5は、VB法を用いた本発明の実施形態に係る種結晶を製造するための育成炉の構造図である。図1と結晶育成装置の構造は同一であり、種結晶55のみが図1と異なっている。 Hereinafter, with reference to FIG. 5, the details of the method for producing FeGa seed crystals will be described by taking the VB method as an example. FIG. 5 is a structural diagram of a growing furnace for producing a seed crystal according to an embodiment of the present invention using the VB method. The structure of the crystal growing apparatus is the same as that of FIG. 1, and only the seed crystal 55 is different from that of FIG.

坩堝台20の上に坩堝10を載置し、坩堝10内に種結晶55を収納する。この時の種結晶55は、Ga濃度が一定のものを使用する。その上には融解したGaにFe粉を所望量入れ、混合させた原料60を必要量入れる。坩堝10の周りにはカーボン製発熱体40があり、この発熱体40は上方が高く、下方が低い温度分布となるよう整備されている。なお炉内は不活性ガス雰囲気(Arガス等)としてもよい。この状態で種結晶55の高さが半分位融解するよう坩堝軸30を徐々に上昇させながら調整し、シーディングを行う。シーディング後、種結晶55を融解した固液界面形状を安定させて目的で1時間程度保持させた後、坩堝軸30を一定の速度で降下させる。坩堝10内の融液をすべて固化させた後、約300℃/hの速度で炉冷を行い、室温程度になったことを確認した後、結晶を取り出すと、Ga濃度勾配を有する結晶を得ることができる。 The crucible 10 is placed on the crucible stand 20, and the seed crystal 55 is stored in the crucible 10. As the seed crystal 55 at this time, one having a constant Ga concentration is used. A desired amount of Fe powder is added to the melted Ga, and a required amount of the mixed raw material 60 is added thereto. There is a carbon heating element 40 around the crucible 10, and the heating element 40 is arranged so that the upper part is high and the lower part is low. The inside of the furnace may have an inert gas atmosphere (Ar gas or the like). In this state, the crucible shaft 30 is gradually raised so that the height of the seed crystal 55 is melted by about half, and seeding is performed. After seeding, the melted solid-liquid interface shape of the seed crystal 55 is stabilized and held for about 1 hour for the purpose, and then the crucible shaft 30 is lowered at a constant speed. After solidifying all the melt in the crucible 10, the furnace is cooled at a rate of about 300 ° C./h, and after confirming that the temperature has reached about room temperature, the crystals are taken out to obtain crystals having a Ga concentration gradient. be able to.

この時に用いる種結晶55は、混合原料のGa濃度±1at%以内のものとする。また、この時の混合原料及び種結晶55の濃度は、17.5at%にする。FeGa単結晶は、一般には磁歪特性が良いとされる18.5at%の単結晶を目標とするが、本種結晶の製造方法では、18.5at%より1.0at%低い目標値とする。FeGa単結晶は不一致組成結晶であり、液相と固相とのGa濃度が異なり、育成された単結晶はGa濃度勾配を有する単結晶を育成できる。 The seed crystal 55 used at this time shall have a Ga concentration of the mixed raw material within ± 1 at%. The concentration of the mixed raw material and the seed crystal 55 at this time is set to 17.5 at%. The target value of the FeGa single crystal is 18.5 at%, which is generally considered to have good magnetostrictive characteristics, but in the method for producing this kind of crystal, the target value is 1.0 at% lower than 18.5 at%. The FeGa single crystal is a crystal having a mismatched composition, the Ga concentration between the liquid phase and the solid phase is different, and the grown single crystal can grow a single crystal having a Ga concentration gradient.

また、Ga濃度勾配の濃度差と育成の長さは、VB法では坩堝の降下速度、VGF法では出力の調整により適宜調整することができる。降下速度を速くあるは、出力を速く小さくすることで結晶のGa濃度差が小さくなる傾向にある。 Further, the concentration difference of the Ga concentration gradient and the length of growth can be appropriately adjusted by adjusting the descending speed of the crucible in the VB method and the output in the VGF method. If the descent speed is high, the difference in Ga concentration of the crystals tends to be small by reducing the output quickly.

例えば、Ga濃度が13.5〜19.5at%の種結晶を作製する場合、初期の種結晶のGa濃度を13.5at%に設置し、坩堝の降下速度を2.0mm/時の速度で降下すれば良い。Ga濃度が16.5〜19.5at%の種結晶を作製する場合は、初期の種結晶のGa濃度を16.0at%に設置し、坩堝の降下速度を5.0mm/時の速度で降下すれば良い。 For example, when producing a seed crystal having a Ga concentration of 13.5 to 19.5 at%, the Ga concentration of the initial seed crystal is set to 13.5 at%, and the descending speed of the crucible is 2.0 mm / hour. You just have to descend. When producing a seed crystal with a Ga concentration of 16.5 to 19.5 at%, the Ga concentration of the initial seed crystal is set to 16.0 at%, and the crucible descends at a rate of 5.0 mm / hour. Just do it.

そこを狙う結晶に対し、図3に示すように結晶長25mmにおいて、Ga濃度差がある種結晶を用いることで、Ga濃度差がある種結晶の作製方法として、FeGaは不一致組成であるため、育成中にGa濃度が変動する。これらの利点を活かし、VB法により坩堝10の降下速度2mm/hrで育成したものである。今回は濃度差を6at%にしたが、坩堝10の降下速度を振ることで濃度差を小さくしたり、大きくしたりすることは可能である。また、狙い濃度についても原料の濃度を変えることで対応は可能である。なお、育成方法についてはVGF法でもよい。 As shown in FIG. 3, FeGa has a disagreeable composition as a method for producing a seed crystal having a Ga concentration difference by using a seed crystal having a Ga concentration difference at a crystal length of 25 mm with respect to the crystal aiming there. Ga concentration fluctuates during growing. Taking advantage of these advantages, the crucible 10 was grown at a descent speed of 2 mm / hr by the VB method. This time, the concentration difference was set to 6 at%, but it is possible to reduce or increase the concentration difference by changing the descent speed of the crucible 10. In addition, it is possible to deal with the target concentration by changing the concentration of the raw material. The growing method may be the VGF method.

図6は、本発明の実施形態に係る種結晶を製造するための育成炉で増径部を有する坩堝を使用した一例を示した構造図である。図6に示すように、増径部112を有する坩堝110も使用することができる。 FIG. 6 is a structural diagram showing an example in which a crucible having a diameter-increasing portion is used in a growing furnace for producing a seed crystal according to an embodiment of the present invention. As shown in FIG. 6, a crucible 110 having a diameter-increasing portion 112 can also be used.

種結晶150の製造に使用する種結晶155は、Ga濃度が均一に分布したものである。図5との相違点は、細径部113に種結晶155を設置し、単結晶を育成しながら増径部112、定径部113を経て大径でGa濃度勾配を有する種結晶を得るという点である。製造の手順自体は、図5で説明した内容と同様であり、また、装置の構成自体は図2と同様であるので、Ga濃度勾配を有する種結晶の製造方法の詳細な説明は省略する。 The seed crystal 155 used for producing the seed crystal 150 has a uniformly distributed Ga concentration. The difference from FIG. 5 is that a seed crystal 155 is placed in the small diameter portion 113, and a seed crystal having a large diameter and a Ga concentration gradient is obtained through the diameter increasing portion 112 and the constant diameter portion 113 while growing a single crystal. It is a point. Since the production procedure itself is the same as that described in FIG. 5 and the configuration of the apparatus itself is the same as that in FIG. 2, a detailed description of the method for producing a seed crystal having a Ga concentration gradient will be omitted.

以下、VB法を用いた本実施形態に係るFeGa単結晶の製造方法の実施例について説明する。なお、今まで実施形態で説明した構成要素と対応する構成要素には、理解の容易のため、実施形態と同一の参照符号を付して説明する。 Hereinafter, examples of the method for producing a FeGa single crystal according to the present embodiment using the VB method will be described. For the sake of easy understanding, the components corresponding to the components described in the embodiments will be described with the same reference numerals as those in the embodiments.

まず、図3に示すような、結晶成長方向においてGa濃度差を有する長さ25mm、直径50mmφのFeGa単結晶用種結晶50を用意した。 First, as shown in FIG. 3, a seed crystal 50 for a FeGa single crystal having a length of 25 mm and a diameter of 50 mmφ having a difference in Ga concentration in the crystal growth direction was prepared.

図1に示すように、本実施例に係る種結晶50を用いて育成試験を実施した。なお、坩堝10はアルミナ製で内径51mmφ、高さ150mm、厚み3mmであった。坩堝台20の上に坩堝10を置き、坩堝10内に本実施例に係る種結晶50を収納した。 As shown in FIG. 1, a growth test was carried out using the seed crystal 50 according to this example. The crucible 10 was made of alumina and had an inner diameter of 51 mmφ, a height of 150 mm, and a thickness of 3 mm. The crucible 10 was placed on the crucible stand 20, and the seed crystal 50 according to the present embodiment was stored in the crucible 10.

その際、融点が低いGa濃度の高い方を原料60と向き合う上側とし、融点が高いGa濃度の低い方を坩堝10の底面に向き合う下側とした。その上には融解したGaにFe粉を所望量入れ、混合させた原料60を必要量入れた。坩堝10の周りにはカーボン製発熱体40を配置し、この発熱体40は上方が高く、下方が低い温度分布となるよう設定した。なお炉内は不活性ガス雰囲気(Arガス)で行った。この状態で種結晶50の高さが半分位融解するよう坩堝軸30を徐々に上昇させながら調整し、シーディングを行った。 At that time, the one having a low melting point and a high Ga concentration was designated as the upper side facing the raw material 60, and the one having a high melting point and a low Ga concentration was designated as the lower side facing the bottom surface of the crucible 10. A desired amount of Fe powder was added to the melted Ga, and a required amount of the mixed raw material 60 was added thereto. A carbon heating element 40 was arranged around the crucible 10, and the heating element 40 was set to have a high temperature distribution in the upper part and a low temperature distribution in the lower part. The inside of the furnace was carried out in an inert gas atmosphere (Ar gas). In this state, the crucible shaft 30 was adjusted while gradually increasing so that the height of the seed crystal 50 was melted by about half, and seeding was performed.

シーディング後、1時間程度保持させた後、坩堝軸30を降下させ結晶育成を開始した。坩堝10内の融液をすべて固化させた後、約300℃/hの速度で炉冷を行い、室温程度になったことを確認した後、結晶を取り出した。このサイクルにて、種結晶の濃度差とシーディング時のるつぼ位置を上下させた条件を振って、シーディング可否の試験を実施した。その結果を表1に示す。 After seeding, the crucible shaft 30 was lowered for about 1 hour to start crystal growth. After solidifying all the melt in the crucible 10, the furnace was cooled at a rate of about 300 ° C./h, and after confirming that the temperature had reached about room temperature, crystals were taken out. In this cycle, the seed crystal concentration difference and the condition that the crucible position at the time of seeding was moved up and down were shaken, and the seeding possibility test was carried out. The results are shown in Table 1.

(評価)
種結晶長25mmに対し、上面より4.5mm付近でシーディングされている坩堝位置を適正として、適正位置から下げる(−方向)と発熱体40から遠ざかるため、原料融液の温度は低くなり種結晶50は融解され難くなり、逆に適正位置から上げる(+方向)と発熱体40に近くなるため、原料融液の温度は高くなり種結晶50は融解されやすくなる。
(Evaluation)
With respect to the seed crystal length of 25 mm, the temperature of the raw material melt becomes low and the seeds are moved away from the heating element 40 when the crucible position, which is seeded around 4.5 mm from the upper surface, is set as appropriate and lowered from the appropriate position (-direction). The crystal 50 is difficult to melt, and conversely, when it is raised from an appropriate position (+ direction), it becomes closer to the heating element 40, so that the temperature of the raw material melt rises and the seed crystal 50 is easily melted.

試験は、坩堝位置を適正位置から4mm刻みで−8mm〜+16mm変化させた結果、実施例1に係るGa濃度差が6.0at%の種結晶50については−4mm〜+12mmまでは問題なくシーディングされた。一方、実施例2に係る濃度差が3.0at%の種結晶については−4mm〜+4mmと良好な範囲が狭くなった。 In the test, as a result of changing the crucible position from the proper position in 4 mm increments by -8 mm to +16 mm, the seed crystal 50 having a Ga concentration difference of 6.0 at% according to Example 1 was seeded from -4 mm to +12 mm without any problem. Was done. On the other hand, for the seed crystal having a concentration difference of 3.0 at% according to Example 2, the good range was narrowed to -4 mm to +4 mm.

これに対し、比較例に係るGa濃度差が0at%の種結晶については、±4mmですでに異方成長が見られていた。以上の結果から、Ga濃度差を振った種結晶を用いることでシーディングの良好範囲が広くなることが確認された。 On the other hand, for the seed crystal having a Ga concentration difference of 0 at% according to the comparative example, anisotropic growth was already observed at ± 4 mm. From the above results, it was confirmed that the good range of seeding was widened by using seed crystals with different Ga concentration differences.

このように、本実施形態に係るFeGa単結晶育成用種結晶及びその製造方法、並びにFeGa単結晶の製造方法によれば、シーディング時における種結晶と原料の融点との差が抑制されることでるつぼ位置やヒータ出力などの微調整が必要とされず、多結晶化や異方成長を低減できる。 As described above, according to the seed crystal for growing FeGa single crystal and the method for producing the same according to the present embodiment, and the method for producing the FeGa single crystal, the difference between the seed crystal and the melting point of the raw material at the time of seeding is suppressed. Fine adjustment of the position of the pot and the heater output is not required, and polycrystallization and anisotropic growth can be reduced.

また、本実施形態に係るFeGa単結晶育成用種結晶及びその製造方法、並びにFeGa単結晶の製造方法によれば、VB法やVGF法によりシーディングを行う場合、Ga濃度の成長方向側が高く、下側が低い種結晶を用いることで、原料融液温度に合うところまで種結晶が自己調整的に融解するため、るつぼ位置やヒータ出力の微調整が要らず、また調整が前後に多少振れたとしても種結晶に濃度差がある、すなわち融点差があることから、双方の融点を容易に一致させることが可能となる。また、これにより、育成時の多結晶や異方成長を低減できる。 Further, according to the seed crystal for growing FeGa single crystal and the method for producing the same according to the present embodiment, and the method for producing the FeGa single crystal, when seeding is performed by the VB method or the VGF method, the growth direction side of the Ga concentration is high. By using a seed crystal with a low lower side, the seed crystal melts in a self-adjusting manner to the point where it matches the temperature of the raw material melt, so fine adjustment of the pot position and heater output is not necessary, and the adjustment fluctuates slightly back and forth. Since there is a difference in concentration between seed crystals, that is, a difference in melting point, it is possible to easily match the melting points of both. In addition, this can reduce polycrystals and anisotropic growth during growth.

以上、本発明の好ましい実施形態及び実施例について詳説したが、本発明は、上述した実施形態及び実施例に制限されることはなく、本発明の範囲を逸脱することなく、上述した実施形態及び実施例に種々の変形及び置換を加えることができる。 Although the preferred embodiments and examples of the present invention have been described in detail above, the present invention is not limited to the above-described embodiments and examples, and does not deviate from the scope of the present invention. Various modifications and substitutions can be added to the examples.

10 坩堝
20 坩堝台
30 坩堝軸
40 発熱体
50 種結晶
60 原料
10 Crucible 20 Crucible stand 30 Crucible shaft 40 Heating element 50 Seed crystal 60 Raw material

Claims (7)

融液を坩堝中で固化させる一方向凝固結晶成長法によるFeGa単結晶育成に用いられるFeGa単結晶育成用種結晶であって、
結晶成長方向において一端から他端に向かってGa濃度が高くなるGa濃度分布を有するFeGa単結晶育成用種結晶。
A seed crystal for growing a FeGa single crystal used for growing a FeGa single crystal by a unidirectional solidification crystal growth method in which the melt is solidified in a crucible.
A seed crystal for growing a FeGa single crystal having a Ga concentration distribution in which the Ga concentration increases from one end to the other in the crystal growth direction.
前記Ga濃度の濃度差は、2.0〜6.0at%である請求項1に記載のFeGa単結晶育成用種結晶。 The seed crystal for growing a FeGa single crystal according to claim 1, wherein the concentration difference of the Ga concentration is 2.0 to 6.0 at%. 前記Ga濃度の濃度勾配は、前記Ga濃度が高くなるにつれて急になる請求項1又は2に記載のFeGa単結晶育成用種結晶。 The seed crystal for growing a FeGa single crystal according to claim 1 or 2, wherein the concentration gradient of the Ga concentration becomes steeper as the Ga concentration increases. Ga濃度分布が均一なFeGa種結晶を坩堝の底面に配置する工程と、
FeGa単結晶育成用原料を前記坩堝内の前記FeGa種結晶上に投入する工程と、
前記FeGa種結晶の前記FeGa単結晶育成用原料と接触している部分を含めて一部を溶融させるシーディング工程と、
前記坩堝を下降させ、FeGa単結晶を成長させる工程と、を有し、
前記FeGa種結晶のGa濃度は、前記FeGa単結晶育成用原料のGa濃度±1at%以内であり、
前記FeGa単結晶が18.5at%のGa濃度を有するFeGa単結晶を製造するときよりも速い速度で前記坩堝を下降させる、Ga濃度勾配を有するFeGa種結晶の製造方法。
The process of arranging FeGa seed crystals with a uniform Ga concentration distribution on the bottom of the crucible, and
A step of charging the raw material for growing a FeGa single crystal onto the FeGa seed crystal in the crucible, and
A seeding step of melting a part of the FeGa seed crystal including a part in contact with the raw material for growing the FeGa single crystal, and
It has a step of lowering the crucible and growing a FeGa single crystal.
The Ga concentration of the FeGa seed crystal is within ± 1 at% of the Ga concentration of the raw material for growing the FeGa single crystal.
A method for producing a FeGa seed crystal having a Ga concentration gradient, which lowers the crucible at a speed faster than when the FeGa single crystal produces a FeGa single crystal having a Ga concentration of 18.5 at%.
前記FeGa単結晶育成用原料のGa濃度は、17.5at%に設定されている請求項4に記載のFeGa種結晶の製造方法。 The method for producing a FeGa seed crystal according to claim 4, wherein the Ga concentration of the raw material for growing a FeGa single crystal is set to 17.5 at%. 結晶成長方向において一端から他端に向かってGa濃度が高くなるFeGa単結晶育成用種結晶を、一方向凝固結晶成長法によりFeGa単結晶を育成する結晶育成装置の坩堝の底面に、Ga濃度が高い方の端面が上面となるように配置する工程と、
FeGa単結晶育成用原料を前記坩堝内の前記FeGa単結晶育成用種結晶上に投入する工程と、
前記FeGa単結晶育成用種結晶の前記FeGa単結晶育成用原料と接触している部分を含めて一部を溶解させるシーディング工程と、
前記坩堝を下降させ、FeGa単結晶を成長させる工程と、を有するFeGa単結晶の製造方法。
The Ga concentration is on the bottom of the pit of the crystal growth device that grows the FeGa single crystal growth seed crystal in which the Ga concentration increases from one end to the other end in the crystal growth direction by the unidirectional solidification crystal growth method. The process of arranging so that the higher end face is the upper surface,
A step of putting the raw material for growing a FeGa single crystal onto the seed crystal for growing a FeGa single crystal in the crucible, and
A seeding step of dissolving a part of the seed crystal for growing a FeGa single crystal, including a part in contact with the raw material for growing a FeGa single crystal,
A method for producing a FeGa single crystal, which comprises a step of lowering the crucible to grow a FeGa single crystal.
前記FeGa単結晶育成用種結晶の前記FeGa単結晶育成用原料と接触している端面の前記Ga濃度は、前記FeGa単結晶育成用原料のGa濃度よりも高く設定されている請求項6に記載のFeGa単結晶の製造方法。 The Ga concentration of the end face of the seed crystal for growing a FeGa single crystal in contact with the raw material for growing a FeGa single crystal is set higher than the Ga concentration of the raw material for growing a FeGa single crystal according to claim 6. A method for producing a FeGa single crystal.
JP2019061041A 2019-03-27 2019-03-27 Seed crystal for FeGa single crystal growth and method for producing FeGa single crystal Active JP7349100B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2019061041A JP7349100B2 (en) 2019-03-27 2019-03-27 Seed crystal for FeGa single crystal growth and method for producing FeGa single crystal

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2019061041A JP7349100B2 (en) 2019-03-27 2019-03-27 Seed crystal for FeGa single crystal growth and method for producing FeGa single crystal

Publications (2)

Publication Number Publication Date
JP2020158362A true JP2020158362A (en) 2020-10-01
JP7349100B2 JP7349100B2 (en) 2023-09-22

Family

ID=72641703

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2019061041A Active JP7349100B2 (en) 2019-03-27 2019-03-27 Seed crystal for FeGa single crystal growth and method for producing FeGa single crystal

Country Status (1)

Country Link
JP (1) JP7349100B2 (en)

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
泉聖志 他: "垂直ブリッジマン(VB)法によるFeGa単結晶の育成", 第47回結晶成長国内会議(JCCG-47)予稿集, JPN6023017062, 2018, pages 02 - 01, ISSN: 0005051192 *

Also Published As

Publication number Publication date
JP7349100B2 (en) 2023-09-22

Similar Documents

Publication Publication Date Title
KR101827928B1 (en) Method of Producing SiC Single Crystal
JP5273131B2 (en) Method for producing SiC single crystal
US20160340795A1 (en) Method of producing crystal
JP2008031019A (en) Method of manufacturing sapphire single crystal
JP6053018B2 (en) Crystal growth method
JP6990383B2 (en) High-performance Fe-Ga-based alloy single crystal manufacturing method
JPH09249486A (en) Method for pulling up single crystal
JP7072146B2 (en) Single crystal growth method for iron gallium alloy
JP7349100B2 (en) Seed crystal for FeGa single crystal growth and method for producing FeGa single crystal
JP2022020187A (en) METHOD FOR PRODUCING FeGa ALLOY SINGLE CRYSTAL
JP5029184B2 (en) Semiconductor crystal manufacturing method and manufacturing apparatus thereof
JP7318884B2 (en) Single crystal growth method for iron-gallium alloy
JP2004277266A (en) Method for manufacturing compound semiconductor single crystal
JP2022146328A (en) MANUFACTURING METHOD OF FeGa ALLOY SINGLE CRYSTAL
JP2018177542A (en) Production method of oxide single crystal, and oxide single crystal pulling-up device
JP2019043788A (en) Method and apparatus for growing single crystal
JP7078933B2 (en) Seed crystal for growing single crystal of iron gallium alloy
JP2022146327A (en) MANUFACTURING METHOD OF FeGa ALLOY SINGLE CRYSTAL
JP2021155246A (en) Lithium niobate single crystal and method for manufacturing the same
JP2018177568A (en) MANUFACTURING METHOD AND APPARATUS OF HIGH PERFORMANCE HIGH UNIFORM LARGE SCALE SINGLE CRYSTAL OF Fe-Ga BASE ALLOY
JP6400946B2 (en) Method for producing Si-Ge solid solution single crystal
JPS59107996A (en) Single crystal growing up method of solid solution composition of inorganic compound oxide
JP2012036015A (en) Crystal growth method
JP3660604B2 (en) Single crystal manufacturing method
JPH04270191A (en) Method for growing oxide single crystal

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20211220

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20221024

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20221108

RD01 Notification of change of attorney

Free format text: JAPANESE INTERMEDIATE CODE: A7426

Effective date: 20221214

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20230104

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A821

Effective date: 20221214

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20230509

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20230705

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20230808

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20230831

R150 Certificate of patent or registration of utility model

Ref document number: 7349100

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150